test_transpose_op.py 8.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

X
xzl 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest
20
import paddle
21 22
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
X
xzl 已提交
23

24
paddle.enable_static()
X
xzl 已提交
25

S
seemingwang 已提交
26

27
class TestTransposeOp(OpTest):
X
xzl 已提交
28
    def setUp(self):
29
        self.init_op_type()
30
        self.initTestCase()
31
        self.inputs = {'X': np.random.random(self.shape).astype("float64")}
32 33 34 35
        self.attrs = {
            'axis': list(self.axis),
            'use_mkldnn': self.use_mkldnn,
        }
36
        self.outputs = {
37
            'XShape': np.random.random(self.shape).astype("float64"),
38 39
            'Out': self.inputs['X'].transpose(self.axis)
        }
40

41 42 43 44
    def init_op_type(self):
        self.op_type = "transpose2"
        self.use_mkldnn = False

45
    def test_check_output(self):
46
        self.check_output(no_check_set=['XShape'])
47 48

    def test_check_grad(self):
C
chengduo 已提交
49
        self.check_grad(['X'], 'Out')
50 51

    def initTestCase(self):
Z
zhupengyang 已提交
52
        self.shape = (3, 40)
53 54 55
        self.axis = (1, 0)


56 57
class TestCase0(TestTransposeOp):
    def initTestCase(self):
Z
zhupengyang 已提交
58
        self.shape = (100, )
59 60 61
        self.axis = (0, )


62 63
class TestCase1(TestTransposeOp):
    def initTestCase(self):
Z
zhupengyang 已提交
64
        self.shape = (3, 4, 10)
65 66 67 68 69 70 71 72
        self.axis = (0, 2, 1)


class TestCase2(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5)
        self.axis = (0, 2, 3, 1)

X
xzl 已提交
73

74 75 76 77
class TestCase3(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.axis = (4, 2, 3, 1, 0)
X
xzl 已提交
78 79


80 81 82 83
class TestCase4(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6, 1)
        self.axis = (4, 2, 3, 1, 0, 5)
X
xzl 已提交
84 85


86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
class TestCase5(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 16, 96)
        self.axis = (0, 2, 1)


class TestCase6(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 10, 12, 16)
        self.axis = (3, 1, 2, 0)


class TestCase7(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 10, 2, 16)
        self.axis = (0, 1, 3, 2)


104 105 106 107 108 109 110 111 112 113 114 115
class TestCase8(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 3, 2, 3, 2, 4, 3, 3)
        self.axis = (0, 1, 3, 2, 4, 5, 6, 7)


class TestCase9(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 3, 2, 3, 2, 4, 3, 3)
        self.axis = (6, 1, 3, 5, 0, 2, 4, 7)


116
class TestTransposeOpError(unittest.TestCase):
117
    def test_errors(self):
118
        paddle.enable_static()
119
        with program_guard(Program(), Program()):
120
            x = fluid.layers.data(name='x', shape=[10, 5, 3], dtype='float64')
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

            def test_x_Variable_check():
                # the Input(x)'s type must be Variable
                fluid.layers.transpose("not_variable", perm=[1, 0, 2])

            self.assertRaises(TypeError, test_x_Variable_check)

            def test_x_dtype_check():
                # the Input(x)'s dtype must be one of [float16, float32, float64, int32, int64]
                x1 = fluid.layers.data(
                    name='x1', shape=[10, 5, 3], dtype='bool')
                fluid.layers.transpose(x1, perm=[1, 0, 2])

            self.assertRaises(TypeError, test_x_dtype_check)

            def test_perm_list_check():
                # Input(perm)'s type must be list
                fluid.layers.transpose(x, perm="[1, 0, 2]")

            self.assertRaises(TypeError, test_perm_list_check)

            def test_perm_length_and_x_dim_check():
                # Input(perm) is the permutation of dimensions of Input(input)
                # its length should be equal to dimensions of Input(input)
                fluid.layers.transpose(x, perm=[1, 0, 2, 3, 4])

            self.assertRaises(ValueError, test_perm_length_and_x_dim_check)

            def test_each_elem_value_check():
                # Each element in Input(perm) should be less than Input(x)'s dimension
                fluid.layers.transpose(x, perm=[3, 5, 7])

            self.assertRaises(ValueError, test_each_elem_value_check)

