manipulation.py 170.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
Wilber 已提交
15
from __future__ import print_function
16
from collections import Counter
W
Wilber 已提交
17

Z
zhiboniu 已提交
18
from ..static import Variable, device_guard
19
from ..framework import core, in_dygraph_mode
L
Ligoml 已提交
20 21 22 23 24
from ..fluid.framework import (
    _in_legacy_dygraph,
    _in_eager_without_dygraph_check,
    _non_static_mode,
)
25
from ..framework import LayerHelper
Z
zhiboniu 已提交
26
from ..framework import OpProtoHolder, convert_np_dtype_to_dtype_, dygraph_only
L
Ligoml 已提交
27 28 29 30 31 32
from ..fluid.data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
33
from ..fluid.layers import utils
myq406450149's avatar
myq406450149 已提交
34
import numpy as np
L
Ligoml 已提交
35

36
# TODO: define functions to manipulate a tensor
37
from ..fluid.layers.nn import _elementwise_op_in_dygraph
38
from ..fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
39
import paddle
40
from paddle import _C_ops, _legacy_C_ops
41 42 43 44 45
from ..common_ops_import import dygraph_utils, fill_constant, _varbase_creator
import warnings
from .creation import zeros
from .creation import _complex_to_real_dtype
from .creation import _real_to_complex_dtype
46

47 48
__all__ = []

W
Wilber 已提交
49

50 51 52 53 54 55 56 57
def cast(x, dtype):
    """

    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.

    Args:
58
        x (Tensor): An input N-D Tensor with data type bool, float16,
59
            float32, float64, int32, int64, uint8.
60
        dtype (np.dtype|str): Data type of the output:
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
            bool, float16, float32, float64, int8, int32, int64, uint8.

    Returns:
        Tensor: A Tensor with the same shape as input's.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
    """
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
77
        return _C_ops.cast(x, dtype)
78 79 80 81

    if _non_static_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
82
        out = _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
83 84
        return out

L
Ligoml 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    check_variable_and_dtype(
        x,
        'x',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'cast',
    )
    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'cast',
    )
118 119 120

    helper = LayerHelper('cast', **locals())
    out = helper.create_variable_for_type_inference(
L
Ligoml 已提交
121 122 123 124 125 126 127 128
        dtype=dtype, stop_gradient=x.stop_gradient
    )
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype, 'out_dtype': out.dtype},
    )
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    return out


def slice(input, axes, starts, ends):
    """
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` (here 0 is the initial position).
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` and ``ends``.
    Following examples will explain how slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]       # -1 denotes the reverse 0th position of dimension 0.
            Then:
                result = [ [2, 3, 4], ] # result = data[0:1, 1:4]
L
Ligoml 已提交
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    Args:
        input (Tensor): A ``Tensor`` . The data type is ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to .
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.

    Returns:
        Tensor:  A ``Tensor``. The data type is same as ``input``.

    Raises:
        TypeError: The type of ``starts`` must be list, tuple or Tensor.
        TypeError: The type of ``ends`` must be list, tuple or Tensor.

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand(shape=[4, 5, 6], dtype='float32')
            # example 1:
            # attr starts is a list which doesn't contain tensor.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = paddle.slice(input, axes=axes, starts=starts, ends=ends)
            # sliced_1 is input[0:3, 0:2, 2:4].

            # example 2:
            # attr starts is a list which contain tensor.
            minus_3 = paddle.full([1], -3, "int32")
            sliced_2 = paddle.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
            # sliced_2 is input[0:3, 0:2, 2:4].
    """
    if in_dygraph_mode():
        attrs = ()
        starts_tensor = None
        ends_tensor = None

        if isinstance(axes, (list, tuple)):
            axes = list(axes)
            if len(axes) == 0:
                raise ValueError(
L
Ligoml 已提交
213 214
                    "Input axes should not be an empty list/tuple."
                )
215 216 217 218 219 220 221 222
            for i in range(len(axes)):
                if axes[i] < 0:
                    axes[i] = max(0, axes[i] + len(input.shape))
                else:
                    axes[i] = min(len(input.shape) - 1, axes[i])

        else:
            raise ValueError(
L
Ligoml 已提交
223 224 225 226
                "Input axes must be a python list or tuple, but reveived {}".format(
                    type(axes)
                )
            )
227 228 229 230 231 232 233 234

        infer_flags = list(1 for i in range(len(axes)))

        tmp_tensor_type = core.eager.Tensor

        if isinstance(starts, (list, tuple)):
            starts = [
                item.numpy().item(0)
L
Ligoml 已提交
235 236
                if isinstance(item, tmp_tensor_type)
                else item
237 238 239
                for item in starts
            ]
        elif isinstance(starts, tmp_tensor_type):
240 241
            tensor_t = starts.numpy()
            starts = [ele for ele in tensor_t]
242 243 244 245 246
            infer_flags = list(-1 for i in range(len(axes)))

        if isinstance(ends, (list, tuple)):
            ends = [
                item.numpy().item(0)
L
Ligoml 已提交
247 248 249
                if isinstance(item, tmp_tensor_type)
                else item
                for item in ends
250 251
            ]
        elif isinstance(ends, tmp_tensor_type):
252
            tensor_t = ends.numpy()
253
            ends = [ele for ele in tensor_t]
254
            infer_flags = list(-1 for i in range(len(axes)))
255

256
        return _C_ops.slice(input, axes, starts, ends, infer_flags, [])
257 258 259 260 261 262 263 264 265 266
    else:
        if _in_legacy_dygraph():
            attrs = ()
            starts_tensor = None
            ends_tensor = None

            if isinstance(axes, (list, tuple)):
                axes = list(axes)
                if len(axes) == 0:
                    raise ValueError(
L
Ligoml 已提交
267 268
                        "Input axes should not be an empty list/tuple."
                    )
269 270 271 272 273 274 275 276
                for i in range(len(axes)):
                    if axes[i] < 0:
                        axes[i] = max(0, axes[i] + len(input.shape))
                    else:
                        axes[i] = min(len(input.shape) - 1, axes[i])

            else:
                raise ValueError(
L
Ligoml 已提交
277 278 279 280
                    "Input axes must be a python list or tuple, but reveived {}".format(
                        type(axes)
                    )
                )
281 282 283 284 285 286 287 288

            infer_flags = list(1 for i in range(len(axes)))

            tmp_tensor_type = Variable

            if isinstance(starts, (list, tuple)):
                starts = [
                    item.numpy().item(0)
L
Ligoml 已提交
289 290
                    if isinstance(item, tmp_tensor_type)
                    else item
291 292 293 294 295 296 297 298 299 300 301
                    for item in starts
                ]
                attrs += ('starts', starts)
            elif isinstance(starts, tmp_tensor_type):
                starts_tensor = starts
                starts.stop_gradient = True
                infer_flags = list(-1 for i in range(len(axes)))

            if isinstance(ends, (list, tuple)):
                ends = [
                    item.numpy().item(0)
L
Ligoml 已提交
302 303
                    if isinstance(item, tmp_tensor_type)
                    else item
304 305 306 307 308 309 310 311
                    for item in ends
                ]
                attrs += ('ends', ends)
            elif isinstance(ends, tmp_tensor_type):
                ends_tensor = ends
                ends_tensor.stop_gradient = True
                infer_flags = list(-1 for i in range(len(axes)))

L
Ligoml 已提交
312 313 314 315 316 317 318 319 320 321 322 323
            return _legacy_C_ops.slice(
                input,
                starts_tensor,
                ends_tensor,
                None,
                None,
                'axes',
                axes,
                'infer_flags',
                infer_flags,
                *attrs,
            )
324 325 326

    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
L
Ligoml 已提交
327 328
            "Input starts must be an Variable, python list or tuple."
        )
329 330
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
L
Ligoml 已提交
331 332
            "Input ends must be an Variable, python list or tuple."
        )
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378

    helper = LayerHelper('slice', **locals())

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

    # starts
    if isinstance(starts, Variable):
        starts.stop_gradient = True
        inputs['StartsTensor'] = starts
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(starts, (list, tuple)):
        attrs['starts'] = []
        if utils._contain_var(starts):
            inputs['StartsTensorList'] = utils._convert_to_tensor_list(starts)
            for i, dim in enumerate(starts):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
        else:
            attrs['starts'] = starts

    # ends
    if isinstance(ends, Variable):
        ends.stop_gradient = True
        inputs['EndsTensor'] = ends
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(ends, (list, tuple)):
        attrs['ends'] = []
        if utils._contain_var(ends):
            inputs['EndsTensorList'] = utils._convert_to_tensor_list(ends)
            for i, dim in enumerate(ends):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
        else:
            attrs['ends'] = ends

    # infer_flags
    attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
L
Ligoml 已提交
379 380 381 382 383
        dtype=helper.input_dtype('input')
    )
    helper.append_op(
        type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out}
    )
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

    return out


def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
        Tensor: A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
439
        return _C_ops.transpose(x, perm)
440 441
    else:
        if _in_legacy_dygraph():
442
            out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
443 444
            return out

L
Ligoml 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
    check_variable_and_dtype(
        x,
        'x',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'transpose',
    )
460 461 462 463 464 465 466 467
    check_type(perm, 'perm', (list, tuple), 'transpose')
    if isinstance(perm, tuple):
        perm = list(perm)
    if len(perm) != len(x.shape):
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
L
Ligoml 已提交
468 469
            "the length of Input(perm) is %s." % (len(x.shape), len(perm))
        )
470 471 472 473 474
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
L
Ligoml 已提交
475 476
                "dimension %d." % (idx, perm[idx], len(x.shape))
            )
477 478 479 480

    helper = LayerHelper('transpose', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
L
Ligoml 已提交
481 482 483 484 485 486
    helper.append_op(
        type='transpose2',
        inputs={'X': [x]},
        outputs={'Out': [out], 'XShape': [x_shape]},
        attrs={'axis': perm},
    )
487 488 489 490 491 492
    return out


def unstack(x, axis=0, num=None):
    """
    :alias_main: paddle.unstack
L
Ligoml 已提交
493 494
        :alias: paddle.unstack,paddle.tensor.unstack,paddle.tensor.manipulation.unstack
        :old_api: paddle.fluid.layers.unstack
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523

    **UnStack Layer**

    This layer unstacks input Tensor :code:`x` into several Tensors along :code:`axis`.

    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised.

    Args:
        x (Tensor): Input Tensor. It is a N-D Tensors of data types float32, float64, int32, int64.
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.

    Returns:
        list(Tensor): The unstacked Tensors list. The list elements are N-D Tensors of data types float32, float64, int32, int64.

    Raises:
        ValueError: If x.shape[axis] <= 0 or axis is not in range [-D, D).

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.ones(name='x', shape=[2, 3, 5], dtype='float32')  # create a tensor with shape=[2, 3, 5]
            y = paddle.unstack(x, axis=1)  # unstack with second axis, which results 3 tensors with shape=[2, 5]

    """
524 525 526 527 528
    if in_dygraph_mode():
        if num == None:
            num = x.shape[axis]
        if num == 0:
            return []
529
        return _C_ops.unstack(x, axis, num)
530

531 532 533 534 535
    if _non_static_mode():
        if num == None:
            num = x.shape[axis]
        if num == 0:
            return []
536
        return _legacy_C_ops.unstack(x, num, 'axis', int(axis), 'num', num)
537 538 539 540 541 542 543 544 545 546 547 548

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in range(num):
        outs.append(helper.create_variable_for_type_inference(x.dtype))

L
Ligoml 已提交
549 550 551 552 553 554
    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis, 'num': num},
    )
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
    return outs


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
    Reset the values of `input` according to the shard it beloning to.
    Every value in `input` must be a non-negative integer, and
    the parameter `index_num` represents the integer above the maximum
    value of `input`. Thus, all values in `input` must be in the range
    [0, index_num) and each value can be regarded as the offset to the beginning
    of the range. The range is further split into multiple shards. Specifically,
    we first compute the `shard_size` according to the following formula,
    which represents the number of integers each shard can hold. So for the
    i'th shard, it can hold values in the range [i*shard_size, (i+1)*shard_size).
    ::

        shard_size = (index_num + nshards - 1) // nshards

    For each value `v` in `input`, we reset it to a new value according to the
    following formula:
    ::
L
Ligoml 已提交
576

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
        v = v - shard_id * shard_size if shard_id * shard_size <= v < (shard_id+1) * shard_size else ignore_value

    That is, the value `v` is set to the new offset within the range represented by the shard `shard_id`
    if it in the range. Otherwise, we reset it to be `ignore_value`.

    Args:
        input (Tensor): Input tensor with data type int64 or int32. It's last dimension must be 1.
        index_num (int): An integer represents the integer above the maximum value of `input`.
        nshards (int): The number of shards.
        shard_id (int): The index of the current shard.
        ignore_value (int): An integer value out of sharded index range.

    Returns:
        Tensor.

    Examples:
        .. code-block:: python

            import paddle
            label = paddle.to_tensor([[16], [1]], "int64")
            shard_label = paddle.shard_index(input=label,
                                             index_num=20,
                                             nshards=2,
                                             shard_id=0)
            print(shard_label)
            # [[-1], [1]]
    """
    if in_dygraph_mode():
L
Ligoml 已提交
605 606 607
        return _C_ops.shard_index(
            input, index_num, nshards, shard_id, ignore_value
        )
608 609 610 611 612

    check_variable_and_dtype(input, 'input', ['int64', 'int32'], 'shard_index')
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
L
Ligoml 已提交
613 614 615
        raise ValueError(
            'The shard_id(%d) should be in [0, %d)' % (shard_id, nshards)
        )
616 617

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
L
Ligoml 已提交
618 619 620 621 622 623 624 625 626 627 628 629
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value,
        },
        stop_gradient=True,
    )
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
    return out


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1 (input is a 2-D Tensor):
            Input:
                X.shape = [3, 5]
                X.data = [[0, 1, 2, 0, 0],
                          [0, 3, 4, 0, 0],
                          [0, 0, 0, 0, 0]]
            Parameters:
                shape = [2, 2]
                offsets = [0, 1]
            Output:
                Out.shape = [2, 2]
                Out.data = [[1, 2],
                            [3, 4]]
        * Case 2 (input is a 3-D Tensor):
            Input:
                X.shape = [2, 3, 4]
                X.data =  [[[0, 1, 2, 3],
                            [0, 5, 6, 7],
                            [0, 0, 0, 0]],
                           [[0, 3, 4, 5],
                            [0, 6, 7, 8],
                            [0, 0, 0, 0]]]
            Parameters:
                shape = [2, 2, -1]
                offsets = [0, 0, 1]
            Output:
                Out.shape = [2, 2, 3]
                Out.data  = [[[1, 2, 3],
                              [5, 6, 7]],
                             [[3, 4, 5],
                              [6, 7, 8]]]

    Parameters:
        x (Tensor): 1-D to 6-D Tensor, the data type is float32, float64, int32 or int64.
673
        shape (list|tuple|Tensor, optional): The output shape is specified
674 675 676 677 678 679 680 681 682 683 684
            by `shape`. Its data type is int32. If a list/tuple, it's length must be
            the same as the dimension size of `x`. If a Tensor, it should be a 1-D Tensor.
            When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the shape may
            be changed each iteration.
        offsets (list|tuple|Variable, optional): Specifies the cropping
            offsets at each dimension. Its data type is int32. If a list/tuple, it's length
            must be the same as the dimension size of `x`. If a Tensor, it should be a 1-D
            Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the offsets may be changed
            each iteration. Default: None, the offsets are 0 at each dimension.
685
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718

    Returns:
        Tensor: The cropped Tensor has same data type with `x`.

