Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5ede6fd4
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
5ede6fd4
编写于
9月 18, 2017
作者:
X
xzl
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
delete cuda impl, complete comments, modify variable naming
上级
6b3ae01e
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
121 addition
and
209 deletion
+121
-209
paddle/operators/transpose_op.cc
paddle/operators/transpose_op.cc
+47
-30
paddle/operators/transpose_op.cu
paddle/operators/transpose_op.cu
+5
-112
paddle/operators/transpose_op.h
paddle/operators/transpose_op.h
+31
-52
python/paddle/v2/framework/tests/test_transpose_op.py
python/paddle/v2/framework/tests/test_transpose_op.py
+38
-15
未找到文件。
paddle/operators/transpose_op.cc
浏览文件 @
5ede6fd4
...
...
@@ -13,8 +13,6 @@
limitations under the License. */
#include "paddle/operators/transpose_op.h"
#include <vector>
#include "paddle/framework/ddim.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -27,28 +25,31 @@ class TransposeOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
auto
in_dim
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Input"
),
"Input(Input) should not be null"
);
auto
input_dim
=
ctx
.
Input
<
Tensor
>
(
"Input"
)
->
dims
();
auto
axis
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"axis"
);
size_t
in
_dim_size
=
in
_dim
.
size
();
size_t
in
put_dim_size
=
input
_dim
.
size
();
size_t
axis_size
=
axis
.
size
();
PADDLE_ENFORCE_EQ
(
in_dim_size
,
axis_size
,
"the input tensor dimensions should be equal to the axis size"
);
PADDLE_ENFORCE_EQ
(
input_dim_size
,
axis_size
,
"the input tensor's dimension(%d) "
"should be equal to the axis's size(%d)"
,
input_dim_size
,
axis_size
);
std
::
vector
<
int
>
axis_sorted
(
axis
);
std
::
sort
(
axis_sorted
.
begin
(),
axis_sorted
.
end
());
for
(
size_t
i
=
0
;
i
<
axis_sorted
.
size
();
i
++
)
{
PADDLE_ENFORCE_EQ
(
axis_sorted
[
i
],
(
int
)
i
,
PADDLE_ENFORCE_EQ
(
axis_sorted
[
i
],
static_cast
<
int
>
(
i
)
,
"the sorted axis should be [0, 1, ... dims - 1], "
"
the dims equals to the input tensor dimensions
"
);
"
where the dims is the axis's size
"
);
}
framework
::
DDim
out
_dim
(
in
_dim
);
framework
::
DDim
out
put_dim
(
input
_dim
);
for
(
size_t
i
=
0
;
i
<
axis
.
size
();
i
++
)
{
out
_dim
[
i
]
=
in
_dim
[
axis
[
i
]];
out
put_dim
[
i
]
=
input
_dim
[
axis
[
i
]];
}
ctx
.
Output
<
Tensor
>
(
"Out"
)
->
Resize
(
o
ut_dim
);
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Output"
)
->
Resize
(
outp
ut_dim
);
}
};
...
...
@@ -57,16 +58,30 @@ class TransposeOpMaker : public framework::OpProtoAndCheckerMaker {
TransposeOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The input of transpose op"
);
AddOutput
(
"Out"
,
"The output of transpose op"
);
AddInput
(
"Input"
,
"(Tensor)The input tensor, tensors with rank at most 7 are supported"
);
AddOutput
(
"Output"
,
"(Tensor)The output tensor"
);
AddAttr
<
std
::
vector
<
int
>>
(
"axis"
,
"a list of values, and the size of the list should be "
"
(vector<int>)
a list of values, and the size of the list should be "
"the same with the input tensor dimensions, the tensor will "
"permute the axes according the the values given"
);
AddComment
(
R"DOC(
The Tensor will be permuted according to the axis values given.
For example, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1},
The op is very much like the numpy.transpose function in python
For example:
>> input = numpy.arange(6).reshape((2,3))
>> input
array([[0, 1, 2],
[3, 4, 5]])
>> axis = [1, 0]
>> output = input.transpose(axis)
>> output
array([[0, 3],
[1, 4],
[2, 5]])
So, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1},
the output tensor shape will be (N, H, W, C)
)DOC"
);
}
...
...
@@ -78,20 +93,22 @@ class TransposeOpGrad : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X) should not be null"
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) should not be null"
);
auto
x_dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
*
x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
out_grad_dims
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
))
->
dims
();
auto
out_dims
=
ctx
.
Input
<
Tensor
>
(
"Out"
)
->
dims
();
PADDLE_ENFORCE
(
out_grad_dims
==
out_dims
,
"Out@GRAD dims must equal to Input(X) dims"
);
x_grad
->
Resize
(
x_dims
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Input"
),
"Input(Input) should not be null"
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Output"
)),
"Input(Output@GRAD) should not be null"
);
auto
input_dims
=
ctx
.
