test_transpose_op.py 20.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
xzl 已提交
15 16
import unittest
import numpy as np
17
from paddle.fluid.tests.unittests.op_test import OpTest, convert_float_to_uint16
18
import paddle
19 20
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
21
import paddle.fluid.core as core
22 23 24
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
X
xzl 已提交
25

26
paddle.enable_static()
X
xzl 已提交
27

S
seemingwang 已提交
28

29
class TestTransposeOp(OpTest):
30

X
xzl 已提交
31
    def setUp(self):
32
        self.init_op_type()
33
        self.initTestCase()
H
hong 已提交
34
        self.python_api = paddle.transpose
35
        self.inputs = {'X': np.random.random(self.shape).astype("float64")}
36 37 38 39
        self.attrs = {
            'axis': list(self.axis),
            'use_mkldnn': self.use_mkldnn,
        }
40
        self.outputs = {
41
            'XShape': np.random.random(self.shape).astype("float64"),
42 43
            'Out': self.inputs['X'].transpose(self.axis)
        }
44

45 46 47 48
    def init_op_type(self):
        self.op_type = "transpose2"
        self.use_mkldnn = False

49
    def test_check_output(self):
H
hong 已提交
50
        self.check_output(no_check_set=['XShape'], check_eager=True)
51 52

    def test_check_grad(self):
H
hong 已提交
53
        self.check_grad(['X'], 'Out', check_eager=True)
54 55

    def initTestCase(self):
Z
zhupengyang 已提交
56
        self.shape = (3, 40)
57 58 59
        self.axis = (1, 0)


60
class TestCase0(TestTransposeOp):
61

62
    def initTestCase(self):
Z
zhupengyang 已提交
63
        self.shape = (100, )
64 65 66
        self.axis = (0, )


67
class TestCase1(TestTransposeOp):
68

69
    def initTestCase(self):
Z
zhupengyang 已提交
70
        self.shape = (3, 4, 10)
71 72 73 74
        self.axis = (0, 2, 1)


class TestCase2(TestTransposeOp):
75

76 77 78 79
    def initTestCase(self):
        self.shape = (2, 3, 4, 5)
        self.axis = (0, 2, 3, 1)

X
xzl 已提交
80

81
class TestCase3(TestTransposeOp):
82

83 84 85
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.axis = (4, 2, 3, 1, 0)
X
xzl 已提交
86 87


88
class TestCase4(TestTransposeOp):
89

90 91 92
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6, 1)
        self.axis = (4, 2, 3, 1, 0, 5)
X
xzl 已提交
93 94


95
class TestCase5(TestTransposeOp):
96

97 98 99 100 101 102
    def initTestCase(self):
        self.shape = (2, 16, 96)
        self.axis = (0, 2, 1)


class TestCase6(TestTransposeOp):
103

104 105 106 107 108 109
    def initTestCase(self):
        self.shape = (2, 10, 12, 16)
        self.axis = (3, 1, 2, 0)


class TestCase7(TestTransposeOp):
110

111 112 113 114 115
    def initTestCase(self):
        self.shape = (2, 10, 2, 16)
        self.axis = (0, 1, 3, 2)


116
class TestCase8(TestTransposeOp):
117

118 119 120 121 122 123
    def initTestCase(self):
        self.shape = (2, 3, 2, 3, 2, 4, 3, 3)
        self.axis = (0, 1, 3, 2, 4, 5, 6, 7)


class TestCase9(TestTransposeOp):
124

125 126 127
    def initTestCase(self):
        self.shape = (2, 3, 2, 3, 2, 4, 3, 3)
        self.axis = (6, 1, 3, 5, 0, 2, 4, 7)
128 129


130 131 132 133 134 135 136
class TestCase_ZeroDim(TestTransposeOp):

    def initTestCase(self):
        self.shape = ()
        self.axis = ()


137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
class TestAutoTuneTransposeOp(OpTest):

    def setUp(self):
        self.init_op_type()
        self.initTestCase()
        self.python_api = paddle.transpose
        self.inputs = {'X': np.random.random(self.shape).astype("float64")}
        self.attrs = {
            'axis': list(self.axis),
            'use_mkldnn': self.use_mkldnn,
        }
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("float64"),
            'Out': self.inputs['X'].transpose(self.axis)
        }

    def initTestCase(self):
        fluid.core.set_autotune_range(0, 3)
        fluid.core.update_autotune_status()
        fluid.core.enable_autotune()
        self.shape = (1, 12, 256, 1)
        self.axis = (0, 3, 2, 1)

    def init_op_type(self):
        self.op_type = "transpose2"
        self.use_mkldnn = False

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'], check_eager=True)
        fluid.core.disable_autotune()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out', check_eager=True)
170 171