    Examples:

        .. code-block:: python

            import paddle
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
            # x.shape = [3, 3]
            # x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

            # shape can be a 1-D Tensor or list or tuple.
            shape = paddle.to_tensor([2, 2], dtype='int32')
            # shape = [2, 2]
            # shape = (2, 2)
            out = paddle.crop(x, shape)
            # out.shape = [2, 2]
            # out = [[1,2], [4,5]]

            # offsets can be a 1-D Tensor or list or tuple.
            offsets = paddle.to_tensor([0, 1], dtype='int32')
            # offsets = [1, 0]
            # offsets = (1, 1)
            out = paddle.crop(x, shape, offsets)
            # out.shape = [2, 2]
            # if offsets = [0, 0], out = [[1,2], [4,5]]
            # if offsets = [0, 1], out = [[2,3], [5,6]]
            # if offsets = [1, 0], out = [[4,5], [7,8]]
            # if offsets = [1, 1], out = [[5,6], [8,9]]

    """
719

720
    helper = LayerHelper('crop_tensor', **locals())
L
Ligoml 已提交
721 722 723
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'crop_tensor'
    )
724
    check_type(shape, 'shape', (list, tuple, Variable), 'crop_tensor')
L
Ligoml 已提交
725 726 727
    check_type(
        offsets, 'offsets', (list, tuple, Variable, type(None)), 'crop_tensor'
    )
728 729 730 731

    if offsets is None:
        offsets = [0] * len(x.shape)

732
    if in_dygraph_mode():
733
        return _C_ops.crop_tensor(x, shape, offsets)
734

735 736 737 738 739 740 741 742
    out = helper.create_variable_for_type_inference(x.dtype)
    ipts = {'X': x}
    attrs = {}

    def _attr_shape_check(shape_val):
        if not isinstance(shape_val, int):
            raise TypeError(
                "Attr(shape)'s dtype of Op(crop_tensor) should be int32, but received: %s."
L
Ligoml 已提交
743 744
                % type(shape_val)
            )
745 746 747
        if shape_val == 0:
            raise ValueError(
                "Attr(shape) of Op(crop_tensor) should not be zero, but received: %s."
L
Ligoml 已提交
748 749
                % str(shape_val)
            )
750 751 752
        if shape_val < -1:
            raise ValueError(
                "When the element in Attr(shape) of Op(crop_tensor) is negative, only -1 is supported, but received: %s."
L
Ligoml 已提交
753 754
                % str(shape_val)
            )
755 756 757 758 759

    def _attr_offsets_check(offset_val):
        if not isinstance(offset_val, int):
            raise TypeError(
                "Attr(offsets)'s dtype of Op(crop_tensor) should be int32, but received: %s."
L
Ligoml 已提交
760 761
                % type(offset_val)
            )
762 763 764
        if offset_val < 0:
            raise ValueError(
                "Attr(offsets) of Op(crop_tensor) should be greater or equal to zero, but received: %s."
L
Ligoml 已提交
765 766
                % str(offset_val)
            )
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806

    if isinstance(offsets, Variable):
        offsets.stop_gradient = True
        ipts['Offsets'] = offsets
        attrs['offsets'] = [-1] * len(x.shape)
    elif utils._contain_var(offsets):
        new_offsets_tensor = []
        offsets_attr = []
        for dim in offsets:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_offsets_tensor.append(dim)
                offsets_attr.append(-1)
            else:
                _attr_offsets_check(dim)
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_offsets_tensor.append(temp_out)
                offsets_attr.append(dim)
        ipts['OffsetsTensor'] = new_offsets_tensor
        attrs['offsets'] = offsets_attr
    else:
        for offset in offsets:
            _attr_offsets_check(offset)
        attrs['offsets'] = offsets

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        ipts['Shape'] = shape
    elif utils._contain_var(shape):
        new_shape_tensor = []
        shape_attr = []
        for dim_size in shape:
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                new_shape_tensor.append(dim_size)
                shape_attr.append(0)
            else:
                _attr_shape_check(dim_size)
                temp_out = helper.create_variable_for_type_inference('int32')
L
Ligoml 已提交
807 808 809
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out
                )
810 811 812 813 814 815 816 817 818
                new_shape_tensor.append(temp_out)
                shape_attr.append(dim_size)
        ipts['ShapeTensor'] = new_shape_tensor
        attrs['shape'] = shape_attr
    else:
        for dim_size in shape:
            _attr_shape_check(dim_size)
        attrs['shape'] = shape

L
Ligoml 已提交
819 820 821 822 823 824
    helper.append_op(
        type='crop_tensor',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs,
    )
825 826 827
    return out


828 829 830 831 832 833 834 835 836
@dygraph_only
def fill_(x, value):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with value inplace.

    Args:
837 838
        x (Tensor): ``x`` is the Tensor we want to filled data inplace
        value (Scale): ``value`` is the value to be filled in x
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855

    Returns:
        x(Tensor): Tensor x filled with value inplace

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.fill_(0)
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
    if not isinstance(value, (float, int)):
        raise TypeError(
L
Ligoml 已提交
856 857 858
            "The type of 'value'  must be int or float, but received %s."
            % (type(value))
        )
859
    if in_dygraph_mode():
860
        return _C_ops.fill_(x, value)
861
    else:
L
Ligoml 已提交
862 863 864
        return _legacy_C_ops.fill_any_(
            x, "value_float", float(value), "value_int", int(value)
        )
865 866 867 868 869 870 871 872 873 874 875


@dygraph_only
def zero_(x):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with zero inplace.

    Args:
876
        x (Tensor): ``x`` is the Tensor we want to filled with zero inplace
877 878

    Returns:
879
        x (Tensor): Tensor x filled with zero inplace
880 881 882 883 884 885 886 887 888 889 890 891

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.zero_()
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
892
    if in_dygraph_mode():
L
Ligoml 已提交
893
        return _C_ops.fill_(x, 0.0)
894
    else:
L
Ligoml 已提交
895 896 897
        return _legacy_C_ops.fill_any_(
            x, "value_float", 0.0, "value_int", int(0)
        )
898 899


900 901 902
@dygraph_only
def fill_diagonal_(x, value, offset=0, wrap=False, name=None):
    """
903 904
    Note:
        This API is ONLY available in Dygraph mode.
L
Ligoml 已提交
905

906
    This function fill the value into the x Tensor's diagonal inplace.
L
Ligoml 已提交
907

908 909 910 911 912 913
    Args:
        x(Tensor): ``x`` is the original Tensor
        value(Scale): ``value`` is the value to filled in x
        offset(int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        wrap(bool,optional): the diagonal 'wrapped' after N columns for tall matrices.
        name(str,optional): Name for the operation (optional, default is None)
L
Ligoml 已提交
914

915 916
    Returns:
        Tensor: Tensor with diagonal filled with value.
917

918 919 920 921 922 923 924
    Examples:
        .. code-block:: python
            import paddle
            x = paddle.ones((4, 3)) * 2
            x.fill_diagonal_(1.0)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]
    """
Z
zhiboniu 已提交
925

926 927 928
    helper = LayerHelper("fill_diagonal_", **locals())
    check_type(x, 'X', (Variable), 'fill_diagonal_')
    dtype = helper.input_dtype('x')
L
Ligoml 已提交
929 930 931 932 933 934
    check_dtype(
        dtype,
        'X',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'fill_diagonal_',
    )
935 936 937 938 939
    check_type(value, 'value', (bool, int, float), 'fill_diagonal_')
    check_type(wrap, 'wrap', (bool), 'fill_diagonal_')

    inshape = x.shape
    inshapeset = set(inshape)
L
Ligoml 已提交
940
    assert len(inshape) >= 2, 'Tensor dims should >= 2 in fill_diagonal_ API'
941
    if len(inshape) > 2:
L
Ligoml 已提交
942 943 944
        assert (
            len(inshapeset) == 1
        ), 'Tensor dims should be equal while input dims > 2 in fill_diagonal_ API'
Z
zhiboniu 已提交
945 946
    if in_dygraph_mode():
        if len(inshape) == 2:
947 948
            return _C_ops.fill_diagonal_(x, value, offset, wrap)
        return _C_ops.fill_diagonal_(x, value, offset, True)
Z
zhiboniu 已提交
949

950
    if len(inshape) == 2:
L
Ligoml 已提交
951 952 953 954 955 956
        return _legacy_C_ops.fill_diagonal_(
            x, 'value', value, 'offset', offset, 'wrap', wrap
        )
    return _legacy_C_ops.fill_diagonal_(
        x, 'value', value, 'offset', offset, 'wrap', True
    )
957 958


959 960
def _fill_diagonal_tensor_impl(x, y, offset=0, dim1=0, dim2=1, inplace=False):
    inshape = x.shape
L
Ligoml 已提交
961 962 963 964 965 966 967
    assert dim1 < len(inshape) and dim1 >= -len(
        inshape
    ), 'dim1 should between [-rank,rank) in fill_diagonal_tensor_'
    assert dim2 < len(inshape) and dim2 >= -len(
        inshape
    ), 'dim2 should between [-rank,rank) in fill_diagonal_tensor_'
    assert len(inshape) >= 2, 'Tensor dims should >= 2 in fill_diagonal_tensor_'
968 969 970 971 972 973 974
    dim1 %= len(inshape)
    dim2 %= len(inshape)

    predshape = []
    for i in range(len(inshape)):
        if i != dim1 and i != dim2:
            predshape.append(inshape[i])
L
Ligoml 已提交
975 976 977 978
    diaglen = min(
        min(inshape[dim1], inshape[dim1] + offset),
        min(inshape[dim2], inshape[dim2] - offset),
    )
979
    predshape.append(diaglen)
980
    assert tuple(predshape) == tuple(
L
Ligoml 已提交
981 982
        y.shape
    ), "the y shape should be {}".format(predshape)
983 984 985 986
    if len(y.shape) == 1:
        y = y.reshape([1, -1])

    if inplace:
Z
zhiboniu 已提交
987
        if in_dygraph_mode():
988
            return _C_ops.fill_diagonal_tensor_(x, y, offset, dim1, dim2)
Z
zhiboniu 已提交
989
        else:
L
Ligoml 已提交
990 991 992
            return _legacy_C_ops.fill_diagonal_tensor_(
                x, y, 'offset', offset, 'dim1', dim1, 'dim2', dim2
            )
Z
zhiboniu 已提交
993
    if in_dygraph_mode():
994
        return _C_ops.fill_diagonal_tensor(x, y, offset, dim1, dim2)
Z
zhiboniu 已提交
995
    else:
L
Ligoml 已提交
996 997 998
        return _legacy_C_ops.fill_diagonal_tensor(
            x, y, 'offset', offset, 'dim1', dim1, 'dim2', dim2
        )
999 1000 1001 1002


def fill_diagonal_tensor_(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
1003 1004
    Note:
        This API is ONLY available in Dygraph mode.
1005 1006 1007 1008

    This function fill the source Tensor y into the x Tensor's diagonal inplace.

    Args:
1009 1010 1011 1012 1013 1014
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029

    Returns:
        Tensor: Tensor with diagonal filled with y.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            x.fill_diagonal_tensor_(y)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
L
Ligoml 已提交
1030 1031 1032
    return _fill_diagonal_tensor_impl(
        x, y, offset=offset, dim1=dim1, dim2=dim2, inplace=True
    )
1033 1034 1035 1036 1037 1038 1039


def fill_diagonal_tensor(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
    This function fill the source Tensor y into the x Tensor's diagonal.

    Args:
1040 1041 1042 1043 1044 1045
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060

    Returns:
        Tensor: Tensor with diagonal filled with y.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            nx = x.fill_diagonal_tensor(y)
            print(nx.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
L
Ligoml 已提交
1061 1062 1063
    return _fill_diagonal_tensor_impl(
        x, y, offset=offset, dim1=dim1, dim2=dim2, inplace=False
    )
1064 1065


Z
zhiboniu 已提交
1066 1067 1068
@dygraph_only
def tolist(x):
    """
1069 1070
    Note:
        This API is ONLY available in Dygraph mode.
Z
zhiboniu 已提交
1071 1072 1073 1074

    This function translate the paddle.Tensor to python list.

    Args:
1075
        x (Tensor): ``x`` is the Tensor we want to translate to list.
Z
zhiboniu 已提交
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096

    Returns:
        list: A list that contain the same value of current Tensor.


    Examples:
        .. code-block:: python

            import paddle

            t = paddle.to_tensor([0,1,2,3,4])
            expectlist = t.tolist()
            print(expectlist)   #[0, 1, 2, 3, 4]

            expectlist = paddle.tolist(t)
            print(expectlist)   #[0, 1, 2, 3, 4]

    """
    return x.numpy().tolist()


1097 1098 1099
def concat(x, axis=0, name=None):
    """

1100
    Concatenates the input along the axis.
1101 1102

    Args:
1103
        x (list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16,
1104
            float32, float64, int32, int64, int8, uint8. All the Tensors in ``x`` must have same data type.
1105
        axis (int|Tensor, optional): Specify the axis to operate on the input Tensors.
L
Ligoml 已提交
1106
            It's a scalar with data type int or a Tensor with shape [1] and data type int32
1107 1108
            or int64. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``,
            it works the same way as ``axis+R``. Default is 0.
1109
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1110 1111

    Returns:
1112
        Tensor: A Tensor with the same data type as ``x``.
1113 1114 1115

    Examples:
        .. code-block:: python
L
Ligoml 已提交
1116

1117
            import paddle
L
Ligoml 已提交
1118

1119 1120 1121 1122 1123 1124
            x1 = paddle.to_tensor([[1, 2, 3],
                                   [4, 5, 6]])
            x2 = paddle.to_tensor([[11, 12, 13],
                                   [14, 15, 16]])
            x3 = paddle.to_tensor([[21, 22],
                                   [23, 24]])
1125 1126 1127
            zero = paddle.full(shape=[1], dtype='int32', fill_value=0)
            # When the axis is negative, the real axis is (axis + Rank(x))
            # As follow, axis is -1, Rank(x) is 2, the real axis is 1
1128 1129 1130
            out1 = paddle.concat(x=[x1, x2, x3], axis=-1)
            out2 = paddle.concat(x=[x1, x2], axis=0)
            out3 = paddle.concat(x=[x1, x2], axis=zero)
1131 1132 1133 1134 1135 1136 1137 1138 1139
            # out1
            # [[ 1  2  3 11 12 13 21 22]
            #  [ 4  5  6 14 15 16 23 24]]
            # out2 out3
            # [[ 1  2  3]
            #  [ 4  5  6]
            #  [11 12 13]
            #  [14 15 16]]
    """
1140 1141 1142 1143 1144 1145 1146
    input = x
    if in_dygraph_mode():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
1147
        return _C_ops.concat(input, axis)
1148 1149 1150 1151 1152 1153 1154 1155

    if _in_legacy_dygraph():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
        out = _varbase_creator()
1156
        _legacy_C_ops.concat(input, out, 'axis', axis)
1157 1158 1159 1160 1161
        return out

    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
L
Ligoml 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
            check_variable_and_dtype(
                x,
                'input[' + str(id) + ']',
                [
                    'bool',
                    'float16',
                    'float32',
                    'float64',
                    'int32',
                    'int64',
                    'int8',
                    'unit8',
                ],
                'concat',
            )
1177 1178
            if x.dtype != input[0].dtype:
                raise TypeError(
1179 1180
                    "All the Tensors in the input must have the same data type."
                )
1181 1182 1183 1184 1185 1186
    else:
        input = [input]
    check_type(axis, 'axis', (int, Variable), 'concat')

    if isinstance(axis, Variable):
        check_dtype(
L
Ligoml 已提交
1187 1188 1189 1190 1191
            axis.dtype,
            'axis',
            ['int32', 'int64'],
            'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor",
1192
        )
1193 1194 1195 1196 1197 1198 1199 1200 1201

    helper = LayerHelper('concat', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

L
Ligoml 已提交
1202 1203 1204 1205
        assert len(input) == 1, (
            "If the elements of 'input' in concat are Variable(LoDTensorArray), "
            "number of the elements must be 1, but received %s." % len(input)
        )
1206
        out_index = helper.create_variable_for_type_inference(dtype="int32")
L
Ligoml 已提交
1207 1208 1209 1210 1211 1212
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out], 'OutIndex': [out_index]},
            attrs={'axis': axis, 'use_stack': False},
        )
1213 1214 1215 1216 1217
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
1218 1219 1220
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis
1221

L
Ligoml 已提交
1222 1223 1224
        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs
        )
1225
    return out
1226 1227


1228 1229 1230 1231 1232 1233 1234 1235
def broadcast_tensors(input, name=None):
    """
    This OP broadcast a list of tensors following broadcast semantics

    .. note::
        If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.

    Args:
1236
        input (list|tuple): ``input`` is a Tensor list or Tensor tuple which is with data type bool,
1237 1238
            float16, float32, float64, int32, int64. All the Tensors in ``input`` must have same data type.
            Currently we only support tensors with rank no greater than 5.
1239
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255

    Returns:
        list(Tensor): The list of broadcasted tensors following the same order as ``input``.