Input
<
Tensor
>
(
"Input"
)
->
dims
();
auto
*
input_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Input"
));
auto
output_grad_dims
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Output"
))
->
dims
();
auto
output_dims
=
ctx
.
Input
<
Tensor
>
(
"Output"
)
->
dims
();
PADDLE_ENFORCE
(
output_grad_dims
==
output_dims
,
"Output@GRAD dims must equal to Input(Input) dims"
);
input_grad
->
Resize
(
input_dims
);
}
};
...
...
paddle/operators/transpose_op.cu
浏览文件 @
5ede6fd4
...
...
@@ -12,118 +12,11 @@
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/memory/memcpy.h"
#include "paddle/memory/memory.h"
#include "paddle/operators/transpose_op.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
__global__
void
transpose_kernel
(
int
nthreads
,
const
T
*
in_data
,
T
*
out_data
,
int
*
offset_buffer
,
int
ndims
)
{
int
*
in_offset
=
offset_buffer
;
int
*
out_offset
=
offset_buffer
+
ndims
;
int
*
axis
=
offset_buffer
+
ndims
*
2
;
int
to_index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
to_index
<
nthreads
)
{
int
from_index
=
0
;
int
temp
=
to_index
;
for
(
size_t
i
=
0
;
i
<
ndims
;
i
++
)
{
from_index
+=
(
temp
/
out_offset
[
i
])
*
in_offset
[
axis
[
i
]];
temp
=
temp
%
out_offset
[
i
];
}
out_data
[
to_index
]
=
in_data
[
from_index
];
}
}
template
<
typename
T
>
void
TransposeCUDA
(
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Tensor
&
in
,
framework
::
Tensor
&
out
,
std
::
vector
<
int
>
axis
)
{
auto
*
in_data
=
in
.
template
data
<
T
>();
auto
*
out_data
=
out
.
template
mutable_data
<
T
>(
context
.
GetPlace
());
auto
in_dim
=
in
.
dims
();
auto
out_dim
=
out
.
dims
();
auto
data_size
=
product
(
in_dim
);
size_t
ndims
=
in_dim
.
size
();
std
::
vector
<
int
>
in_offset
(
ndims
,
1
);
std
::
vector
<
int
>
out_offset
(
ndims
,
1
);
auto
cpu_place
=
platform
::
CPUPlace
();
auto
gpu_place
=
boost
::
get
<
platform
::
GPUPlace
>
(
context
.
GetPlace
());
// Get a host_buffer to cache the input offset, output offset and the axis.
std
::
vector
<
int64_t
>
buffer_dim_shape
(
1
,
ndims
*
3
);
auto
buffer_dims
=
framework
::
make_ddim
(
buffer_dim_shape
);
framework
::
Tensor
host_buffer
;
int
*
host_buffer_data
=
host_buffer
.
mutable_data
<
int
>
(
buffer_dims
,
cpu_place
);
for
(
int
i
=
ndims
-
2
;
i
>=
0
;
i
--
)
{
in_offset
[
i
]
=
in_offset
[
i
+
1
]
*
in_dim
[
i
+
1
];
out_offset
[
i
]
=
out_offset
[
i
+
1
]
*
out_dim
[
i
+
1
];
}
// copy the data to the host_buffer
for
(
int
i
=
0
;
i
<
ndims
;
i
++
)
{
host_buffer_data
[
i
]
=
in_offset
[
i
];
host_buffer_data
[
i
+
ndims
]
=
out_offset
[
i
];
host_buffer_data
[
i
+
ndims
*
2
]
=
axis
[
i
];
}
// Get a device_buffer to cache the input offset, output offset and the axis.
auto
offset_buffer
=
memory
::
Alloc
(
gpu_place
,
ndims
*
3
*
sizeof
(
int
));
auto
*
cuda_device_context
=
reinterpret_cast
<
platform
::
CUDADeviceContext
*>
(
const_cast
<
platform
::
DeviceContext
*>
(
context
.
device_context_
));
// copy the host_buffer data to the device_buffer
memory
::
Copy
(
gpu_place
,
offset_buffer
,
cpu_place
,
host_buffer_data
,
ndims
*
3
*
sizeof
(
int
),
cuda_device_context
->
stream
());
int
block
=
512
;
int
grid
=
(
data_size
+
block
-
1
)
/
block
;
transpose_kernel
<
T
><<<
grid
,
block
>>>
(
data_size
,
in_data
,
out_data
,
static_cast
<
int
*>
(
offset_buffer
),
ndims
);
memory
::
Free
(
gpu_place
,
offset_buffer
);
}
template
<
typename
T
>
class
TransposeCUDAKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
context
.