172
class TestTransposeBF16Op(OpTest):
173

174 175 176 177 178 179 180 181 182 183 184 185
    def setUp(self):
        self.init_op_type()
        self.initTestCase()
        self.dtype = np.uint16
        x = np.random.random(self.shape).astype("float32")

        self.inputs = {'X': convert_float_to_uint16(x)}
        self.attrs = {
            'axis': list(self.axis),
            'use_mkldnn': self.use_mkldnn,
        }
        self.outputs = {
186 187
            'XShape':
            convert_float_to_uint16(
188
                np.random.random(self.shape).astype("float32")),
189 190
            'Out':
            self.inputs['X'].transpose(self.axis)
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
        }

    def init_op_type(self):
        self.op_type = "transpose2"
        self.use_mkldnn = False

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        pass

    def initTestCase(self):
        self.shape = (3, 2)
        self.axis = (1, 0)


208
class TestTransposeOpBool(TestTransposeOp):
209

210 211 212 213 214
    def test_check_grad(self):
        pass


class TestTransposeOpBool1D(TestTransposeOpBool):
215

216 217 218 219 220 221 222 223 224 225 226
    def initTestCase(self):
        self.shape = (100, )
        self.axis = (0, )
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
            'Out': self.inputs['X'].transpose(self.axis)
        }


class TestTransposeOpBool2D(TestTransposeOpBool):
227

228 229 230 231 232 233 234 235 236 237 238
    def initTestCase(self):
        self.shape = (3, 40)
        self.axis = (1, 0)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
            'Out': self.inputs['X'].transpose(self.axis)
        }


class TestTransposeOpBool3D(TestTransposeOpBool):
239

240 241 242 243 244 245 246 247 248 249 250
    def initTestCase(self):
        self.shape = (3, 4, 10)
        self.axis = (0, 2, 1)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
            'Out': self.inputs['X'].transpose(self.axis)
        }


class TestTransposeOpBool4D(TestTransposeOpBool):
251

252 253 254 255 256 257 258 259 260 261 262
    def initTestCase(self):
        self.shape = (2, 3, 4, 5)
        self.axis = (0, 2, 3, 1)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
            'Out': self.inputs['X'].transpose(self.axis)
        }


class TestTransposeOpBool5D(TestTransposeOpBool):
263

264 265 266 267 268 269 270 271 272 273 274
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.axis = (4, 2, 3, 1, 0)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
            'Out': self.inputs['X'].transpose(self.axis)
        }


class TestTransposeOpBool6D(TestTransposeOpBool):
275

276 277 278 279 280 281 282 283 284 285 286
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6, 1)
        self.axis = (4, 2, 3, 1, 0, 5)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
            'Out': self.inputs['X'].transpose(self.axis)
        }


class TestTransposeOpBool7D(TestTransposeOpBool):
287

288 289 290 291 292 293 294 295 296 297 298
    def initTestCase(self):
        self.shape = (2, 3, 2, 3, 2, 4, 3)
        self.axis = (0, 1, 3, 2, 4, 5, 6)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
            'Out': self.inputs['X'].transpose(self.axis)
        }


class TestTransposeOpBool8D(TestTransposeOpBool):
299

300 301 302 303 304 305 306 307 308 309
    def initTestCase(self):
        self.shape = (2, 3, 2, 3, 2, 4, 3, 3)
        self.axis = (6, 1, 3, 5, 0, 2, 4, 7)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
            'Out': self.inputs['X'].transpose(self.axis)
        }


310
class TestTransposeOpError(unittest.TestCase):
311

312
    def test_errors(self):
313
        paddle.enable_static()
314
        with program_guard(Program(), Program()):
315
            x = fluid.layers.data(name='x', shape=[10, 5, 3], dtype='float64')
316 317 318 319 320 321 322 323

            def test_x_Variable_check():
                # the Input(x)'s type must be Variable
                fluid.layers.transpose("not_variable", perm=[1, 0, 2])

            self.assertRaises(TypeError, test_x_Variable_check)

            def test_x_dtype_check():
324
                # the Input(x)'s dtype must be one of [bool, float16, float32, float64, int32, int64]
325 326 327
                x1 = fluid.layers.data(name='x1',
                                       shape=[10, 5, 3],
                                       dtype='int8')
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
                fluid.layers.transpose(x1, perm=[1, 0, 2])

            self.assertRaises(TypeError, test_x_dtype_check)

            def test_perm_list_check():
                # Input(perm)'s type must be list
                fluid.layers.transpose(x, perm="[1, 0, 2]")

            self.assertRaises(TypeError, test_perm_list_check)

            def test_perm_length_and_x_dim_check():
                # Input(perm) is the permutation of dimensions of Input(input)
                # its length should be equal to dimensions of Input(input)
                fluid.layers.transpose(x, perm=[1, 0, 2, 3, 4])

            self.assertRaises(ValueError, test_perm_length_and_x_dim_check)

            def test_each_elem_value_check():
                # Each element in Input(perm) should be less than Input(x)'s dimension
                fluid.layers.transpose(x, perm=[3, 5, 7])

            self.assertRaises(ValueError, test_each_elem_value_check)