    Examples:
        .. code-block:: python

            import paddle
            x1 = paddle.rand([1, 2, 3, 4]).astype('float32')
            x2 = paddle.rand([1, 2, 1, 4]).astype('float32')
            x3 = paddle.rand([1, 1, 3, 1]).astype('float32')
            out1, out2, out3 = paddle.broadcast_tensors(input=[x1, x2, x3])
            # out1, out2, out3: tensors broadcasted from x1, x2, x3 with shape [1,2,3,4]
    """

    num_inputs = len(input)
1256
    if paddle.framework.in_dygraph_mode():
1257
        return _C_ops.broadcast_tensors(input)
1258
    if paddle.framework._non_static_mode():
1259
        return _legacy_C_ops.broadcast_tensors(input, num_inputs)
1260 1261 1262 1263

    check_type(input, 'input', (list, tuple), 'broadcast_tensors')
    if num_inputs < 1:
        raise TypeError(
L
Ligoml 已提交
1264 1265
            "At least 1 tensor is needed to perform broadcast_tensors"
        )
1266 1267 1268 1269

    # Check input types
    for id, x in enumerate(input):
        check_variable_and_dtype(
L
Ligoml 已提交
1270 1271
            x,
            'input[' + str(id) + ']',
1272
            ['bool', 'float32', 'float64', 'int32', 'int64'],
L
Ligoml 已提交
1273 1274
            'broadcast_tensors',
        )
1275 1276
        if x.dtype != input[0].dtype:
            raise TypeError(
L
Ligoml 已提交
1277 1278
                "All the Tensors in the input must have the same data type."
            )
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295

    # Check bcast semantics
    output_shape_r_last_tensor_index = []
    output_shape_r = []

    # Use while loop due to weird behaviour of "range()"
    j = 0
    while j < len(input):
        tensor = input[j]
        shape = list(reversed(tensor.shape))

        i = 0
        while i < len(shape):
            if len(output_shape_r) <= i:
                output_shape_r.append(shape[i])
                output_shape_r_last_tensor_index.append(j)
            else:
L
Ligoml 已提交
1296 1297 1298 1299 1300
                invalid = (
                    output_shape_r[i] != shape[i]
                    and output_shape_r[i] != 1
                    and shape[i] != 1
                )
1301 1302 1303 1304
                if invalid:
                    last_index = output_shape_r_last_tensor_index[i]
                    raise TypeError(
                        "Input tensors to broadcast_tensors does not follow bcast semantics"
1305
                        "Tensor {last_index} conflicts with Tensor {j} in reversed dimension {i}"
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
                    )
                if output_shape_r[i] <= shape[i]:
                    output_shape_r[i] = shape[i]
                    output_shape_r_last_tensor_index[i] = j
            i += 1  # while i < len(shape)
        j += 1  # while j < len(input)

    helper = LayerHelper('broadcast_tensors', **locals())
    i = 0
    out = []
    while i < num_inputs:
        out.append(
1318
            helper.create_variable_for_type_inference(
L
Ligoml 已提交
1319 1320 1321
                dtype=helper.input_dtype()
            )
        )
1322 1323 1324
        i += 1

    inputs = {'X': input}
L
Ligoml 已提交
1325 1326 1327
    helper.append_op(
        type='broadcast_tensors', inputs=inputs, outputs={'Out': out}, attrs={}
    )
1328 1329 1330 1331

    return out


Y
yaoxuefeng 已提交
1332
def flip(x, axis, name=None):
W
Wilber 已提交
1333
    """
Y
yaoxuefeng 已提交
1334
    Reverse the order of a n-D tensor along given axis in axis.
W
Wilber 已提交
1335 1336

    Args:
Y
yaoxuefeng 已提交
1337
        x (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor x
W
Wilber 已提交
1338
            should be float32, float64, int32, int64, bool.
R
Roc 已提交
1339
        axis (list|tuple|int): The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
1340
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
Wilber 已提交
1341 1342

    Returns:
Y
yaoxuefeng 已提交
1343
        Tensor: Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
W
Wilber 已提交
1344 1345 1346 1347 1348

    Examples:
        .. code-block:: python

          import paddle
Y
yaoxuefeng 已提交
1349 1350

          image_shape=(3, 2, 2)
1351
          img = paddle.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape)
R
Roc 已提交
1352 1353
          tmp = paddle.flip(img, [0,1])
          print(tmp) # [[[10,11],[8, 9]], [[6, 7],[4, 5]], [[2, 3],[0, 1]]]
Y
yaoxuefeng 已提交
1354

R
Roc 已提交
1355 1356
          out = paddle.flip(tmp,-1)
          print(out) # [[[11,10],[9, 8]], [[7, 6],[5, 4]], [[3, 2],[1, 0]]]
W
Wilber 已提交
1357
    """
R
Roc 已提交
1358 1359
    if isinstance(axis, int):
        axis = [axis]
H
hong 已提交
1360 1361

    if in_dygraph_mode():
1362
        return _C_ops.flip(x, axis)
H
hong 已提交
1363

Z
zhiboniu 已提交
1364
    if paddle.in_dynamic_mode():
1365
        return _legacy_C_ops.flip(x, "axis", axis)
R
Roc 已提交
1366

W
Wilber 已提交
1367
    helper = LayerHelper("flip", **locals())
Y
yaoxuefeng 已提交
1368 1369
    check_type(x, 'X', (Variable), 'flip')
    dtype = helper.input_dtype('x')
L
Ligoml 已提交
1370 1371 1372 1373 1374 1375
    check_dtype(
        dtype,
        'X',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        'flip',
    )
Y
yaoxuefeng 已提交
1376
    check_type(axis, 'axis', (list, tuple), 'flip')
W
Wilber 已提交
1377 1378 1379 1380 1381
    if name is None:
        out = helper.create_variable_for_type_inference(dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

L
Ligoml 已提交
1382 1383 1384
    helper.append_op(
        type="flip", inputs={"X": x}, outputs={"Out": out}, attrs={"axis": axis}
    )
W
Wilber 已提交
1385
    return out
1386 1387


Z
zmxdream 已提交
1388 1389
def rot90(x, k=1, axes=[0, 1], name=None):
    """
1390
    Rotate a n-D tensor by 90 degrees. The rotation direction and times are specified by axes and the absolute value of k. Rotation direction is from axes[0] towards axes[1] if k > 0, and from axes[1] towards axes[0] for k < 0.
Z
zmxdream 已提交
1391 1392 1393

    Args:
        x (Tensor): The input Tensor(or LoDTensor). The data type of the input Tensor x
Z
zmxdream 已提交
1394
            should be float16, float32, float64, int32, int64, bool. float16 is only supported on gpu.
Z
zmxdream 已提交
1395 1396
        k (int, optional): Direction and number of times to rotate, default value: 1.
        axes (list|tuple, optional): Axes to rotate, dimension must be 2. default value: [0, 1].
Z
zmxdream 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: Tensor or LoDTensor calculated by rot90 layer. The data type is same with input x.

    Examples:
        .. code-block:: python

          import paddle

          data = paddle.arange(4)
          data = paddle.reshape(data, (2, 2))
L
Ligoml 已提交
1410
          print(data)
Z
zmxdream 已提交
1411 1412 1413
          #[[0, 1],
          # [2, 3]]

Z
zmxdream 已提交
1414
          y = paddle.rot90(data, 1, [0, 1])
L
Ligoml 已提交
1415
          print(y)
Z
zmxdream 已提交
1416 1417 1418
          #[[1, 3],
          # [0, 2]]

Z
zmxdream 已提交
1419
          y= paddle.rot90(data, -1, [0, 1])
L
Ligoml 已提交
1420
          print(y)
Z
zmxdream 已提交
1421 1422 1423
          #[[2, 0],
          # [3, 1]]

Z
zmxdream 已提交
1424 1425
          data2 = paddle.arange(8)
          data2 = paddle.reshape(data2, (2,2,2))
L
Ligoml 已提交
1426
          print(data2)
Z
zmxdream 已提交
1427 1428 1429 1430 1431
          #[[[0, 1],
          #  [2, 3]],
          # [[4, 5],
          #  [6, 7]]]

Z
zmxdream 已提交
1432
          y = paddle.rot90(data2, 1, [1, 2])
Z
zmxdream 已提交
1433 1434 1435 1436 1437
          print(y)
          #[[[1, 3],
          #  [0, 2]],
          # [[5, 7],
          #  [4, 6]]]
Z
zmxdream 已提交
1438 1439 1440 1441 1442
    """

    helper = LayerHelper("rot90", **locals())
    check_type(x, 'X', (Variable), 'rot90')
    dtype = helper.input_dtype('x')
L
Ligoml 已提交
1443 1444 1445 1446 1447 1448
    check_dtype(
        dtype,
        'X',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        'rot90',
    )
Z
zmxdream 已提交
1449 1450 1451 1452 1453
    check_type(axes, 'axes', (list, tuple), 'rot90')

    input_total_dims = len(x.shape)
    total_rot_dims = len(axes)
    if total_rot_dims != 2:
1454 1455
        raise ValueError(
            "expected total rotation axes == 2, but got axes = {}".format(
L
Ligoml 已提交
1456 1457 1458
                total_rot_dims
            )
        )
Z
zmxdream 已提交
1459
    if input_total_dims < 2:
1460 1461
        raise ValueError(
            "expected total dims >= 2, but got total dims = {}".format(
L
Ligoml 已提交
1462 1463 1464
                input_total_dims
            )
        )
Z
zmxdream 已提交
1465 1466 1467

    if not (axes[0] != axes[1] and abs(axes[0] - axes[1]) != input_total_dims):
        raise ValueError(
L
Ligoml 已提交
1468 1469 1470 1471
            "expected rotation axes to be different, but got axis0 = {}, and axis1 = {}".format(
                axes[0], axes[1]
            )
        )
Z
zmxdream 已提交
1472 1473

    if not (axes[0] < input_total_dims and axes[0] >= -input_total_dims):
L
Ligoml 已提交
1474 1475 1476
        raise ValueError(
            "Rotation axis0 out of range, axis0 = {}".format(axes[0])
        )
Z
zmxdream 已提交
1477
    if not (axes[1] < input_total_dims and axes[1] >= -input_total_dims):
L
Ligoml 已提交
1478 1479 1480
        raise ValueError(
            "Rotation axis1 out of range, axis1 = {}".format(axes[1])
        )
Z
zmxdream 已提交
1481

Z
zmxdream 已提交
1482
    k %= 4
Z
zmxdream 已提交
1483 1484 1485 1486 1487 1488
    if k == 0:
        return x
    if k == 2:
        return flip(flip(x, axes[0]), axes[1])

    axes_list = list(range(0, input_total_dims))
L
Ligoml 已提交
1489 1490 1491 1492
    (axes_list[axes[0]], axes_list[axes[1]]) = (
        axes_list[axes[1]],
        axes_list[axes[0]],
    )
Z
zmxdream 已提交
1493 1494 1495 1496 1497 1498 1499
    if k == 1:
        return transpose(flip(x, axes[1]), axes_list)
    else:
        # k == 3
        return flip(transpose(x, axes_list), axes[1])


1500
def flatten(x, start_axis=0, stop_axis=-1, name=None):
1501
    r"""
1502 1503
    Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis.

1504 1505 1506
    Note:
        The output Tensor will share data with origin Tensor and doesn't have a Tensor copy in ``dygraph`` mode. 
        If you want to use the Tensor copy version, please use `Tensor.clone` like ``flatten_clone_x = x.flatten().clone()``.
1507

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
    For Example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 1
            end_axis = 2

          We get:
            Out.shape = (3, 1000 * 100, 2)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 0
            stop_axis = -1

          We get:
            Out.shape = (3 * 100 * 100 * 4)

    Args:
Y
yaoxuefeng 已提交
1537
        x (Tensor): A tensor of number of dimentions >= axis. A tensor with data type float32,
1538
                      float64, int8, int32, int64, uint8.
1539 1540
        start_axis (int): the start axis to flatten
        stop_axis (int): the stop axis to flatten
1541
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1542 1543

    Returns:
Y
yaoxuefeng 已提交
1544
        Tensor: A tensor with the contents of the input tensor, with input \
1545 1546 1547 1548
                  axes flattened by indicated start axis and end axis. \
                  A Tensor with data type same as input x.

    Raises:
Y
yaoxuefeng 已提交
1549
        ValueError: If x is not a Tensor.
1550 1551 1552 1553 1554 1555 1556 1557 1558
        ValueError: If start_axis or stop_axis is illegal.

    Examples:

        .. code-block:: python

            import paddle

            image_shape=(2, 3, 4, 4)
1559

Y
yaoxuefeng 已提交
1560 1561
            x = paddle.arange(end=image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3])
            img = paddle.reshape(x, image_shape)
1562

1563 1564
            out = paddle.flatten(img, start_axis=1, stop_axis=2)
            # out shape is [2, 12, 4]
1565 1566 1567 1568

            # out shares data with img in dygraph mode
            img[0, 0, 0, 0] = -1
            print(out[0, 0, 0]) # [-1]
1569 1570
    """
    if not (isinstance(x, Variable)):
Y
yaoxuefeng 已提交
1571
        raise ValueError("The input x should be a Tensor")
1572

Z
zhiboniu 已提交
1573
    if not paddle.in_dynamic_mode():
1574
        check_variable_and_dtype(
L
Ligoml 已提交
1575 1576
            x,
            'x',
1577
            ['float32', 'float64', 'int8', 'int16', 'int32', 'int64', 'uint8'],
L
Ligoml 已提交
1578 1579
            'flatten',
        )
1580 1581

    x_dim = len(x.shape)
L
Ligoml 已提交
1582 1583 1584 1585 1586
    if (
        not (isinstance(start_axis, int))
        or (start_axis > x_dim - 1)
        or start_axis < -x_dim
    ):
1587
        raise ValueError(
L
Ligoml 已提交
1588 1589 1590 1591 1592 1593 1594
            "The start_axis should be a int, and in range [-rank(x), rank(x))"
        )
    if (
        not (isinstance(stop_axis, int))
        or (stop_axis > x_dim - 1)
        or stop_axis < -x_dim
    ):
1595
        raise ValueError(
L
Ligoml 已提交
1596 1597
            "The stop_axis should be a int, and in range [-rank(x), rank(x))"
        )
1598 1599 1600 1601 1602 1603 1604
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

1605
    if in_dygraph_mode():
1606
        return _C_ops.flatten(x, start_axis, stop_axis)
1607 1608

    if _in_legacy_dygraph():
1609
        dy_out, _ = _legacy_C_ops.flatten_contiguous_range(
L
Ligoml 已提交
1610 1611
            x, 'start_axis', start_axis, 'stop_axis', stop_axis
        )
1612 1613
        return dy_out

1614
    helper = LayerHelper('flatten', **locals())
1615 1616
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
L
Ligoml 已提交
1617 1618 1619 1620 1621 1622
    helper.append_op(
        type='flatten_contiguous_range',
        inputs={"X": x},
        outputs={'Out': out, 'XShape': x_shape},
        attrs={"start_axis": start_axis, "stop_axis": stop_axis},
    )
1623 1624 1625
    return out


1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
@inplace_apis_in_dygraph_only
def flatten_(x, start_axis=0, stop_axis=-1, name=None):
    """
    Inplace version of ``flatten`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_flatten`.
    """
    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Tensor")

    x_dim = len(x.shape)
L
Ligoml 已提交
1636 1637 1638 1639 1640
    if (
        not (isinstance(start_axis, int))
        or (start_axis > x_dim - 1)
        or start_axis < -x_dim
    ):
1641
        raise ValueError(
L
Ligoml 已提交
1642 1643 1644 1645 1646 1647 1648
            "The start_axis should be a int, and in range [-rank(x), rank(x))"
        )
    if (
        not (isinstance(stop_axis, int))
        or (stop_axis > x_dim - 1)
        or stop_axis < -x_dim
    ):
1649
        raise ValueError(
L
Ligoml 已提交
1650 1651
            "The stop_axis should be a int, and in range [-rank(x), rank(x))"
        )
1652 1653 1654 1655 1656 1657 1658
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

1659
    if in_dygraph_mode():
1660
        return _C_ops.flatten_(x, start_axis, stop_axis)
1661 1662

    if _in_legacy_dygraph():
1663
        dy_out, _ = _legacy_C_ops.flatten_contiguous_range_(
L
Ligoml 已提交
1664 1665
            x, 'start_axis', start_axis, 'stop_axis', stop_axis
        )
1666
        return dy_out
1667 1668


Y
yaoxuefeng 已提交
1669
def roll(x, shifts, axis=None, name=None):
1670
    """
L
Ligoml 已提交
1671 1672 1673
    Roll the `x` tensor along the given axis(axes). With specific 'shifts', Elements that
    roll beyond the last position are re-introduced at the first according to 'shifts'.
    If a axis is not specified,
1674 1675 1676
    the tensor will be flattened before rolling and then restored to the original shape.