S
seemingwang 已提交
155

156 157 158 159 160 161 162 163 164 165
class TestTransposeApi(unittest.TestCase):
    def test_static_out(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data(name='x', shape=[2, 3, 4], dtype='float32')
            x_trans1 = paddle.transpose(x, perm=[1, 0, 2])
            x_trans2 = paddle.transpose(x, perm=(2, 1, 0))
            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)
            x_np = np.random.random([2, 3, 4]).astype("float32")
S
seemingwang 已提交
166 167
            result1, result2 = exe.run(feed={"x": x_np},
                                       fetch_list=[x_trans1, x_trans2])
168 169
            expected_result1 = np.transpose(x_np, [1, 0, 2])
            expected_result2 = np.transpose(x_np, (2, 1, 0))
S
seemingwang 已提交
170

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
            np.testing.assert_array_equal(result1, expected_result1)
            np.testing.assert_array_equal(result2, expected_result2)

    def test_dygraph_out(self):
        # This is an old test before 2.0 API so we need to disable static
        # to trigger dygraph
        paddle.disable_static()
        x = paddle.randn([2, 3, 4])
        x_trans1 = paddle.transpose(x, perm=[1, 0, 2])
        x_trans2 = paddle.transpose(x, perm=(2, 1, 0))
        x_np = x.numpy()
        expected_result1 = np.transpose(x_np, [1, 0, 2])
        expected_result2 = np.transpose(x_np, (2, 1, 0))

        np.testing.assert_array_equal(x_trans1.numpy(), expected_result1)
        np.testing.assert_array_equal(x_trans2.numpy(), expected_result2)
        # This is an old test before 2.0 API so we enable static again after
        # dygraph test
        paddle.enable_static()
190

S
seemingwang 已提交
191

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
class TestTAPI(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program()):
            data = fluid.data(shape=[10], dtype="float64", name="data")
            data_t = paddle.t(data)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            data_np = np.random.random([10]).astype("float64")
            result, = exe.run(feed={"data": data_np}, fetch_list=[data_t])
            expected_result = np.transpose(data_np)
        self.assertEqual((result == expected_result).all(), True)

        with fluid.program_guard(fluid.Program()):
            data = fluid.data(shape=[10, 5], dtype="float64", name="data")
            data_t = paddle.t(data)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            data_np = np.random.random([10, 5]).astype("float64")
            result, = exe.run(feed={"data": data_np}, fetch_list=[data_t])
            expected_result = np.transpose(data_np)
        self.assertEqual((result == expected_result).all(), True)

        with fluid.program_guard(fluid.Program()):
            data = fluid.data(shape=[1, 5], dtype="float64", name="data")
            data_t = paddle.t(data)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            data_np = np.random.random([1, 5]).astype("float64")
            result, = exe.run(feed={"data": data_np}, fetch_list=[data_t])
            expected_result = np.transpose(data_np)
        self.assertEqual((result == expected_result).all(), True)

        with fluid.dygraph.guard():
            np_x = np.random.random([10]).astype("float64")
            data = fluid.dygraph.to_variable(np_x)
            z = paddle.t(data)
            np_z = z.numpy()
            z_expected = np.array(np.transpose(np_x))
        self.assertEqual((np_z == z_expected).all(), True)

        with fluid.dygraph.guard():
            np_x = np.random.random([10, 5]).astype("float64")
            data = fluid.dygraph.to_variable(np_x)
            z = paddle.t(data)
            np_z = z.numpy()
            z_expected = np.array(np.transpose(np_x))
        self.assertEqual((np_z == z_expected).all(), True)

        with fluid.dygraph.guard():
            np_x = np.random.random([1, 5]).astype("float64")
            data = fluid.dygraph.to_variable(np_x)
            z = paddle.t(data)
            np_z = z.numpy()
            z_expected = np.array(np.transpose(np_x))
        self.assertEqual((np_z == z_expected).all(), True)

    def test_errors(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name='x', shape=[10, 5, 3], dtype='float64')

            def test_x_dimension_check():
                paddle.t(x)

            self.assertRaises(ValueError, test_x_dimension_check)


X
xzl 已提交
258 259
if __name__ == '__main__':
    unittest.main()