S
seemingwang 已提交
351

352
class TestTransposeApi(unittest.TestCase):
353

354 355 356 357 358 359 360 361 362
    def test_static_out(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data(name='x', shape=[2, 3, 4], dtype='float32')
            x_trans1 = paddle.transpose(x, perm=[1, 0, 2])
            x_trans2 = paddle.transpose(x, perm=(2, 1, 0))
            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)
            x_np = np.random.random([2, 3, 4]).astype("float32")
S
seemingwang 已提交
363 364
            result1, result2 = exe.run(feed={"x": x_np},
                                       fetch_list=[x_trans1, x_trans2])
365 366
            expected_result1 = np.transpose(x_np, [1, 0, 2])
            expected_result2 = np.transpose(x_np, (2, 1, 0))
S
seemingwang 已提交
367

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
            np.testing.assert_array_equal(result1, expected_result1)
            np.testing.assert_array_equal(result2, expected_result2)

    def test_dygraph_out(self):
        # This is an old test before 2.0 API so we need to disable static
        # to trigger dygraph
        paddle.disable_static()
        x = paddle.randn([2, 3, 4])
        x_trans1 = paddle.transpose(x, perm=[1, 0, 2])
        x_trans2 = paddle.transpose(x, perm=(2, 1, 0))
        x_np = x.numpy()
        expected_result1 = np.transpose(x_np, [1, 0, 2])
        expected_result2 = np.transpose(x_np, (2, 1, 0))

        np.testing.assert_array_equal(x_trans1.numpy(), expected_result1)
        np.testing.assert_array_equal(x_trans2.numpy(), expected_result2)
        # This is an old test before 2.0 API so we enable static again after
        # dygraph test
        paddle.enable_static()
387

S
seemingwang 已提交
388

389
class TestTAPI(unittest.TestCase):
390

391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
    def test_out(self):
        with fluid.program_guard(fluid.Program()):
            data = fluid.data(shape=[10], dtype="float64", name="data")
            data_t = paddle.t(data)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            data_np = np.random.random([10]).astype("float64")
            result, = exe.run(feed={"data": data_np}, fetch_list=[data_t])
            expected_result = np.transpose(data_np)
        self.assertEqual((result == expected_result).all(), True)

        with fluid.program_guard(fluid.Program()):
            data = fluid.data(shape=[10, 5], dtype="float64", name="data")
            data_t = paddle.t(data)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            data_np = np.random.random([10, 5]).astype("float64")
            result, = exe.run(feed={"data": data_np}, fetch_list=[data_t])
            expected_result = np.transpose(data_np)
        self.assertEqual((result == expected_result).all(), True)

        with fluid.program_guard(fluid.Program()):
            data = fluid.data(shape=[1, 5], dtype="float64", name="data")
            data_t = paddle.t(data)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            data_np = np.random.random([1, 5]).astype("float64")
            result, = exe.run(feed={"data": data_np}, fetch_list=[data_t])
            expected_result = np.transpose(data_np)
        self.assertEqual((result == expected_result).all(), True)

        with fluid.dygraph.guard():
            np_x = np.random.random([10]).astype("float64")
            data = fluid.dygraph.to_variable(np_x)
            z = paddle.t(data)
            np_z = z.numpy()
            z_expected = np.array(np.transpose(np_x))
        self.assertEqual((np_z == z_expected).all(), True)

        with fluid.dygraph.guard():
            np_x = np.random.random([10, 5]).astype("float64")
            data = fluid.dygraph.to_variable(np_x)
            z = paddle.t(data)
            np_z = z.numpy()
            z_expected = np.array(np.transpose(np_x))
        self.assertEqual((np_z == z_expected).all(), True)

        with fluid.dygraph.guard():
            np_x = np.random.random([1, 5]).astype("float64")
            data = fluid.dygraph.to_variable(np_x)
            z = paddle.t(data)
            np_z = z.numpy()
            z_expected = np.array(np.transpose(np_x))
        self.assertEqual((np_z == z_expected).all(), True)

    def test_errors(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name='x', shape=[10, 5, 3], dtype='float64')

            def test_x_dimension_check():
                paddle.t(x)

            self.assertRaises(ValueError, test_x_dimension_check)