    Args:
Y
yaoxuefeng 已提交
1677
        x (Tensor): The x tensor as input.
1678
        shifts (int|list|tuple): The number of places by which the elements
Y
yaoxuefeng 已提交
1679
                           of the `x` tensor are shifted.
Y
Yuang Liu 已提交
1680
        axis (int|list|tuple, optional): axis(axes) along which to roll. Default: None
C
Chen Long 已提交
1681 1682 1683
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                For more information, please refer to :ref:`api_guide_Name` .

1684 1685

    Returns:
Y
yaoxuefeng 已提交
1686
        Tensor: A Tensor with same data type as `x`.
1687 1688 1689

    Examples:
        .. code-block:: python
L
Ligoml 已提交
1690

1691 1692
            import paddle

1693 1694 1695
            x = paddle.to_tensor([[1.0, 2.0, 3.0],
                                  [4.0, 5.0, 6.0],
                                  [7.0, 8.0, 9.0]])
Y
yaoxuefeng 已提交
1696
            out_z1 = paddle.roll(x, shifts=1)
Y
yaoxuefeng 已提交
1697
            print(out_z1)
Y
yaoxuefeng 已提交
1698 1699 1700 1701
            #[[9. 1. 2.]
            # [3. 4. 5.]
            # [6. 7. 8.]]
            out_z2 = paddle.roll(x, shifts=1, axis=0)
Y
yaoxuefeng 已提交
1702
            print(out_z2)
Y
yaoxuefeng 已提交
1703 1704 1705
            #[[7. 8. 9.]
            # [1. 2. 3.]
            # [4. 5. 6.]]
Y
Yuang Liu 已提交
1706 1707 1708 1709 1710
            out_z3 = paddle.roll(x, shifts=1, axis=1)
            print(out_z3)
            #[[3. 1. 2.]
            # [6. 4. 5.]
            # [9. 7. 8.]]
1711
    """
Y
yaoxuefeng 已提交
1712
    origin_shape = x.shape
1713 1714
    if type(shifts) == int:
        shifts = [shifts]
Y
yaoxuefeng 已提交
1715 1716 1717 1718
    if type(axis) == int:
        axis = [axis]

    len_origin_shape = len(origin_shape)
1719
    if axis is not None:
Y
yaoxuefeng 已提交
1720 1721 1722
        for i in range(len(axis)):
            if axis[i] >= len_origin_shape or axis[i] < -len_origin_shape:
                raise ValueError(
L
Ligoml 已提交
1723 1724 1725 1726
                    "axis is out of range, it should be in range [{}, {}), but received {}".format(
                        -len_origin_shape, len_origin_shape, axis
                    )
                )
S
sunli 已提交
1727 1728 1729
    else:
        axis = []

F
From00 已提交
1730
    if in_dygraph_mode():
1731
        return _C_ops.roll(x, shifts, axis)
F
From00 已提交
1732 1733

    if _in_legacy_dygraph():
1734
        return _legacy_C_ops.roll(x, 'axis', axis, 'shifts', shifts)
1735

1736 1737
    helper = LayerHelper("roll", **locals())
    check_type(axis, 'axis', (list, tuple), 'roll')
1738

Y
yaoxuefeng 已提交
1739
    out = helper.create_variable_for_type_inference(x.dtype)
1740

1741
    if isinstance(shifts, Variable):
L
Ligoml 已提交
1742 1743 1744 1745 1746 1747
        helper.append_op(
            type='roll',
            inputs={'X': x, "ShiftsTensor": shifts},
            outputs={'Out': out},
            attrs={'axis': axis},
        )
1748 1749
    else:
        check_type(shifts, 'shifts', (list, tuple), 'roll')
L
Ligoml 已提交
1750 1751 1752 1753 1754 1755
        helper.append_op(
            type='roll',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'axis': axis, 'shifts': shifts},
        )
1756
    return out
1757 1758


L
Leo Chen 已提交
1759
def stack(x, axis=0, name=None):
1760
    """
L
Ligoml 已提交
1761
    Stacks all the input tensors ``x`` along ``axis`` dimemsion.
L
Leo Chen 已提交
1762
    All tensors must be of the same shape and same dtype.
L
Ligoml 已提交
1763 1764 1765

    For example, given N tensors of shape [A, B], if ``axis == 0``, the shape of stacked
    tensor is [N, A, B]; if ``axis == 1``, the shape of stacked
L
Leo Chen 已提交
1766
    tensor is [A, N, B], etc.
L
Ligoml 已提交
1767

1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802

    .. code-block:: text

        Case 1:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
            Out.dims = [3, 1, 2]
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]


        Case 2:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]


          Attrs:
L
Leo Chen 已提交
1803
            axis = 1 or axis = -2  # If axis = -2, axis = axis+ndim(x[0])+1 = -2+2+1 = 1.
1804 1805 1806 1807 1808 1809 1810 1811

          Output:
            Out.shape = [1, 3, 2]
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]

    Args:
L
Leo Chen 已提交
1812
        x (list[Tensor]|tuple[Tensor]): Input ``x`` can be a ``list`` or ``tuple`` of tensors, the Tensors in ``x``
1813
                                     must be of the same shape and dtype. Supported data types: float32, float64, int32, int64.
L
Leo Chen 已提交
1814
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``,
L
Ligoml 已提交
1815
                              where ``R`` is the number of dimensions of the first input tensor ``x[0]``.
L
Leo Chen 已提交
1816
                              If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0.
1817
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
L
Ligoml 已提交
1818

1819
    Returns:
L
Leo Chen 已提交
1820
        Tensor: The stacked tensor with same data type as input.
1821

L
Ligoml 已提交
1822
    Example:
1823
        .. code-block:: python
L
Leo Chen 已提交
1824

1825
            import paddle
L
Ligoml 已提交
1826

L
Leo Chen 已提交
1827 1828 1829
            x1 = paddle.to_tensor([[1.0, 2.0]])
            x2 = paddle.to_tensor([[3.0, 4.0]])
            x3 = paddle.to_tensor([[5.0, 6.0]])
L
Ligoml 已提交
1830

L
Leo Chen 已提交
1831 1832
            out = paddle.stack([x1, x2, x3], axis=0)
            print(out.shape)  # [3, 1, 2]
L
Leo Chen 已提交
1833
            print(out)
L
Leo Chen 已提交
1834 1835 1836
            # [[[1., 2.]],
            #  [[3., 4.]],
            #  [[5., 6.]]]
L
Ligoml 已提交
1837 1838 1839 1840 1841 1842 1843

            out = paddle.stack([x1, x2, x3], axis=-2)
            print(out.shape)  # [1, 3, 2]
            print(out)
            # [[[1., 2.],
            #   [3., 4.],
            #   [5., 6.]]]
L
Leo Chen 已提交
1844
    """
1845 1846 1847
    axis = 0 if axis is None else axis

    if in_dygraph_mode():
1848
        return _C_ops.stack(x, axis)
1849 1850

    if _in_legacy_dygraph():
1851
        return _legacy_C_ops.stack(x, 'axis', axis)
1852 1853 1854 1855

    if not isinstance(x, list) and not isinstance(x, tuple):
        # NOTE:(zhiqiu) Only support Variable as input if the Variable is a LOD_TENSOR_ARRAY create by create_array, array_write, array_read, etc.
        # In that case, Variable is array of tensors indeed.
L
Ligoml 已提交
1856 1857 1858 1859
        if (
            isinstance(x, Variable)
            and x.desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY
        ):
1860 1861
            x = [x]
        else:
1862
            raise TypeError(
L
Ligoml 已提交
1863 1864 1865 1866 1867 1868 1869 1870
                "The type of '%s' in %s must be %s, but received %s"
                % (
                    'x',
                    'stack',
                    'list[Tensor], tuple[Tensor] or TensorArray',
                    type(x),
                )
            )
1871 1872 1873 1874 1875

    helper = LayerHelper('stack', **locals())

    out = helper.create_variable_for_type_inference(x[0].dtype)
    if x[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
L
Ligoml 已提交
1876 1877 1878 1879
        assert len(x) == 1, (
            "If the elements of 'x' in stack are Variable(LoDTensorArray), "
            "number of the elements must be 1, but received %s." % len(x)
        )
1880 1881 1882
        out_index = helper.create_variable_for_type_inference(dtype="int32")

        for i in x:
L
Ligoml 已提交
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
            check_variable_and_dtype(
                i,
                'x',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'stack',
            )

        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': x[0]},
            outputs={'Out': [out], 'OutIndex': [out_index]},
            attrs={'axis': axis, 'use_stack': True},
        )
1896
    else:
L
Ligoml 已提交
1897 1898 1899 1900 1901 1902
        helper.append_op(
            type='stack',
            inputs={'X': x},
            outputs={'Y': out},
            attrs={'axis': axis},
        )
1903 1904

    return out
1905 1906


1907
def split(x, num_or_sections, axis=0, name=None):
1908 1909
    """
    Split the input tensor into multiple sub-Tensors.
L
Ligoml 已提交
1910

1911
    Args:
1912
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, uint8, int8, int32 or int64.
L
Ligoml 已提交
1913
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections``
1914 1915 1916 1917
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of specified ``axis``.
L
Ligoml 已提交
1918
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type
1919 1920 1921 1922
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
1923
    Returns:
1924
        list(Tensor): The list of segmented Tensors.
L
Ligoml 已提交
1925

1926 1927
    Example:
        .. code-block:: python
L
Ligoml 已提交
1928

1929
            import paddle
L
Ligoml 已提交
1930

L
Leo Chen 已提交
1931 1932
            # x is a Tensor of shape [3, 9, 5]
            x = paddle.rand([3, 9, 5])
1933

L
Leo Chen 已提交
1934 1935 1936 1937
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=1)
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1938 1939

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1)
L
Leo Chen 已提交
1940 1941 1942
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
1943 1944

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1)
L
Leo Chen 已提交
1945 1946 1947
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
L
Ligoml 已提交
1948

L
Leo Chen 已提交
1949
            # axis is negative, the real axis is (rank(x) + axis)=1
1950
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2)
L
Leo Chen 已提交
1951 1952 1953
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1954
    """
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
    input = x
    dim = axis
    if _non_static_mode():
        num = None
        attrs = ()

        if isinstance(dim, Variable):
            dim = dim.numpy()
            dim = dim.item(0)
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
        dim = (len(input.shape) + dim) if dim < 0 else dim
        attrs += ('axis', dim)

        if isinstance(num_or_sections, int):
            num = num_or_sections
            attrs += ('num', num_or_sections)
        elif isinstance(num_or_sections, (list, tuple)):
            num = len(num_or_sections)
            if utils._contain_var(num_or_sections):
                for index, item in enumerate(num_or_sections):
                    if isinstance(item, Variable):
L
Ligoml 已提交
1976 1977 1978
                        num_or_sections[index] = num_or_sections[index].numpy()[
                            0
                        ]
1979 1980 1981 1982 1983 1984
                attrs += ('sections', list(num_or_sections))
            else:
                attrs += ('sections', list(num_or_sections))
        else:
            raise TypeError(
                "The type of 'num_or_sections' in split must be int, list or tuple in imperative mode, but "
L
Ligoml 已提交
1985 1986
                "received %s." % (type(num_or_sections))
            )
1987
        if in_dygraph_mode():
C
Charles-hit 已提交
1988 1989 1990 1991
            if isinstance(num_or_sections, int):
                return _C_ops.split_with_num(input, num_or_sections, dim)
            else:
                return _C_ops.split(input, num_or_sections, dim)
1992 1993
        elif _in_legacy_dygraph():
            out = [_varbase_creator() for n in range(num)]
1994
            _legacy_C_ops.split(input, out, *attrs)
1995
            return out
1996

L
Ligoml 已提交
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
    check_variable_and_dtype(
        input,
        'input',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'uint8',
            'int8',
        ],
        'split',
    )
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
    check_type(num_or_sections, 'num_or_sections', (list, int, tuple), 'split')
    check_type(dim, 'dim', (int, Variable), 'split')
    if isinstance(dim, Variable):
        check_dtype(dim.dtype, 'dim', ['int32', 'int64'], 'split')

    helper = LayerHelper('split', **locals())

    input_shape = input.shape
    inputs = {'X': input}
    attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}

    def _get_SectionsTensorList(one_list):
        tensor_list = []
        unk_dim_idx = -1
        for idx, dim_size in enumerate(one_list):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                tensor_list.append(dim_size)
            else:
L
Ligoml 已提交
2031
                assert isinstance(dim_size, int)
2032 2033 2034
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one value of 'num_or_section' in split can "
L
Ligoml 已提交
2035 2036 2037
                        "be -1. But received num_or_section[%d] is also -1."
                        % idx
                    )
2038 2039
                    unk_dim_idx = idx
                temp_out = helper.create_variable_for_type_inference('int32')
L
Ligoml 已提交
2040 2041 2042
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out
                )
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
                tensor_list.append(temp_out)
        return tensor_list

    if isinstance(dim, Variable):
        dim.stop_gradient = True
        inputs['AxisTensor'] = dim
    else:
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
        dim = (len(input_shape) + dim) if dim < 0 else dim
        attrs['axis'] = dim

    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        if isinstance(dim, int) and input_shape[dim] > 0:
L
Ligoml 已提交
2057 2058 2059 2060 2061 2062
            assert input_shape[dim] % num_or_sections == 0, (
                "The input's size along the split dimension "
                "must be evenly divisible by Attr(num_or_sections). "
                "But %d is not evenly divisible by %d. "
                % (num_or_sections, input_shape[dim])
            )
2063 2064 2065
        num = num_or_sections
    else:
        if isinstance(dim, int) and input_shape[dim] > 0:
L
Ligoml 已提交
2066 2067 2068
            assert (
                len(num_or_sections) <= input_shape[dim]
            ), 'len(num_or_sections) must not be more than input.shape[dim].'
2069 2070
        num = len(num_or_sections)
        attrs['sections'] = list(
L
Ligoml 已提交
2071 2072 2073 2074 2075
            map(
                lambda ele: -1 if isinstance(ele, Variable) else ele,
                num_or_sections,
            )
        )
2076 2077
        if utils._contain_var(num_or_sections):
            inputs['SectionsTensorList'] = _get_SectionsTensorList(
L
Ligoml 已提交
2078 2079
                num_or_sections
            )
2080 2081 2082 2083 2084

    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]
L
Ligoml 已提交
2085 2086 2087
    helper.append_op(
        type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs
    )
2088
    return outs
2089 2090


L
Leo Chen 已提交
2091
def squeeze(x, axis=None, name=None):
2092
    """
L
Ligoml 已提交
2093 2094 2095 2096
    Squeeze the dimension(s) of size 1 of input tensor x's shape.