GetPlace
()),
"It must use GPUPlace."
);
auto
*
in
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
axis
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"axis"
);
TransposeCUDA
<
T
>
(
context
,
*
in
,
*
out
,
axis
);
}
};
template
<
typename
T
>
class
TransposeGradCUDAKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
context
.
GetPlace
()),
"It must use GPUPlace."
);
auto
*
in
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
axis_temp
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"axis"
);
std
::
vector
<
int
>
axis
(
axis_temp
);
for
(
size_t
i
=
0
;
i
<
axis
.
size
();
i
++
)
{
axis
[
axis_temp
[
i
]]
=
i
;
}
TransposeCUDA
<
T
>
(
context
,
*
in
,
*
out
,
axis
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
transpose
,
ops
::
TransposeCUDAKernel
<
float
>
);
REGISTER_OP_GPU_KERNEL
(
transpose_grad
,
ops
::
TransposeGradCUDAKernel
<
float
>
);
REGISTER_OP_GPU_KERNEL
(
transpose
,
ops
::
TransposeKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
transpose_grad
,
ops
::
TransposeGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle/operators/transpose_op.h
浏览文件 @
5ede6fd4
...
...
@@ -20,41 +20,10 @@
namespace
paddle
{
namespace
operators
{
template
<
typename
Place
,
typename
T
>
void
NaiveCpuTranspose
(
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Tensor
&
in
,
framework
::
Tensor
&
out
,
std
::
vector
<
int
>
axis
)
{
auto
in_data
=
in
.
data
<
T
>
();
auto
out_data
=
out
.
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
in_dim
=
in
.
dims
();
auto
out_dim
=
out
.
dims
();
size_t
ndims
=
in_dim
.
size
();
std
::
vector
<
int
>
in_offset
(
ndims
,
1
);
std
::
vector
<
int
>
out_offset
(
ndims
,
1
);
for
(
int
i
=
ndims
-
2
;
i
>=
0
;
i
--
)
{
in_offset
[
i
]
=
in_offset
[
i
+
1
]
*
in_dim
[
i
+
1
];
out_offset
[
i
]
=
out_offset
[
i
+
1
]
*
out_dim
[
i
+
1
];
}
size_t
data_size
=
product
(
in_dim
);
for
(
size_t
to_index
=
0
;
to_index
<
data_size
;
to_index
++
)
{
int
from_index
=
0
;
int
temp
=
to_index
;
for
(
size_t
i
=
0
;
i
<
ndims
;
i
++
)
{
from_index
+=
(
temp
/
out_offset
[
i
])
*
in_offset
[
axis
[
i
]];
temp
=
temp
%
out_offset
[
i
];
}
out_data
[
to_index
]
=
in_data
[
from_index
];
}
}
template
<
typename
Place
,
typename
T
,
int
Dims
>
void
Do
Transpose
(
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Tensor
&
in
,
framework
::
Tensor
&
out
,
std
::
vector
<
int
>
axis
)
{
void
Eigen
Transpose
(
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Tensor
&
in
,
framework
::
Tensor
&
out
,
std
::
vector
<
int
>
axis
)
{
Eigen
::
array
<
int
,
Dims
>
permute
;
for
(
int
i
=
0
;
i
<
Dims
;
i
++
)
{
permute
[
i
]
=
axis
[
i
];
...
...
@@ -72,28 +41,32 @@ template <typename Place, typename T>
class
TransposeKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Input
<
framework
::
Tensor
>
(
"X
"
);
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"O
ut"
);
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
*
in
put
=
context
.
Input
<
framework
::
Tensor
>
(
"Input
"
);
auto
*
out
put
=
context
.
Output
<
framework
::
Tensor
>
(
"Outp
ut"
);
out
put
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
axis
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"axis"
);
int
ndims
=
axis
.
size
();
switch
(
ndims
)
{
case
1
:
break
;
case
2
:
DoTranspose
<
Place
,
T
,
2
>
(
context
,
*
in
,
*
o
ut
,
axis
);
EigenTranspose
<
Place
,
T
,
2
>
(
context
,
*
input
,
*
outp
ut
,
axis
);
break
;
case
3
:
DoTranspose
<
Place
,
T
,
3
>
(
context
,
*
in
,
*
o
ut
,
axis
);
EigenTranspose
<
Place
,
T
,
3
>
(
context
,
*
input
,
*
outp
ut
,
axis
);
break
;
case
4
:
DoTranspose
<
Place
,
T
,
4
>
(
context
,
*
in
,
*
o
ut
,
axis
);
EigenTranspose
<
Place
,
T
,
4
>
(
context
,
*
input
,
*
outp
ut
,
axis
);
break
;
case
5
:
DoTranspose
<
Place
,
T
,
5
>
(
context
,
*
in
,
*
o
ut
,
axis
);
EigenTranspose
<
Place
,
T
,
5
>
(
context
,
*
input
,
*
outp
ut
,
axis
);
break
;
default
:
NaiveCpuTranspose
<
Place
,
T
>
(
context
,
*
in
,
*
o
ut
,
axis
);
case
6
:
EigenTranspose
<
Place
,
T
,
6
>
(
context
,
*
input
,
*
outp
ut
,
axis
);
break
;
default:
PADDLE_THROW
(
"Tensors with rank at most 6 are supported"
);
}
}
};
...
