提交 aa6e9c30 编写于 作者: J Jacek Czaja 提交者: Tao Luo

[MKL-DNN ]Added transpose/transpose2 Op (#14872)

* - Added transpose MKLDNN Op
- Few basic UT works
- Added 1D transpose
- implementing generic mem desc for MKLDNN transpose
- Modified trnaspose op to support  more dimensional data eg. 5,6..10
- Added is_test attribute to transpose op

test=develop

* - Added support for MKLDNN::memory::format::any for Transpose MKLDNN op

test=develop

* - Additional transpose mkldnn op correction to mkldnn layout

test=develop

* Cosmetic fixes

test=develop

* - Removed const_cast to obey coding standard

test=develop
上级 6c66b3d4
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/platform/mkldnn_reuse.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using framework::DataLayout;
template <typename T>
class TransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
public:
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
"It must use CPUPlace.");
const bool is_test = ctx.Attr<bool>("is_test");
PADDLE_ENFORCE(
is_test == true,
"ConvTransposeMKLDNN works only for inference!. Set is_test = True");
auto& dev_ctx =
ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
const auto& mkldnn_engine = dev_ctx.GetEngine();
std::vector<int> axis = ctx.Attr<std::vector<int>>("axis");
int ndims = axis.size();
auto* input = ctx.Input<Tensor>("X");
auto* output = ctx.Output<Tensor>("Out");
const T* input_data = input->data<T>();
if (ndims == 1) {
output->ShareDataWith(*input);
return;
}
std::vector<int> nchw_axis(ndims, 0);
for (size_t i = 0; i < nchw_axis.size(); ++i) {
nchw_axis[i] = i;
}
std::vector<int> nchw_tz = paddle::framework::vectorize2int(input->dims());
std::string data_format = ctx.Attr<std::string>("data_format");
auto src_md =
input->format() != mkldnn::memory::format::nchw
? platform::MKLDNNMemDesc(nchw_tz, platform::MKLDNNGetDataType<T>(),
input->format())
: Axis2MemoryDesc(nchw_tz, nchw_axis);
this->TransposeKernel(ctx.GetPlace(), Axis2MemoryDesc(nchw_tz, axis),
src_md, output, input_data, nchw_tz, mkldnn_engine);
}
protected:
mkldnn::memory::desc Axis2MemoryDesc(std::vector<int>& nchw_tz,
std::vector<int>& axis) const {
mkldnn_memory_desc_t mem_fmt;
mem_fmt.primitive_kind = mkldnn_memory;
mem_fmt.ndims = axis.size();
for (unsigned int i = 0; i < nchw_tz.size(); ++i) {
mem_fmt.dims[i] = nchw_tz[i]; // logical dimensions (nchw format,
// regardless physical layout)
}
mem_fmt.data_type = mkldnn_f32;
mem_fmt.format = mkldnn_blocked;
unsigned int total_stride = 1;
for (int i = nchw_tz.size() - 1; i >= 0; --i) {
mem_fmt.layout_desc.blocking.padding_dims[i] =
nchw_tz[i]; // logical dimensions (nchw format, regardless physical
// layout)
mem_fmt.layout_desc.blocking.block_dims[i] = 1;
mem_fmt.layout_desc.blocking.offset_padding_to_data[i] = 0; // no offset
mem_fmt.layout_desc.blocking.strides[0][axis[i]] = total_stride;
mem_fmt.layout_desc.blocking.strides[1][axis[i]] = 1;
total_stride *= nchw_tz[axis[i]];
}
mem_fmt.layout_desc.blocking.offset_padding = 0; // no initial offset
return mem_fmt;
}
void TransposeKernel(platform::Place place, mkldnn::memory::desc md_o,
mkldnn::memory::desc md_i, Tensor* output,
const T* data_i, std::vector<int>& nchw_dims,
const mkldnn::engine& eng) const {
// Make Memory primitive descriptors
auto mpd_o = mkldnn::memory::primitive_desc(md_o, eng);
auto mpd_i = mkldnn::memory::primitive_desc(md_i, eng);
auto data_o = output->mutable_data<T>(
place, paddle::memory::Allocator::kDefault, mpd_o.get_size());
auto src = mkldnn::memory(mpd_i, (T*)(data_i));
auto dst = mkldnn::memory(mpd_o, data_o);
auto r = mkldnn::reorder(src, dst);
mkldnn::stream(mkldnn::stream::kind::eager).submit({r}).wait();
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_KERNEL(transpose2, MKLDNN, ::paddle::platform::CPUPlace,
ops::TransposeMKLDNNOpKernel<float>);
REGISTER_OP_KERNEL(transpose, MKLDNN, ::paddle::platform::CPUPlace,
ops::TransposeMKLDNNOpKernel<float>);
......@@ -16,6 +16,10 @@ limitations under the License. */
#include <string>
#include <vector>
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace paddle {
namespace operators {