456
class TestMoveAxis(unittest.TestCase):
457

458 459 460 461 462 463 464 465 466 467 468
    def test_moveaxis1(self):
        x_np = np.random.randn(2, 3, 4, 5, 7)
        expected = np.moveaxis(x_np, [0, 4, 3, 2], [1, 3, 2, 0])
        paddle.enable_static()
        with paddle.static.program_guard(fluid.Program()):
            x = paddle.static.data("x", shape=[2, 3, 4, 5, 7], dtype='float64')
            out = paddle.moveaxis(x, [0, 4, 3, 2], [1, 3, 2, 0])

            exe = paddle.static.Executor()
            out_np = exe.run(feed={"x": x_np}, fetch_list=[out])[0]

469
        np.testing.assert_array_equal(out_np, expected)
470 471 472 473 474

        paddle.disable_static()
        x = paddle.to_tensor(x_np)
        out = paddle.moveaxis(x, [0, 4, 3, 2], [1, 3, 2, 0])
        self.assertEqual(out.shape, [4, 2, 5, 7, 3])
475
        np.testing.assert_array_equal(out.numpy(), expected)
476 477 478 479 480 481 482 483 484 485 486 487 488
        paddle.enable_static()

    def test_moveaxis2(self):
        x_np = np.random.randn(2, 3, 5)
        expected = np.moveaxis(x_np, -2, -1)
        paddle.enable_static()
        with paddle.static.program_guard(fluid.Program()):
            x = paddle.static.data("x", shape=[2, 3, 5], dtype='float64')
            out = x.moveaxis(-2, -1)

            exe = paddle.static.Executor()
            out_np = exe.run(feed={"x": x_np}, fetch_list=[out])[0]

489
        np.testing.assert_array_equal(out_np, expected)
490 491 492 493 494

        paddle.disable_static()
        x = paddle.to_tensor(x_np)
        out = x.moveaxis(-2, -1)
        self.assertEqual(out.shape, [2, 5, 3])
495
        np.testing.assert_array_equal(out.numpy(), expected)
496 497
        paddle.enable_static()

498 499
    def test_moveaxis3(self):
        paddle.disable_static()
500 501
        x = paddle.to_tensor([[1 + 1j, -1 - 1j], [1 + 1j, -1 - 1j],
                              [1 + 1j, -1 - 1j]])
502 503 504 505
        out = x.moveaxis(0, 1)
        self.assertEqual(out.shape, [2, 3])
        paddle.enable_static()

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
    def test_error(self):
        x = paddle.randn([2, 3, 4, 5])
        # src must have the same number with dst
        with self.assertRaises(AssertionError):
            paddle.moveaxis(x, [1, 0], [2])

        # each element of src must be unique
        with self.assertRaises(ValueError):
            paddle.moveaxis(x, [1, 1], [0, 2])

        # each element of dst must be unique
        with self.assertRaises(ValueError):
            paddle.moveaxis(x, [0, 1], [2, 2])

        # each element of src must be integer
        with self.assertRaises(AssertionError):
            paddle.moveaxis(x, [0.5], [1])

        # each element of dst must be integer
        with self.assertRaises(AssertionError):
            paddle.moveaxis(x, [0], [1.5])

        # each element of src must be in the range of [-4, 3)
        with self.assertRaises(AssertionError):
            paddle.moveaxis(x, [-10, 1], [2, 3])

        # each element of dst must be in the range of [-4, 3)
        with self.assertRaises(AssertionError):
            paddle.moveaxis(x, [2, 1], [10, 3])


537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
class TestTransposeDoubleGradCheck(unittest.TestCase):

    def transpose_wrapper(self, x):
        return paddle.transpose(x[0], [1, 0, 2])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [2, 3, 4], False, dtype)
        data.persistable = True
        out = paddle.transpose(data, [1, 0, 2])
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

        gradient_checker.double_grad_check([data],
                                           out,
                                           x_init=[data_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.double_grad_check_for_dygraph(self.transpose_wrapper,
                                                       [data],
                                                       out,
                                                       x_init=[data_arr],
                                                       place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestTransposeTripleGradCheck(unittest.TestCase):

    def transpose_wrapper(self, x):
        return paddle.transpose(x[0], [1, 0, 2])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [2, 3, 4], False, dtype)
        data.persistable = True
        out = paddle.transpose(data, [1, 0, 2])
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

        gradient_checker.triple_grad_check([data],
                                           out,
                                           x_init=[data_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.triple_grad_check_for_dygraph(self.transpose_wrapper,
                                                       [data],
                                                       out,
                                                       x_init=[data_arr],
                                                       place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
class TestTransposeAPI_ZeroDim(unittest.TestCase):

    def test_dygraph(self):
        paddle.disable_static()
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})

        x = paddle.rand([])
        x.stop_gradient = False
        out = paddle.transpose(x, [])
        out.backward()

        self.assertEqual(out.shape, [])
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(out.grad.shape, [])

        paddle.enable_static()


X
xzl 已提交
629
if __name__ == '__main__':
H
hong 已提交
630
    paddle.enable_static()
X
xzl 已提交
631
    unittest.main()