    Note that the output Tensor will share data with origin Tensor and doesn't have a
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version,
2097
    please use `Tensor.clone` like ``squeeze_clone_x = x.squeeze().clone()``.
2098

L
Ligoml 已提交
2099 2100
    If axis is provided, it will remove the dimension(s) by given axis that of size 1.
    If the dimension of given axis is not of size 1, the dimension remain unchanged.
L
Leo Chen 已提交
2101
    If axis is not provided, all dims equal of size 1 will be removed.
2102 2103 2104 2105 2106 2107

    .. code-block:: text

        Case1:

          Input:
L
Leo Chen 已提交
2108 2109
            x.shape = [1, 3, 1, 5]  # If axis is not provided, all dims equal of size 1 will be removed.
            axis = None
2110
          Output:
L
Leo Chen 已提交
2111
            out.shape = [3, 5]
2112 2113 2114 2115

        Case2:

          Input:
L
Leo Chen 已提交
2116 2117 2118 2119
            x.shape = [1, 3, 1, 5]  # If axis is provided, it will remove the dimension(s) by given axis that of size 1.
            axis = 0
          Output:
            out.shape = [3, 1, 5]
L
Ligoml 已提交
2120

L
Leo Chen 已提交
2121 2122 2123
        Case4:

          Input:
L
Ligoml 已提交
2124
            x.shape = [1, 3, 1, 5]  # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged.
L
Leo Chen 已提交
2125
            axis = [0, 2, 3]
2126
          Output:
L
Leo Chen 已提交
2127
            out.shape = [3, 5]
2128

L
Leo Chen 已提交
2129
        Case4:
2130 2131

          Input:
L
Ligoml 已提交
2132
            x.shape = [1, 3, 1, 5]  # If axis is negative, axis = axis + ndim (number of dimensions in x).
L
Leo Chen 已提交
2133
            axis = [-2]
2134
          Output:
L
Leo Chen 已提交
2135
            out.shape = [1, 3, 5]
2136 2137

    Args:
2138
        x (Tensor): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
2139
        axis (int|list|tuple, optional): An integer or list/tuple of integers, indicating the dimensions to be squeezed. Default is None.
2140 2141 2142
                          The range of axis is :math:`[-ndim(x), ndim(x))`.
                          If axis is negative, :math:`axis = axis + ndim(x)`.
                          If axis is None, all the dimensions of x of size 1 will be removed.
2143 2144 2145
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.

    Returns:
2146
        Tensor: Squeezed Tensor with the same data type as input Tensor.
2147 2148 2149

    Examples:
        .. code-block:: python
2150

2151
            import paddle
L
Ligoml 已提交
2152

L
Leo Chen 已提交
2153 2154
            x = paddle.rand([5, 1, 10])
            output = paddle.squeeze(x, axis=1)
2155 2156

            print(x.shape)  # [5, 1, 10]
L
Leo Chen 已提交
2157
            print(output.shape)  # [5, 10]
2158

2159 2160 2161 2162
            # output shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(output[0, 0]) # [10.]

2163
    """
L
Leo Chen 已提交
2164 2165 2166 2167 2168 2169
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)
2170

2171 2172 2173
    input = x
    axes = axis
    if in_dygraph_mode():
2174
        return _C_ops.squeeze(input, axes)
2175
    if _in_legacy_dygraph():
2176
        out, _ = _legacy_C_ops.squeeze2(input, 'axes', axes)
2177 2178 2179
        return out

    helper = LayerHelper("squeeze", **locals())
L
Ligoml 已提交
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
    check_variable_and_dtype(
        input,
        'input',
        [
            'float16',
            'float32',
            'float64',
            'bool',
            'int8',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'squeeze',
    )
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'squeeze')
    attrs = {}
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        attrs["axes"] = axes
    elif isinstance(axes, (list, tuple)):
        if utils._contain_var(axes):
            attrs["axes"] = utils._convert_to_tensor_list(axes)
        else:
            attrs["axes"] = axes

2208 2209
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
L
Ligoml 已提交
2210 2211 2212 2213 2214 2215
    helper.append_op(
        type="squeeze2",
        inputs={"X": input},
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
2216 2217

    return out
2218 2219


2220
@inplace_apis_in_dygraph_only
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
def squeeze_(x, axis=None, name=None):
    """
    Inplace version of ``squeeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_squeeze`.
    """
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)

2233 2234 2235
    input = x
    axes = axis
    if in_dygraph_mode():
2236
        return _C_ops.squeeze_(input, axes)
2237
    if _in_legacy_dygraph():
2238
        out, _ = _legacy_C_ops.squeeze2_(input, 'axes', axes)
2239
        return out
2240 2241


L
Ligoml 已提交
2242 2243 2244 2245 2246 2247 2248 2249
def unique_consecutive(
    x,
    return_inverse=False,
    return_counts=False,
    axis=None,
    dtype="int64",
    name=None,
):
D
duanboqiang 已提交
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
    r"""
    Eliminates all but the first element from every consecutive group of equivalent elements.

    .. note:: This function is different from :func:`paddle.unique` in the sense that this function
        only eliminates consecutive duplicate values. This semantics is similar to `std::unique` in C++.

    Args:
        x(Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique consecutive tensor. Default is False.
        return_counts(bool, optional): If True, also return the counts for each unique consecutive element.
            Default is False.
        axis(int, optional): The axis to apply unique consecutive. If None, the input will be flattened.
            Default is None.
        dtype(np.dtype|str, optional): The data type `inverse` tensor: int32 or int64.
            Default: int64.
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default is None.

    Returns:
        tuple: (out, inverse, counts). `out` is the unique consecutive tensor for `x`. `inverse` is provided only if `return_inverse` is True. `counts` is provided only if `return_counts` is True.

    Example:
        .. code-block:: python

L
Ligoml 已提交
2275
            import paddle
D
duanboqiang 已提交
2276 2277

            x = paddle.to_tensor([1, 1, 2, 2, 3, 1, 1, 2])
L
Ligoml 已提交
2278
            output = paddle.unique_consecutive(x) #
2279 2280 2281 2282
            print(output)
            # Tensor(shape=[5], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 2, 3, 1, 2])

D
duanboqiang 已提交
2283
            _, inverse, counts = paddle.unique_consecutive(x, return_inverse=True, return_counts=True)
2284 2285 2286 2287 2288 2289
            print(inverse)
            # Tensor(shape=[8], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [0, 0, 1, 1, 2, 3, 3, 4])
            print(counts)
            # Tensor(shape=[5], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [2, 2, 1, 2, 1])
D
duanboqiang 已提交
2290 2291

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
L
Ligoml 已提交
2292
            output = paddle.unique_consecutive(x, axis=0) #
2293 2294 2295 2296 2297
            print(output)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1],
            #         [2, 1, 3]])
D
duanboqiang 已提交
2298 2299

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
L
Ligoml 已提交
2300
            output = paddle.unique_consecutive(x, axis=0) #
2301 2302 2303 2304 2305
            print(output)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1],
            #         [2, 1, 3]])
D
duanboqiang 已提交
2306 2307 2308 2309 2310 2311 2312
    """

    if axis is None:
        axis = []
    else:
        axis = [axis]
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2313
    if in_dygraph_mode():
2314
        out, inverse, counts = _C_ops.unique_consecutive(
L
Ligoml 已提交
2315 2316
            x, return_inverse, return_counts, axis, attr_dtype
        )
2317 2318 2319 2320 2321 2322 2323 2324 2325
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)
    elif paddle.in_dynamic_mode():
2326
        out, inverse, counts = _legacy_C_ops.unique_consecutive(
L
Ligoml 已提交
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
            x,
            'dtype',
            attr_dtype,
            'return_inverse',
            return_inverse,
            'return_counts',
            return_counts,
            'axis',
            axis,
        )
D
duanboqiang 已提交
2337 2338 2339 2340 2341 2342 2343 2344
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)
L
Ligoml 已提交
2345 2346 2347 2348 2349 2350
    check_variable_and_dtype(
        x,
        "input",
        ['float32', 'float64', 'int32', 'int64'],
        'unique_consecutive',
    )
D
duanboqiang 已提交
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
    check_type(return_inverse, 'return_inverse', bool, 'unique_consecutive')
    check_type(return_counts, 'return_counts', bool, 'unique_consecutive')
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique_consecutive')
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique_consecutive')
    helper = LayerHelper('unique_consecutive', **locals())
    attrs = {
        'dtype': attr_dtype,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
    }
L
Ligoml 已提交
2363 2364 2365 2366 2367 2368 2369 2370 2371
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True
    )
    inverse = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
    counts = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
D
duanboqiang 已提交
2372 2373 2374 2375 2376 2377
    outputs = {"Out": out, "Index": inverse, "Counts": counts}
    outs = [out]
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        outs.append(counts)
L
Ligoml 已提交
2378 2379 2380
    helper.append_op(
        type="unique_consecutive", inputs={"X": x}, attrs=attrs, outputs=outputs
    )
D
duanboqiang 已提交
2381 2382 2383 2384 2385
    if len(outs) == 1:
        return outs[0]
    return tuple(outs)


L
Ligoml 已提交
2386 2387 2388 2389 2390 2391 2392 2393 2394
def unique(
    x,
    return_index=False,
    return_inverse=False,
    return_counts=False,
    axis=None,
    dtype="int64",
    name=None,
):
2395
    r"""
Z
Zhang Ting 已提交
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
    Returns the unique elements of `x` in ascending order.

    Args:
        x(Tensor): The input tensor, it's data type should be float32, float64, int32, int64.
        return_index(bool, optional): If True, also return the indices of the input tensor that
            result in the unique Tensor.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique tensor.
        return_counts(bool, optional): If True, also return the counts for each unique element.
        axis(int, optional): The axis to apply unique. If None, the input will be flattened.
            Default: None.
Z
Zhang Ting 已提交
2407 2408
        dtype(np.dtype|str, optional): The date type of `indices` or `inverse` tensor: int32 or int64.
            Default: int64.
Z
Zhang Ting 已提交
2409 2410 2411 2412
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default: None.

    Returns: 
2413
        tuple (out, indices, inverse, counts). `out` is the unique tensor for `x`. `indices` is \
Z
Zhang Ting 已提交
2414 2415 2416 2417 2418
            provided only if `return_index` is True. `inverse` is provided only if `return_inverse` \
            is True. `counts` is provided only if `return_counts` is True.

    Examples:
        .. code-block:: python
2419

Z
Zhang Ting 已提交
2420 2421
            import paddle

2422
            x = paddle.to_tensor([2, 3, 3, 1, 5, 3])
Z
Zhang Ting 已提交
2423 2424 2425
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [1 2 3 5]
            _, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
2426 2427 2428 2429 2430 2431 2432 2433 2434
            print(indices)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [3, 0, 1, 4])
            print(inverse)
            # Tensor(shape=[6], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 2, 2, 0, 3, 2])
            print(counts)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 1, 3, 1])
Z
Zhang Ting 已提交
2435

2436
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
Z
Zhang Ting 已提交
2437
            unique = paddle.unique(x)
2438 2439 2440
            print(unique)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [0, 1, 2, 3])
Z
Zhang Ting 已提交
2441 2442

            unique = paddle.unique(x, axis=0)
2443 2444 2445 2446
            print(unique)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1]])
Z
Zhang Ting 已提交
2447 2448 2449 2450 2451
    """
    if axis is None:
        axis = []
    else:
        axis = [axis]
Z
Zhang Ting 已提交
2452
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2453 2454
    if _non_static_mode():
        if in_dygraph_mode():
2455
            out, indices, inverse, counts = _C_ops.unique(
L
Ligoml 已提交
2456 2457
                x, return_index, return_inverse, return_counts, axis, attr_dtype
            )
2458
        if _in_legacy_dygraph():
2459
            out, inverse, indices, counts = _legacy_C_ops.unique(
L
Ligoml 已提交
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
                x,
                'dtype',
                attr_dtype,
                'return_index',
                return_index,
                'return_inverse',
                return_inverse,
                'return_counts',
                return_counts,
                'axis',
                axis,
                "is_sorted",
                True,
            )
Z
Zhang Ting 已提交
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
        outs = [out]
        if return_index:
            outs.append(indices)
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)

        if len(outs) == 1:
            return outs[0]

        return tuple(outs)

L
Ligoml 已提交
2487 2488 2489
    check_variable_and_dtype(
        x, "input", ['float32', 'float64', 'int32', 'int64'], 'unique'
    )
Z
Zhang Ting 已提交
2490 2491 2492
    check_type(return_index, 'return_index', bool, 'unique')
    check_type(return_inverse, 'return_inverse', bool, 'unique')
    check_type(return_counts, 'return_counts', bool, 'unique')
Z
Zhang Ting 已提交
2493
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique')
Z
Zhang Ting 已提交
2494 2495 2496 2497 2498
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique')

    helper = LayerHelper('unique', **locals())
    attrs = {
Z
Zhang Ting 已提交
2499
        'dtype': attr_dtype,
Z
Zhang Ting 已提交
2500 2501 2502 2503
        "return_index": return_index,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
L
Ligoml 已提交
2504
        "is_sorted": True,
Z
Zhang Ting 已提交
2505
    }
L
Ligoml 已提交
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True
    )
    indices = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
    inverse = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
    counts = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
2518 2519 2520 2521
    outputs = {
        "Out": out,
        "Indices": indices,
        "Index": inverse,
L
Ligoml 已提交
2522
        "Counts": counts,
2523
    }
Z
Zhang Ting 已提交
2524 2525 2526 2527 2528 2529 2530 2531
    outs = [out]
    if return_index:
        outs.append(indices)
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        outs.append(counts)

L
Ligoml 已提交
2532 2533 2534
    helper.append_op(
        type="unique", inputs={"X": x}, attrs=attrs, outputs=outputs
    )
Z
Zhang Ting 已提交
2535 2536 2537 2538 2539 2540 2541

    if len(outs) == 1:
        return outs[0]

    return tuple(outs)


2542
def unsqueeze(x, axis, name=None):
2543
    """
2544 2545 2546
    Insert single-dimensional entries to the shape of input Tensor ``x``. Takes one
    required argument axis, a dimension or list of dimensions that will be inserted.
    Dimension indices in axis are as seen in the output tensor.
2547

L
Ligoml 已提交
2548 2549
    Note that the output Tensor will share data with origin Tensor and doesn't have a
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version,
2550 2551
    please use `Tensor.clone` like ``unsqueeze_clone_x = x.unsqueeze(-1).clone()``.

2552
    Args:
2553
        x (Tensor): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
L
Ligoml 已提交
2554 2555
        axis (int|list|tuple|Tensor): Indicates the dimensions to be inserted. The data type is ``int32`` .
                                    If ``axis`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
2556 2557 2558
                                    If ``axis`` is a Tensor, it should be an 1-D Tensor .
                                    If ``axis`` is negative, ``axis = axis + ndim(x) + 1``.
        name (str|None): Name for this layer. Please refer to :ref:`api_guide_Name`, Default None.
2559 2560

    Returns:
2561
        Tensor: Unsqueezed Tensor with the same data type as input Tensor.
2562 2563 2564

    Examples:
        .. code-block:: python
2565

2566 2567
            import paddle

2568 2569
            x = paddle.rand([5, 10])
            print(x.shape)  # [5, 10]
L
Ligoml 已提交
2570

2571 2572
            out1 = paddle.unsqueeze(x, axis=0)
            print(out1.shape)  # [1, 5, 10]
L
Ligoml 已提交
2573 2574

            out2 = paddle.unsqueeze(x, axis=[0, 2])
2575
            print(out2.shape)  # [1, 5, 1, 10]
2576

L
Leo Chen 已提交
2577
            axis = paddle.to_tensor([0, 1, 2])
L
Ligoml 已提交
2578
            out3 = paddle.unsqueeze(x, axis=axis)
2579
            print(out3.shape)  # [1, 1, 1, 5, 10]
2580 2581 2582 2583 2584 2585

            # out1, out2, out3 share data with x in dygraph mode
            x[0, 0] = 10.
            print(out1[0, 0, 0]) # [10.]
            print(out2[0, 0, 0, 0]) # [10.]
            print(out3[0, 0, 0, 0, 0]) # [10.]
L
Ligoml 已提交
2586

2587
    """
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
    input = x
    axes = axis
    if _non_static_mode():
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
            axes = axes.numpy().tolist()
        elif isinstance(axes, (list, tuple)):
            axes = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in axes
            ]
        if _in_legacy_dygraph():
2601
            out, _ = _legacy_C_ops.unsqueeze2(input, 'axes', axes)
2602
            return out
2603
        return _C_ops.unsqueeze(input, axes)
2604 2605

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
L
Ligoml 已提交
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
    check_variable_and_dtype(
        input,
        'input',
        [
            'float16',
            'float32',
            'float64',
            'bool',
            'int8',
            'int16',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'unsqueeze',
    )
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
        if utils._contain_var(axes):
            inputs["AxesTensorList"] = utils._convert_to_tensor_list(axes)
        else:
            attrs["axes"] = axes