...
@@ -102,9 +75,11 @@ template <typename Place, typename T>
class
TransposeGradKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
*
output_grad
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Output"
));
auto
*
input_grad
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
axis_temp
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"axis"
);
std
::
vector
<
int
>
axis
(
axis_temp
);
...
...
@@ -116,21 +91,25 @@ class TransposeGradKernel : public framework::OpKernel {
int
ndims
=
axis
.
size
();
switch
(
ndims
)
{
case
1
:
break
;
case
2
:
DoTranspose
<
Place
,
T
,
2
>
(
context
,
*
in
,
*
out
,
axis
);
EigenTranspose
<
Place
,
T
,
2
>
(
context
,
*
output_grad
,
*
input_grad
,
axis
);
break
;
case
3
:
DoTranspose
<
Place
,
T
,
3
>
(
context
,
*
in
,
*
out
,
axis
);
EigenTranspose
<
Place
,
T
,
3
>
(
context
,
*
output_grad
,
*
input_grad
,
axis
);
break
;
case
4
:
DoTranspose
<
Place
,
T
,
4
>
(
context
,
*
in
,
*
out
,
axis
);
EigenTranspose
<
Place
,
T
,
4
>
(
context
,
*
output_grad
,
*
input_grad
,
axis
);
break
;
case
5
:
DoTranspose
<
Place
,
T
,
5
>
(
context
,
*
in
,
*
out
,
axis
);
EigenTranspose
<
Place
,
T
,
5
>
(
context
,
*
output_grad
,
*
input_grad
,
axis
);
break
;
default
:
NaiveCpuTranspose
<
Place
,
T
>
(
context
,
*
in
,
*
out
,
axis
);
case
6
:
EigenTranspose
<
Place
,
T
,
6
>
(
context
,
*
output_grad
,
*
input_grad
,
axis
);
break
;
default:
PADDLE_THROW
(
"Tensors with rank at most 6 are supported"
);
}
}
};
...
...
python/paddle/v2/framework/tests/test_transpose_op.py
浏览文件 @
5ede6fd4
import
unittest
import
numpy
as
np
from
gradient_checker
import
GradientChecker
from
op_test_util
import
OpTestMeta
from
paddle.v2.framework.op
import
Operator
from
op_test
import
OpTest
class
TestTransposeOp
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
class
TestTransposeOp
(
OpTest
):
def
setUp
(
self
):
self
.
type
=
"transpose"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
3
,
4
)).
astype
(
"float32"
),
}
self
.
attrs
=
{
'axis'
:
[
1
,
0
]}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
transpose
((
1
,
0
))}
self
.
initTestCase
()
self
.
op_type
=
"transpose"
self
.
inputs
=
{
'Input'
:
np
.
random
.
random
(
self
.
shape
).
astype
(
"float32"
)}
self
.
attrs
=
{
'axis'
:
list
(
self
.
axis
)}
self
.
outputs
=
{
'Output'
:
self
.
inputs
[
'Input'
].
transpose
(
self
.
axis
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'Input'
],
'Output'
)
def
initTestCase
(
self
):
self
.
shape
=
(
3
,
4
)
self
.
axis
=
(
1
,
0
)
class
TestCase1
(
TestTransposeOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
3
,
4
,
5
)
self
.
axis
=
(
0
,
2
,
1
)
class
TestCase2
(
TestTransposeOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
3
,
4
,
5
)
self
.
axis
=
(
0
,
2
,
3
,
1
)
class
TestCase3
(
TestTransposeOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
3
,
4
,
5
,
6
)
self
.
axis
=
(
4
,
2
,
3
,
1
,
0
)
class
TransposeGradOpTest
(
GradientChecker
):
def
test_transpose
(
self
):
op
=
Operator
(
"transpose"
,
X
=
"X"
,
Out
=
"Out"
,
axis
=
[
1
,
0
])
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
84
)).
astype
(
"float32"
),
}
self
.
check_grad
(
op
,
inputs
,
set
([
"X"
]),
"Out"
,
max_relative_error
=
0.5
)
class
TestCase4
(
TestTransposeOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
3
,
4
,
5
,
6
,
1
)
self
.
axis
=
(
4
,
2
,
3
,
1
,
0
,
5
)
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录