......@@ -53,11 +57,32 @@ class TransposeOp : public framework::OperatorWithKernel {
}
ctx->SetOutputDim("Out", out_dims);
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
framework::LibraryType library_{framework::LibraryType::kPlain};
std::string data_format = ctx.Attr<std::string>("data_format");
framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
#ifdef PADDLE_WITH_MKLDNN
if (library_ == framework::LibraryType::kPlain &&
platform::CanMKLDNNBeUsed(ctx)) {
library_ = framework::LibraryType::kMKLDNN;
layout_ = framework::DataLayout::kMKLDNN;
}
#endif
return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
ctx.GetPlace(), layout_, library_);
}
};
class TransposeOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddAttr<bool>("is_test",
"(bool, default false) Set to true for inference only, false "
"for training. Some layers may run faster when this is true.")
.SetDefault(false);
AddInput(
"X",
"(Tensor) The input tensor, tensors with rank up to 6 are supported.");
......@@ -67,6 +92,16 @@ class TransposeOpMaker : public framework::OpProtoAndCheckerMaker {
"(vector<int>) A list of values, and the size of the list should be "
"the same with the input tensor rank. This operator permutes the input "
"tensor's axes according to the values given.");
AddAttr<bool>("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddAttr<std::string>(
"data_format",
"(string, default NCHW) Only used in "
"An optional string from: \"NHWC\", \"NCHW\". "
"Defaults to \"NHWC\". Specify the data format of the output data, "
"the input will be transformed automatically. ")
.SetDefault("AnyLayout");
AddComment(R"DOC(
Transpose Operator.
......@@ -144,8 +179,18 @@ class Transpose2Op : public TransposeOp {
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
ctx.device_context());
framework::LibraryType library_{framework::LibraryType::kPlain};
std::string data_format = ctx.Attr<std::string>("data_format");
framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
#ifdef PADDLE_WITH_MKLDNN
if (library_ == framework::LibraryType::kPlain &&
platform::CanMKLDNNBeUsed(ctx)) {
library_ = framework::LibraryType::kMKLDNN;
layout_ = framework::DataLayout::kMKLDNN;
}
#endif
return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
ctx.GetPlace(), layout_, library_);
}
};
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
from test_transpose_op import TestTransposeOp
class TestTransposeMKLDNN(TestTransposeOp):
def init_op_type(self):
self.op_type = "transpose2"
self.use_mkldnn = True
self.is_test = True
return
def test_check_grad(self):
return
def test_check_grad_no_input(self):
return
def test_check_grad_no_filter(self):
return
class TestCase0MKLDNN(TestTransposeMKLDNN):
def initTestCase(self):
self.shape = (3, )
self.axis = (0, )
class TestCase1a(TestTransposeMKLDNN):
def initTestCase(self):
self.shape = (3, 4, 5)
self.axis = (0, 2, 1)
class TestCase1b(TestTransposeMKLDNN):
def initTestCase(self):
self.shape = (3, 4, 5)
self.axis = (2, 1, 0)
class TestCase2(TestTransposeMKLDNN):
def initTestCase(self):
self.shape = (2, 3, 4, 5)
self.axis = (0, 2, 3, 1)
class TestCase3(TestTransposeMKLDNN):
def initTestCase(self):
self.shape = (2, 3, 4, 5, 6)
self.axis = (4, 2, 3, 1, 0)
class TestCase4(TestTransposeMKLDNN):
def initTestCase(self):
self.shape = (2, 3, 4, 5, 6, 1)
self.axis = (4, 2, 3, 1, 0, 5)
if __name__ == '__main__':
unittest.main()
......@@ -21,15 +21,24 @@ from op_test import OpTest
class TestTransposeOp(OpTest):
def setUp(self):
self.init_op_type()
self.initTestCase()
self.op_type = "transpose2"
self.inputs = {'X': np.random.random(self.shape).astype("float32")}
self.attrs = {'axis': list(self.axis)}
self.attrs = {
'axis': list(self.axis),
'use_mkldnn': self.use_mkldnn,
'is_test': self.is_test,
}
self.outputs = {
'XShape': np.random.random(self.shape).astype("float32"),
'Out': self.inputs['X'].transpose(self.axis)
}
def init_op_type(self):
self.op_type = "transpose2"
self.use_mkldnn = False
self.is_test = False
def test_check_output(self):
self.check_output(no_check_set=['XShape'])
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册