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
L
Ligoml 已提交
2640 2641 2642 2643 2644 2645
    helper.append_op(
        type="unsqueeze2",
        inputs=inputs,
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
2646

2647
    return out
2648 2649


2650
@inplace_apis_in_dygraph_only
2651 2652 2653 2654 2655
def unsqueeze_(x, axis, name=None):
    """
    Inplace version of ``unsqueeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_unsqueeze`.
    """
2656 2657 2658 2659 2660 2661 2662 2663
    input = x
    axes = axis
    if isinstance(axes, int):
        axes = [axes]
    elif isinstance(axes, Variable):
        axes = axes.numpy().tolist()
    elif isinstance(axes, (list, tuple)):
        axes = [
2664
            item.numpy().item(0) if isinstance(item, Variable) else item
2665
            for item in axes
2666
        ]
2667
    if in_dygraph_mode():
2668 2669
        return _C_ops.unsqueeze_(input, axes)
    out, _ = _legacy_C_ops.unsqueeze2_(input, 'axes', axes)
2670
    return out
2671 2672


2673
def gather(x, index, axis=None, name=None):
2674
    """
2675 2676
    Output is obtained by gathering entries of ``axis``
    of ``x`` indexed by ``index`` and concatenate them together.
2677 2678 2679 2680 2681 2682

    .. code-block:: text


                Given:

2683
                x = [[1, 2],
2684 2685 2686
                     [3, 4],
                     [5, 6]]

2687 2688
                index = [1, 2]
                axis=[0]
2689 2690 2691

                Then:

2692
                out = [[3, 4],
L
Ligoml 已提交
2693
                       [5, 6]]
2694

2695
    Args:
2696
        x (Tensor): The source input tensor with rank>=1. Supported data type is
2697 2698
            int32, int64, float32, float64 and uint8 (only for CPU),
            float16 (only for GPU).
2699
        index (Tensor): The index input tensor with rank=1. Data type is int32 or int64.
2700
        axis (Tensor|int, optional): The axis of input to be gathered, it's can be int or a Tensor with data type is int32 or int64. The default value is None, if None, the ``axis`` is 0.
2701 2702
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
2703 2704

    Returns:
2705
        output (Tensor): The output is a tensor with the same rank as ``x``.
L
Ligoml 已提交
2706

2707 2708 2709 2710 2711 2712
    Examples:

        .. code-block:: python

            import paddle

2713 2714
            input = paddle.to_tensor([[1,2],[3,4],[5,6]])
            index = paddle.to_tensor([0,1])
2715 2716
            output = paddle.gather(input, index, axis=0)
            # expected output: [[1,2],[3,4]]
2717
    """
2718 2719
    if axis is None:
        axis = 0
2720

2721
    if in_dygraph_mode():
2722
        return _C_ops.gather(x, index, axis)
2723
    if _in_legacy_dygraph():
2724
        axis = axis.item() if isinstance(axis, paddle.Tensor) else axis
L
Ligoml 已提交
2725 2726 2727
        return _legacy_C_ops.gather(
            x, index, None, "axis", axis, "overwrite", False
        )
2728 2729

    check_variable_and_dtype(
L
Ligoml 已提交
2730 2731
        x,
        'x',
2732
        ['float16', 'float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
L
Ligoml 已提交
2733 2734
        'gather',
    )
2735
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather')
2736

2737 2738 2739
    if isinstance(axis, Variable):
        check_variable_and_dtype(axis, 'axis', ['int32', 'int64'], 'gather')

2740
    helper = LayerHelper('gather', **locals())
2741
    dtype = helper.input_dtype('x')
2742
    out = helper.create_variable_for_type_inference(dtype)
2743
    if not isinstance(axis, Variable):
L
Ligoml 已提交
2744 2745 2746 2747 2748 2749
        helper.append_op(
            type="gather",
            inputs={"X": x, "Index": index},
            attrs={'axis': axis, 'overwrite': False},
            outputs={"Out": out},
        )
2750
    else:
L
Ligoml 已提交
2751 2752 2753 2754 2755 2756
        helper.append_op(
            type="gather",
            inputs={"X": x, "Index": index, "Axis": axis},
            attrs={"overwrite": False},
            outputs={"Out": out},
        )
2757

2758
    return out
myq406450149's avatar
myq406450149 已提交
2759 2760 2761 2762


def unbind(input, axis=0):
    """
S
swtkiwi 已提交
2763

myq406450149's avatar
myq406450149 已提交
2764
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
2765

myq406450149's avatar
myq406450149 已提交
2766
    Args:
2767
        input (Tensor): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
L
Ligoml 已提交
2768
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind.
2769
            If :math:`axis < 0`, the dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
myq406450149's avatar
myq406450149 已提交
2770
    Returns:
2771
        list(Tensor): The list of segmented Tensor variables.
myq406450149's avatar
myq406450149 已提交
2772 2773 2774

    Example:
        .. code-block:: python
2775

myq406450149's avatar
myq406450149 已提交
2776
            import paddle
2777

C
Chen Long 已提交
2778 2779
            # input is a Tensor which shape is [3, 4, 5]
            input = paddle.rand([3, 4, 5])
L
Ligoml 已提交
2780

2781
            [x0, x1, x2] = paddle.unbind(input, axis=0)
myq406450149's avatar
myq406450149 已提交
2782 2783 2784
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
C
Chen Long 已提交
2785

2786
            [x0, x1, x2, x3] = paddle.unbind(input, axis=1)
myq406450149's avatar
myq406450149 已提交
2787 2788 2789 2790 2791
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]
    """
2792
    if in_dygraph_mode():
2793
        return _C_ops.unbind(input, axis)
2794

myq406450149's avatar
myq406450149 已提交
2795
    if not isinstance(axis, (int)):
L
Ligoml 已提交
2796 2797 2798
        raise TypeError(
            "The type of 'axis'  must be int, but received %s." % (type(axis))
        )
myq406450149's avatar
myq406450149 已提交
2799 2800 2801 2802 2803
    if isinstance(axis, np.generic):
        axis = np.asscalar(axis)
    input_shape = input.shape
    axis_ = axis if axis >= 0 else len(input_shape) + axis
    num = input_shape[axis_]
2804
    if _in_legacy_dygraph():
2805
        return _legacy_C_ops.unbind(input, num, 'axis', axis)
2806 2807 2808 2809

    helper = LayerHelper("unbind", **locals())
    check_type(input, 'input', (Variable), 'unbind')
    dtype = helper.input_dtype()
L
Ligoml 已提交
2810 2811 2812
    check_dtype(
        dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'], 'unbind'
    )
myq406450149's avatar
myq406450149 已提交
2813 2814 2815 2816
    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]
L
Ligoml 已提交
2817 2818 2819 2820 2821 2822
    helper.append_op(
        type="unbind",
        inputs={"X": input},
        outputs={"Out": outs},
        attrs={"axis": axis},
    )
myq406450149's avatar
myq406450149 已提交
2823
    return outs
L
lilong12 已提交
2824 2825


S
ShenLiang 已提交
2826 2827 2828 2829
def scatter(x, index, updates, overwrite=True, name=None):
    """
    **Scatter Layer**
    Output is obtained by updating the input on selected indices based on updates.
L
Ligoml 已提交
2830

S
ShenLiang 已提交
2831
    .. code-block:: python
L
Ligoml 已提交
2832

S
ShenLiang 已提交
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
        import numpy as np
        #input:
        x = np.array([[1, 1], [2, 2], [3, 3]])
        index = np.array([2, 1, 0, 1])
        # shape of updates should be the same as x
        # shape of updates with dim > 1 should be the same as input
        updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]])
        overwrite = False
        # calculation:
        if not overwrite:
            for i in range(len(index)):
                x[index[i]] = np.zeros((2))
        for i in range(len(index)):
            if (overwrite):
                x[index[i]] = updates[i]
            else:
                x[index[i]] += updates[i]
        # output:
        out = np.array([[3, 3], [6, 6], [1, 1]])
        out.shape # [3, 2]

L
Ligoml 已提交
2854
    **NOTICE**: The order in which updates are applied is nondeterministic,
S
ShenLiang 已提交
2855 2856 2857 2858 2859 2860
    so the output will be nondeterministic if index contains duplicates.

    Args:
        x (Tensor): The input N-D Tensor with ndim>=1. Data type can be float32, float64.
        index (Tensor): The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
        updates (Tensor): update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 should be the same as input.
L
Ligoml 已提交
2861 2862
        overwrite (bool): The mode that updating the output when there are same indices.

S
sunzhongkai588 已提交
2863
            If True, use the overwrite mode to update the output of the same index,
L
Ligoml 已提交
2864 2865
                if False, use the accumulate mode to update the output of the same index.Default value is True.

S
ShenLiang 已提交
2866
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
L
Ligoml 已提交
2867

S
ShenLiang 已提交
2868 2869 2870 2871 2872
    Returns:
        Tensor: The output is a Tensor with the same shape as x.

    Examples:
        .. code-block:: python
L
Ligoml 已提交
2873

S
ShenLiang 已提交
2874 2875
            import paddle

2876 2877 2878
            x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32')
            index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
            updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
L
Ligoml 已提交
2879

S
ShenLiang 已提交
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
            output1 = paddle.scatter(x, index, updates, overwrite=False)
            # [[3., 3.],
            #  [6., 6.],
            #  [1., 1.]]

            output2 = paddle.scatter(x, index, updates, overwrite=True)
            # CPU device:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # GPU device maybe have two results because of the repeated numbers in index
            # result 1:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # result 2:
            # [[3., 3.],
            #  [2., 2.],
            #  [1., 1.]]
    """
J
Jiabin Yang 已提交
2900
    if in_dygraph_mode():
2901
        return _C_ops.scatter(x, index, updates, overwrite)
J
Jiabin Yang 已提交
2902 2903
    else:
        if _in_legacy_dygraph():
L
Ligoml 已提交
2904 2905 2906
            return _legacy_C_ops.scatter(
                x, index, updates, 'overwrite', overwrite
            )
J
Jiabin Yang 已提交
2907 2908
        else:
            check_variable_and_dtype(
L
Ligoml 已提交
2909 2910 2911 2912 2913
                x,
                'dtype',
                ['float32', 'float64', 'float16', 'int32', 'int64'],
                'scatter',
            )
J
Jiabin Yang 已提交
2914 2915 2916
            check_type(overwrite, 'overwrite', bool, 'scatter')
            helper = LayerHelper('scatter', **locals())
            out = helper.create_variable_for_type_inference(x.dtype)
L
Ligoml 已提交
2917 2918 2919 2920 2921 2922
            helper.append_op(
                type="scatter",
                inputs={"X": x, "Ids": index, "Updates": updates},
                attrs={'overwrite': overwrite},
                outputs={"Out": out},
            )
J
Jiabin Yang 已提交
2923
            return out
S
ShenLiang 已提交
2924 2925


2926
@inplace_apis_in_dygraph_only
2927 2928 2929 2930 2931
def scatter_(x, index, updates, overwrite=True, name=None):
    """
    Inplace version of ``scatter`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_scatter`.
    """
2932
    if in_dygraph_mode():
2933 2934
        return _C_ops.scatter_(x, index, updates, overwrite)
    return _legacy_C_ops.scatter_(x, index, updates, 'overwrite', overwrite)
2935 2936


2937
def scatter_nd_add(x, index, updates, name=None):
2938
    r"""
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979

    Output is obtained by applying sparse addition to a single value
    or slice in a Tensor.

    :attr:`x` is a Tensor with ndim :math:`R`
    and :attr:`index` is a Tensor with ndim :math:`K` . Thus, :attr:`index`
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates`
    is a Tensor with ndim :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + x.shape[index.shape[-1]:]` .

    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`x` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text

        Given:

        * Case 1:
            x = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:

            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            x = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            x.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:

            output = [[67, 19], [-16, -27]]

    Args:
Z
Zeng Jinle 已提交
2980
        x (Tensor): The x input. Its dtype should be int32, int64, float32, float64.
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= x.ndim.
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd_add op, and it must have the same dtype
                            as x. It must have the shape index.shape[:-1] + x.shape[index.shape[-1]:].
        name (str|None): The output tensor name. If set None, the layer will be named automatically.

    Returns:
        output (Tensor): The output is a tensor with the same shape and dtype as x.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.rand(shape=[3, 5, 9, 10], dtype='float32')
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
C
Chen Long 已提交
2998 2999 3000
            index = paddle.to_tensor([[1, 1],
                                    [0, 1],
                                    [1, 3]], dtype='int64')
L
Ligoml 已提交
3001

3002
            output = paddle.scatter_nd_add(x, index, updates)
C
Chen Long 已提交
3003 3004
            print(output.shape)
            # [3, 5, 9, 10]
3005
    """
3006
    if in_dygraph_mode():
3007
        return _C_ops.scatter_nd_add(x, index, updates)
3008 3009
    else:
        if _in_legacy_dygraph():
3010
            op = getattr(_legacy_C_ops, 'scatter_nd_add')
3011 3012 3013 3014 3015 3016 3017 3018
            return op(x, index, updates)
        else:
            if x.dtype != updates.dtype:
                raise ValueError("x and updates must have same data type.")

            helper = LayerHelper('scatter_nd_add', **locals())
            dtype = helper.input_dtype(input_param_name='x')
            output = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
3019 3020 3021 3022 3023
            helper.append_op(
                type="scatter_nd_add",
                inputs={"X": x, "Index": index, "Updates": updates},
                outputs={"Out": output},
            )
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
            return output


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)`
    is equal to :code:`scatter_nd_add(paddle.zeros(shape, updates.dtype), index, updates)` .
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated.
    Because of the numerical approximation issues, the different order of repeated elements
    in :attr:`index` may cause different results. The specific calculation method can be
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= len(shape).
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd op. Its dtype should be float32, float64.
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
        name (str|None): The output Tensor name. If set None, the layer will be named automatically.

    Returns:
        output (Tensor): The output is a tensor with the same type as :attr:`updates` .

    Examples:

        .. code-block:: python

            import paddle

3057 3058 3059
            index = paddle.to_tensor([[1, 1],
                                    [0, 1],
                                    [1, 3]], dtype="int64")
3060 3061 3062 3063 3064 3065
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
            shape = [3, 5, 9, 10]

            output = paddle.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)
3066 3067


3068 3069 3070
def chunk(x, chunks, axis=0, name=None):
    """
    Split the input tensor into multiple sub-Tensors.
L
Ligoml 已提交
3071

3072 3073 3074
    Args:
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        chunks(int): The number of tensor to be split along the certain axis.
L
Ligoml 已提交
3075
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type
3076 3077 3078 3079 3080 3081
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list(Tensor): The list of segmented Tensors.
L
Ligoml 已提交
3082

3083
    Examples:
3084
        .. code-block:: python
L
Ligoml 已提交
3085

3086
            import paddle
L
Ligoml 已提交
3087

3088
            x = paddle.rand([3, 9, 5])
3089

3090
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=1)
3091 3092 3093 3094
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

L
Ligoml 已提交
3095

3096 3097 3098 3099 3100 3101 3102 3103
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
    """
    check_type(chunks, 'chunks', (int), 'chunk')
3104
    return split(x, num_or_sections=chunks, axis=axis, name=name)
3105 3106


L
lilong12 已提交
3107 3108
def tile(x, repeat_times, name=None):
    """
L
lilong12 已提交
3109 3110

    Construct a new Tensor by repeating ``x`` the number of times given by ``repeat_times``.
3111
    After tiling, the value of the i'th dimension of the output is equal to ``x.shape[i]*repeat_times[i]``.
L
lilong12 已提交
3112 3113 3114

    Both the number of dimensions of ``x`` and the number of elements in ``repeat_times`` should be less than or equal to 6.

L
lilong12 已提交
3115
    Args:
L
lilong12 已提交
3116
        x (Tensor): The input tensor, its data type should be bool, float32, float64, int32 or int64.
3117
        repeat_times (list|tuple|Tensor): The number of repeating times. If repeat_times is a list or tuple, all its elements
L
lilong12 已提交
3118 3119 3120
            should be integers or 1-D Tensors with the data type int32. If repeat_times is a Tensor, it should be an 1-D Tensor with the data type int32.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

L
lilong12 已提交
3121
    Returns:
3122
        N-D Tensor. The data type is the same as ``x``. The size of the i-th dimension is equal to ``x[i] * repeat_times[i]``.
L
lilong12 已提交
3123

L
lilong12 已提交
3124 3125
    Examples:
        .. code-block:: python
L
lilong12 已提交
3126

L
lilong12 已提交
3127
            import paddle
L
lilong12 已提交
3128

3129
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
3130
            out = paddle.tile(data, repeat_times=[2, 1])
3131 3132 3133 3134
            print(out)
            # Tensor(shape=[2, 3], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3],
            #         [1, 2, 3]])
L
lilong12 已提交
3135

3136
            out = paddle.tile(data, repeat_times=(2, 2))
3137 3138 3139 3140
            print(out)
            # Tensor(shape=[2, 6], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3, 1, 2, 3],
            #         [1, 2, 3, 1, 2, 3]])
L
lilong12 已提交
3141

3142
            repeat_times = paddle.to_tensor([1, 2], dtype='int32')
L
lilong12 已提交
3143
            out = paddle.tile(data, repeat_times=repeat_times)
3144 3145 3146
            print(out)
            # Tensor(shape=[1, 6], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3, 1, 2, 3]])
L
lilong12 已提交
3147
    """
H
hong 已提交
3148
    if in_dygraph_mode():
3149
        if isinstance(repeat_times, core.eager.Tensor):
L
Ligoml 已提交
3150 3151 3152
            assert (
                repeat_times.ndim == 1
            ), "Only support ndim == 1 while repeat_times is a Tensor."
3153 3154
            repeat_times = repeat_times.numpy().tolist()

3155
        return _C_ops.tile(x, repeat_times)
H
hong 已提交
3156 3157

    if _in_legacy_dygraph():
3158
        return _legacy_C_ops.tile(x, 'repeat_times', repeat_times)
H
hong 已提交
3159

3160 3161
    check_type(repeat_times, 'repeat_times', (list, tuple, Variable), 'tile')
    if isinstance(repeat_times, Variable):
L
Ligoml 已提交
3162 3163 3164
        assert (
            len(repeat_times.shape) == 1
        ), 'repeat_times must be an 1-D Tensor.'
3165 3166 3167
    else:
        for elem in repeat_times:
            if isinstance(elem, Variable):
L
Ligoml 已提交
3168 3169 3170
                assert (
                    len(elem.shape) == 1
                ), 'Elements in repeat_times must be 1-D Tensors or integers.'
3171
            else:
T
tianshuo78520a 已提交
3172
                type_tuple = (int, np.int32, np.int64)
L
Ligoml 已提交
3173 3174 3175
                assert isinstance(
                    elem, type_tuple
                ), 'Elements in repeat_times must be 1-D Tensors or integers.'
3176

L
Ligoml 已提交
3177 3178 3179
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'tile'
    )
L
lilong12 已提交
3180
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
L
lilong12 已提交
3181 3182
        raise ValueError(
            "When the date type is bool for the input 'x' of tile op, you "
L
lilong12 已提交
3183
            "must set its stop_gradient to be True by "
L
Ligoml 已提交
3184 3185
            "some_var.stop_gradient == True supporting some_var is the input."
        )
3186 3187

    helper = LayerHelper('tile', **locals())
L
lilong12 已提交
3188

L
lilong12 已提交
3189 3190 3191
    inputs = {"X": [x]}
    attrs = {}

L
lilong12 已提交
3192 3193 3194 3195 3196 3197 3198
    def get_attr_repeat_times(list_repeat_times):
        attrs_repeat_times = []
        for idx, times in enumerate(list_repeat_times):
            if isinstance(times, Variable):
                attrs_repeat_times.append(-1)
            else:
                attrs_repeat_times.append(times)
L
Ligoml 已提交
3199 3200 3201
                assert (
                    times > 0
                ), "All elements in repeat_times must be positive for tile."
L
lilong12 已提交
3202 3203 3204 3205
        return attrs_repeat_times

    if isinstance(repeat_times, Variable):
        repeat_times.stop_gradient = True
3206 3207
        inputs['RepeatTimes'] = repeat_times
        attrs['repeat_times'] = [-1]
L
lilong12 已提交
3208 3209 3210
    elif isinstance(repeat_times, (list, tuple)):
        attrs['repeat_times'] = get_attr_repeat_times(repeat_times)
        if utils._contain_var(repeat_times):
3211
            inputs['repeat_times_tensor'] = utils._convert_to_tensor_list(
L
Ligoml 已提交
3212 3213
                repeat_times
            )
L
lilong12 已提交
3214 3215 3216

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
3217 3218 3219
    helper.append_op(
        type='tile', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
L
lilong12 已提交
3220
    return out
3221 3222


L
lilong12 已提交
3223 3224 3225 3226 3227 3228 3229 3230 3231
def expand_as(x, y, name=None):
    """

    Expand the input tensor ``x`` to the same shape as the input tensor ``y``.

    Both the number of dimensions of ``x`` and ``y`` must be less than or equal to 6, and the number of dimensions of ``y`` must be greather than or equal to that of ``x``. The dimension to expand must have a value of 1.

    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
3232
        y (Tensor): The input tensor that gives the shape to expand to.
L
lilong12 已提交
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor: A Tensor with the same shape as ``y``. The data type is the same as ``x``.

    Examples:
        .. code-block:: python

            import paddle

3243 3244
            data_x = paddle.to_tensor([1, 2, 3], 'int32')
            data_y = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], 'int32')
L
lilong12 已提交
3245
            out = paddle.expand_as(data_x, data_y)
3246 3247 3248 3249
            print(out)
            # Tensor(shape=[2, 3], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3],
            #         [1, 2, 3]])
L
lilong12 已提交
3250
    """
H
hong 已提交
3251
    if in_dygraph_mode():
3252
        return _C_ops.expand_as(x, None, y.shape)
H
hong 已提交
3253

H
hong 已提交
3254
    if _non_static_mode():
3255
        return _legacy_C_ops.expand_as_v2(x, 'target_shape', y.shape)
3256

L
Ligoml 已提交
3257 3258 3259
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand_as'
    )
L
lilong12 已提交
3260 3261 3262 3263 3264 3265 3266
    check_type(y, 'y', Variable, 'expand_as')

    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
        raise ValueError(
            "When the data type of input 'x' for expand_as is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
L
Ligoml 已提交
3267 3268
            "some_var as the input 'x'."
        )
3269
    inputs = {"X": [x], "Y": [y]}
L
lilong12 已提交
3270

3271
    helper = LayerHelper('expand_as', **locals())
L
lilong12 已提交
3272 3273
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
3274 3275 3276 3277 3278 3279
    helper.append_op(
        type='expand_as_v2',
        inputs=inputs,
        attrs={'target_shape': y.shape},
        outputs={'Out': out},
    )
L
lilong12 已提交
3280 3281 3282
    return out


3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
def broadcast_to(x, shape, name=None):
    """

    Broadcast the input tensor to a given shape.

    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to broadcast to must have a value 1.


    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
        shape (list|tuple|Tensor): The result shape after broadcasting. The data type is int32. If shape is a list or tuple, all its elements
L
Ligoml 已提交
3294
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32.
3295
            The value -1 in shape means keeping the corresponding dimension unchanged.
3296
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
    Returns:
        N-D Tensor: A Tensor with the given shape. The data type is the same as ``x``.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([1, 2, 3], dtype='int32')
            out = paddle.broadcast_to(data, shape=[2, 3])
            print(out)
            # [[1, 2, 3], [1, 2, 3]]
    """
3310
    if in_dygraph_mode():
3311
        return _C_ops.expand(x, shape)
3312
    if _in_legacy_dygraph():
3313
        return _legacy_C_ops.expand_v2(x, 'shape', shape)
3314 3315

    if isinstance(shape, Variable):
L
Ligoml 已提交
3316
        assert len(shape.shape) == 1, 'shape must be an 1-D Tensor.'
3317 3318 3319
    else:
        for elem in shape:
            if isinstance(elem, Variable):
L
Ligoml 已提交
3320 3321 3322
                assert (
                    len(elem.shape) == 1
                ), 'Elements in shape must be 1-D Tensors or integers.'
3323
            else:
T
tianshuo78520a 已提交
3324
                type_tuple = (int, np.int32, np.int64)
L
Ligoml 已提交
3325 3326 3327
                assert isinstance(
                    elem, type_tuple
                ), 'Elements in shape must be 1-D Tensors or integers.'
3328

L
Ligoml 已提交
3329 3330 3331
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'broadcast_to'
    )
3332 3333 3334 3335 3336 3337
    check_type(shape, 'shape', (list, tuple, Variable), 'broadcast_to')
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
        raise ValueError(
            "When the data type of input 'x' for broadcast_to is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
L
Ligoml 已提交
3338 3339
            "some_var as the input."
        )
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352

    inputs = {"X": [x]}
    attrs = {}

    helper = LayerHelper('expand', **locals())

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
                attrs_expand_shape.append(-1)
            else:
                attrs_expand_shape.append(shape)
L
Ligoml 已提交
3353 3354 3355
                assert (
                    shape > 0 or shape == -1
                ), "All elements in shape of broadcast_to must be positive or -1."
3356 3357 3358 3359 3360 3361 3362 3363 3364
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
L
Ligoml 已提交
3365 3366
                shape
            )
3367 3368 3369

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
3370 3371 3372
    helper.append_op(
        type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
3373 3374 3375
    return out


3376 3377 3378 3379 3380
def expand(x, shape, name=None):
    """

    Expand the input tensor to a given shape.

3381
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. And the number of dimensions of ``x`` should be less than the number of elements in ``shape``. The dimension to expand must have a value 1.
3382 3383 3384


    Args:
C
Chen Long 已提交
3385
        x (Tensor): The input Tensor, its data type is bool, float32, float64, int32 or int64.
L
lilong12 已提交
3386
        shape (list|tuple|Tensor): The result shape after expanding. The data type is int32. If shape is a list or tuple, all its elements
L
Ligoml 已提交
3387
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32.
L
lilong12 已提交
3388
            The value -1 in shape means keeping the corresponding dimension unchanged.
3389 3390 3391
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
lilong12 已提交
3392
        N-D Tensor: A Tensor with the given shape. The data type is the same as ``x``.
3393 3394 3395 3396 3397 3398

    Examples:
        .. code-block:: python

            import paddle

3399
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
3400
            out = paddle.expand(data, shape=[2, 3])
3401
            print(out)
3402 3403
            # [[1, 2, 3], [1, 2, 3]]
    """
H
hong 已提交
3404
    if in_dygraph_mode():
3405
        return _C_ops.expand(x, shape)
H
hong 已提交
3406

Z
zhiboniu 已提交
3407
    if paddle.in_dynamic_mode():
3408
        return _legacy_C_ops.expand_v2(x, 'shape', shape)
3409

3410
    if isinstance(shape, Variable):
L
Ligoml 已提交
3411
        assert len(shape.shape) == 1, 'shape must be an 1-D Tensor.'
3412 3413 3414
    else:
        for elem in shape:
            if isinstance(elem, Variable):
L
Ligoml 已提交
3415 3416 3417
                assert (
                    len(elem.shape) == 1
                ), 'Elements in shape must be 1-D Tensors or integers.'
3418
            else:
T
tianshuo78520a 已提交
3419
                type_tuple = (int, np.int32, np.int64)
L
Ligoml 已提交
3420 3421 3422
                assert isinstance(
                    elem, type_tuple
                ), 'Elements in shape must be 1-D Tensors or integers.'
3423

3424
    check_variable_and_dtype(
L
Ligoml 已提交
3425 3426 3427 3428 3429
        x,
        'x',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'expand',
    )
3430
    check_type(shape, 'shape', (list, tuple, Variable), 'expand')
L
lilong12 已提交
3431
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
L
Ligoml 已提交
3432 3433 3434 3435 3436 3437
        raise ValueError(
            "When the data type of input 'x' for expand is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
            "some_var as the input."
        )
3438

3439 3440 3441
    inputs = {"X": [x]}
    attrs = {}

3442
    helper = LayerHelper('expand', **locals())
3443 3444 3445 3446 3447

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
L
lilong12 已提交
3448
                attrs_expand_shape.append(-2)
3449 3450
            else:
                attrs_expand_shape.append(shape)
L
Ligoml 已提交
3451 3452 3453
                assert (
                    shape > 0 or shape == -1
                ), "All elements in shape of expand must be positive or -1."
3454 3455 3456 3457 3458 3459 3460 3461 3462
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
L
Ligoml 已提交
3463 3464
                shape
            )
3465 3466 3467

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
3468 3469 3470
    helper.append_op(
        type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
3471
    return out
L
lilong12 已提交
3472 3473


3474 3475
def reshape(x, shape, name=None):
    """
3476
    Changes the shape of ``x`` without changing its data.
3477

3478
    Note that the output Tensor will share data with origin Tensor and doesn't
L
Ligoml 已提交
3479 3480
    have a Tensor copy in ``dygraph`` mode.
    If you want to use the Tensor copy version, please use `Tensor.clone` like
3481 3482
    ``reshape_clone_x = x.reshape([-1]).clone()``.

3483 3484
    Some tricks exist when specifying the target shape.

3485
        - 1. -1 means the value of this dimension is inferred from the total element number of x and remaining dimensions. Thus one and only one dimension can be set -1.
3486

3487
        - 2. 0 means the actual dimension value is going to be copied from the corresponding dimension of x. The index of 0s in shape can not exceed the dimension of x.
3488 3489 3490

    Here are some examples to explain it.

3491
        - 1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [6, 8], the reshape operator will transform x into a 2-D tensor with shape [6, 8] and leaving x's data unchanged.
3492

3493
        - 2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape specified is [2, 3, -1, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this case, one dimension of the target shape is set to -1, the value of this dimension is inferred from the total element number of x and remaining dimensions.
3494

3495
        - 3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case, besides -1, 0 means the actual dimension value is going to be copied from the corresponding dimension of x.
3496 3497

    Args:
3498 3499
        x (Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
        shape (list|tuple|Tensor): Define the target shape. At most one dimension of the target shape can be -1.
3500 3501
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
                        If ``shape`` is an Tensor, it should be an 1-D Tensor .
3502
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3503 3504 3505 3506 3507 3508 3509 3510 3511

    Returns:
        Tensor: A reshaped Tensor with the same data type as ``x``.

    Examples:
        .. code-block:: python

            import paddle

3512 3513
            x = paddle.rand([2, 4, 6], dtype="float32")
            positive_four = paddle.full([1], 4, "int32")
3514

3515 3516 3517
            out = paddle.reshape(x, [-1, 0, 3, 2])
            print(out)
            # the shape is [2,4,3,2].
3518

3519 3520
            out = paddle.reshape(x, shape=[positive_four, 12])
            print(out)
3521
            # the shape of out_2 is [4, 12].
3522

3523
            shape_tensor = paddle.to_tensor([8, 6], dtype=paddle.int32)
3524
            out = paddle.reshape(x, shape=shape_tensor)
3525
            print(out.shape)
3526
            # the shape is [8, 6].
3527 3528 3529 3530 3531
            # out shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(out[0, 0])
            # the value is [10.]

3532
    """
3533 3534 3535 3536 3537 3538
    actual_shape = None
    act = None
    inplace = False

    if in_dygraph_mode():
        tmp_tensor_type = core.eager.Tensor
L
Ligoml 已提交
3539
        # TODO(zhiqiu): enable inplace in dygraph mode.
3540 3541 3542 3543 3544 3545
        if inplace:
            warnings.warn(
                "Inplace on reshape is not allowed and will be discarded in dygraph mode currently."
            )
        if isinstance(shape, (list, tuple)):
            shape = [
3546
                item.numpy().item(0)
L
Ligoml 已提交
3547 3548 3549
                if isinstance(item, tmp_tensor_type)
                else item
                for item in shape
3550
            ]
3551
            out = _C_ops.reshape(x, shape)
3552 3553
        elif isinstance(shape, tmp_tensor_type):
            shape.stop_gradient = True
3554
            out = _C_ops.reshape(x, shape)
3555 3556 3557
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
L
Ligoml 已提交
3558 3559
                " got '{}.'".format(type(shape))
            )
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573

        return dygraph_utils._append_activation_in_dygraph(out, act)
    else:
        if _in_legacy_dygraph():
            tmp_tensor_type = Variable
            if inplace:
                warnings.warn(
                    "Inplace on reshape is not allowed and will be discarded in dygraph mode currently."
                )
            if isinstance(shape, (list, tuple)):
                shape = [
                    item.numpy().item(0) if isinstance(item, Variable) else item
                    for item in shape
                ]
3574
                out, _ = _legacy_C_ops.reshape2(x, None, 'shape', shape)
3575 3576
            elif isinstance(shape, tmp_tensor_type):
                shape.stop_gradient = True
3577
                out, _ = _legacy_C_ops.reshape2(x, shape)
3578 3579 3580
            else:
                raise ValueError(
                    "shape must be an instance of `list`, `tuple` or `Variable`,"
L
Ligoml 已提交
3581 3582
                    " got '{}.'".format(type(shape))
                )
3583 3584 3585

            return dygraph_utils._append_activation_in_dygraph(out, act)

L
Ligoml 已提交
3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
    check_variable_and_dtype(
        x,
        'x',
        [
            'float16',
            'float32',
            'float64',
            'int16',
            'int32',
            'int64',
            'bool',
            'uint16',
        ],
        'reshape',
    )
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
    check_type(shape, 'shape', (list, tuple, Variable), 'reshape')
    check_type(actual_shape, 'actual_shape', (Variable, type(None)), 'reshape')

    helper = LayerHelper("reshape2", **locals())

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one dimension value of 'shape' in reshape can "
                        "be -1. But received shape[%d] is also -1.\n"
                        "\n\t# N = x.shape()[2]\t\t# N is an int. "
                        "(NOT recommend under @to_static)\n\tN = paddle.shape(x)[2]\t\t"
                        "# N is a Tensor. (Recommend)\n\tz = paddle.reshape([N, -1, 4])"
                        "\t# z.shape is [-1, -1, 4]\n\n"
                        "    If your target shape in Reshape represents dynamic shape, "
                        "please turn it into a Tensor under @to_static. See above example for details."
L
Ligoml 已提交
3624 3625
                        % dim_idx
                    )
3626 3627 3628 3629 3630
                    unk_dim_idx = dim_idx
                elif dim_size == 0:
                    assert dim_idx < len(x.shape), (
                        "The index of 0 in `shape` must be less than "
                        "the input tensor X's dimensions. "
L
Ligoml 已提交
3631 3632 3633
                        "But received shape[%d] = 0, X's dimensions = %d."
                        % (dim_idx, len(x.shape))
                    )
3634 3635 3636 3637
                else:
                    assert dim_size > 0, (
                        "Each dimension value of 'shape' in reshape must not "
                        "be negative except one unknown dimension. "
L
Ligoml 已提交
3638 3639 3640
                        "But received shape[%d] = %s."
                        % (dim_idx, str(dim_size))
                    )
3641 3642 3643 3644 3645 3646 3647 3648
        return attrs_shape

    inputs = {"X": x}
    attrs = {}
    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs["Shape"] = shape
    elif isinstance(shape, (list, tuple)):
L
Ligoml 已提交
3649 3650 3651 3652
        assert len(shape) > 0, (
            "The size of 'shape' in reshape can't be zero, "
            "but received %s." % len(shape)
        )
3653 3654 3655 3656 3657 3658 3659
        attrs["shape"] = get_attr_shape(shape)
        if utils._contain_var(shape):
            inputs['ShapeTensor'] = utils._convert_to_tensor_list(shape)
        elif isinstance(actual_shape, Variable):
            actual_shape.stop_gradient = True
            inputs["Shape"] = actual_shape

L
Ligoml 已提交
3660 3661 3662 3663 3664
    out = (
        x
        if inplace
        else helper.create_variable_for_type_inference(dtype=x.dtype)
    )
3665
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Ligoml 已提交
3666 3667 3668 3669 3670 3671
    helper.append_op(
        type="reshape2",
        inputs=inputs,
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
3672 3673

    return helper.append_activation(out)
3674 3675


3676
@inplace_apis_in_dygraph_only
3677 3678 3679 3680 3681
def reshape_(x, shape, name=None):
    """
    Inplace version of ``reshape`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_reshape`.
    """
3682 3683 3684 3685 3686
    if in_dygraph_mode():
        tmp_tensor_type = core.eager.Tensor
        if isinstance(shape, (list, tuple)):
            shape = [
                item.numpy().item(0)
L
Ligoml 已提交
3687 3688 3689
                if isinstance(item, tmp_tensor_type)
                else item
                for item in shape
3690
            ]
3691
            out = _C_ops.reshape_(x, shape)
3692 3693
        elif isinstance(shape, tmp_tensor_type):
            shape.stop_gradient = True
3694
            out = _C_ops.reshape_(x, shape)
3695 3696 3697
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
L
Ligoml 已提交
3698 3699
                " got '{}.'".format(type(shape))
            )
3700

3701
        return out
3702 3703 3704 3705 3706 3707
    else:
        if isinstance(shape, (list, tuple)):
            shape = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in shape
            ]
3708
            out, _ = _legacy_C_ops.reshape2_(x, None, 'shape', shape)
3709 3710 3711 3712 3713 3714 3715 3716 3717
            return out
        elif isinstance(shape, Variable):
            shape.stop_gradient = True
            # NOTE(pangyoki): Cannot support the case where the shape Tensor
            # is negative. In the infer_shape stage, the input's dim will
            # be changed to a negative number.
            # Thus, convert Shape Tensor to list firstly and then call
            # reshape inplace op.
            shape_list = shape.numpy().tolist()
3718
            out, _ = _legacy_C_ops.reshape2_(x, None, 'shape', shape_list)
3719
            return out
3720 3721


3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
def gather_nd(x, index, name=None):
    """

    This function is actually a high-dimensional extension of :code:`gather`
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional
    tensor of :attr:`index` into :attr:`input`, where each element defines
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
3741 3742 3743 3744 3745 3746 3747
                x =  [[[ 0,  1,  2,  3],
                       [ 4,  5,  6,  7],
                       [ 8,  9, 10, 11]],
                      [[12, 13, 14, 15],
                       [16, 17, 18, 19],
                       [20, 21, 22, 23]]]
                x.shape = (2, 3, 4)
3748 3749 3750 3751

            * Case 1:
                index = [[1]]

3752 3753
                gather_nd(x, index)
                         = [x[1, :, :]]
3754 3755 3756 3757 3758 3759 3760
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

3761 3762
                gather_nd(x, index)
                         = [x[0, 2, :]]
3763 3764 3765 3766 3767
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

3768 3769
                gather_nd(x, index)
                         = [x[1, 2, 3]]
3770 3771 3772 3773 3774 3775
                         = [23]

    Args:
        x (Tensor): The input Tensor which it's data type should be bool, float32, float64, int32, int64.
        index (Tensor): The index input with rank > 1, index.shape[-1] <= input.rank.
                        Its dtype should be int32, int64.
3776
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3777 3778 3779

    Returns:
        output (Tensor): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
L
Ligoml 已提交
3780

3781 3782 3783
    Examples:

        .. code-block:: python
L
Ligoml 已提交
3784

3785
            import paddle
L
Ligoml 已提交
3786

3787 3788 3789
            x = paddle.to_tensor([[[1, 2], [3, 4], [5, 6]],
                                  [[7, 8], [9, 10], [11, 12]]])
            index = paddle.to_tensor([[0, 1]])
L
Ligoml 已提交
3790

3791 3792 3793
            output = paddle.gather_nd(x, index) #[[3, 4]]

    """
3794
    if in_dygraph_mode():
3795
        return _C_ops.gather_nd(x, index)
3796 3797
    else:
        if _in_legacy_dygraph():
3798
            return _legacy_C_ops.gather_nd(x, index)
3799
    check_variable_and_dtype(
L
Ligoml 已提交
3800 3801 3802 3803 3804
        x,
        'x',
        ['bool', 'float32', 'float64', 'int16', 'int32', 'int64'],
        'gather_np',
    )
3805 3806 3807 3808
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather_np')
    helper = LayerHelper('gather_nd', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
3809 3810 3811 3812 3813
    helper.append_op(
        type="gather_nd",
        inputs={"X": x, "Index": index},
        outputs={"Out": output},
    )
3814
    return output
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862


def strided_slice(x, axes, starts, ends, strides, name=None):
    """
    This operator produces a slice of ``x`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of
    slicing and if the ``strides`` is negative, slice operation is in the opposite direction.
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``.
    Following examples will explain how strided_slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
                strides = [1, 1]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [2, 0]
                strides = [1, -1]
            Then:
                result = [ [8, 7, 6], ]
        Case3:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
                strides = [1, 3]
            Then:
                result = [ [2], ]
3863

3864
    Args:
3865
        x (Tensor): An N-D ``Tensor``. The data type is ``bool``, ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of                                                                                          it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.                                                                                    It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .                                                                                     It represents ending indices of corresponding axis in ``axes``.
        strides (list|tuple|Tensor): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``strides`` is an Tensor, it should be an 1-D Tensor .                                                                                  It represents slice step of corresponding axis in ``axes``.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor:  A ``Tensor`` with the same dimension as ``x``. The data type is same as ``x``.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.zeros(shape=[3,4,5,6], dtype="float32")
            # example 1:
            # attr starts is a list which doesn't contain Tensor.
            axes = [1, 2, 3]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            strides_1 = [1, 1, 1]
            strides_2 = [1, 1, 2]
            sliced_1 = paddle.strided_slice(x, axes=axes, starts=starts, ends=ends, strides=strides_1)
L
Ligoml 已提交
3892
            # sliced_1 is x[:, 1:3:1, 0:2:1, 2:4:1].
3893 3894
            # example 2:
            # attr starts is a list which contain tensor Tensor.
3895
            minus_3 = paddle.full(shape=[1], fill_value=-3, dtype='int32')
3896 3897 3898
            sliced_2 = paddle.strided_slice(x, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2)
            # sliced_2 is x[:, 1:3:1, 0:2:1, 2:4:2].
    """
3899
    if in_dygraph_mode():
3900
        return _C_ops.strided_slice(x, axes, starts, ends, strides)
3901

3902 3903
    helper = LayerHelper('strided_slice', **locals())

3904
    check_variable_and_dtype(
L
Ligoml 已提交
3905 3906 3907 3908 3909
        x,
        'x',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'strided_slice',
    )
3910 3911 3912 3913 3914 3915 3916
    check_type(axes, 'axes', (list, tuple), 'strided_slice')
    check_type(starts, 'starts', (list, tuple, Variable), 'strided_slice')
    check_type(ends, 'ends', (list, tuple, Variable), 'strided_slice')
    check_type(strides, 'strides', (list, tuple, Variable), 'strided_slice')

    def check_list_elements_dtype(list_input, input_name):
        if isinstance(list_input, Variable):
L
Ligoml 已提交
3917 3918 3919
            check_dtype(
                list_input.dtype, input_name, ['int32'], 'strided_slice'
            )
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937
        else:
            for i, var in enumerate(list_input):
                var_name = input_name + '[' + str(i) + ']'
                if isinstance(var, Variable):
                    check_dtype(var.dtype, var_name, ['int32'], 'strided_slice')

    check_list_elements_dtype(axes, 'axes')
    check_list_elements_dtype(starts, 'starts')
    check_list_elements_dtype(ends, 'ends')
    check_list_elements_dtype(strides, 'strides')

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
L
Ligoml 已提交
3938
                assert isinstance(dim, int)
3939 3940 3941 3942 3943 3944 3945 3946 3947
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': x}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

3948
    if _in_legacy_dygraph():
3949 3950 3951 3952 3953 3954
        inputs = {'Input': x}
        attrs = {
            'axes': axes,
            'starts': starts,
            'ends': ends,
            'strides': strides,
L
Ligoml 已提交
3955
            'infer_flags': infer_flags,
3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009
        }
    else:
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
            if utils._contain_var(starts):
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)
            else:
                attrs['starts'] = starts

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
            if utils._contain_var(ends):
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
            else:
                attrs['ends'] = ends

        # strides
        if isinstance(strides, Variable):
            strides.stop_gradient = True
            inputs['StridesTensor'] = strides
        elif isinstance(strides, (list, tuple)):
            attrs['strides'] = []
            if utils._contain_var(strides):
                inputs['StridesTensorList'] = get_new_list_tensor(strides)
                for i, dim in enumerate(strides):
                    if isinstance(dim, Variable):
                        attrs['strides'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['strides'].append(dim)
            else:
                attrs['strides'] = strides
        attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
L
Ligoml 已提交
4010 4011 4012 4013 4014
        dtype=helper.input_dtype('x')
    )
    helper.append_op(
        type='strided_slice', inputs=inputs, attrs=attrs, outputs={'Out': out}
    )
4015 4016

    return out
F
From00 已提交
4017 4018 4019 4020


def tensordot(x, y, axes=2, name=None):
    r"""
L
Ligoml 已提交
4021
    This function computes a contraction, which sum the product of elements from two tensors along the given axes.
F
From00 已提交
4022 4023 4024 4025 4026 4027

    Args:
        x (Tensor): The left tensor for contraction with data type ``float32`` or ``float64``.
        y (Tensor): The right tensor for contraction with the same data type as ``x``.
        axes (int|tuple|list|Tensor, optional):  The axes to contract for ``x`` and ``y``, defaulted to integer ``2``.

L
Ligoml 已提交
4028
            1. It could be a non-negative integer ``n``,
F
From00 已提交
4029
               in which the function will sum over the last ``n`` axes of ``x`` and the first ``n`` axes of ``y`` in order.
L
Ligoml 已提交
4030 4031

            2. It could be a 1-d tuple or list with data type ``int``, in which ``x`` and ``y`` will be contracted along the same given axes.
F
From00 已提交
4032
               For example, ``axes`` =[0, 1] applies contraction along the first two axes for ``x`` and the first two axes for ``y``.
L
Ligoml 已提交
4033 4034 4035 4036

            3. It could be a tuple or list containing one or two 1-d tuple|list|Tensor with data type ``int``.
               When containing one tuple|list|Tensor, the data in tuple|list|Tensor specified the same axes for ``x`` and ``y`` to contract.
               When containing two tuple|list|Tensor, the first will be applied to ``x`` and the second to ``y``.
F
From00 已提交
4037
               When containing more than two tuple|list|Tensor, only the first two axis sequences will be used while the others will be ignored.
L
Ligoml 已提交
4038 4039 4040

            4. It could be a tensor, in which the ``axes`` tensor will be translated to a python list
               and applied the same rules described above to determine the contraction axes.
F
From00 已提交
4041
               Note that the ``axes`` with Tensor type is ONLY available in Dygraph mode.
L
Ligoml 已提交
4042
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
F
From00 已提交
4043 4044
                             For more information, please refer to :ref:`api_guide_Name` .

L
Ligoml 已提交
4045 4046
    Return:
        Output (Tensor): The contraction result with the same data type as ``x`` and ``y``.
F
From00 已提交
4047
        In general, :math:`output.ndim = x.ndim + y.ndim - 2 \times n_{axes}`, where :math:`n_{axes}` denotes the number of axes to be contracted.
L
Ligoml 已提交
4048

F
From00 已提交
4049
    NOTES:
L
Ligoml 已提交
4050
        1. This function supports tensor broadcast,
F
From00 已提交
4051
           the size in the corresponding dimensions of ``x`` and ``y`` should be equal, or applies to the broadcast rules.
L
Ligoml 已提交
4052 4053 4054 4055 4056
        2. This function also supports axes expansion,
           when the two given axis sequences for ``x`` and ``y`` are of different lengths,
           the shorter sequence will expand the same axes as the longer one at the end.
           For example, if ``axes`` =[[0, 1, 2, 3], [1, 0]],
           the axis sequence for ``x`` is [0, 1, 2, 3],
F
From00 已提交
4057
           while the corresponding axis sequences for ``y`` will be expanded from [1, 0] to [1, 0, 2, 3].
L
Ligoml 已提交
4058

F
From00 已提交
4059 4060 4061 4062 4063 4064 4065 4066
    Examples:
        .. code-block:: python

            import paddle

            data_type = 'float64'

            # For two 2-d tensor x and y, the case axes=0 is equivalent to outer product.
L
Ligoml 已提交
4067
            # Note that tensordot supports empty axis sequence, so all the axes=0, axes=[], axes=[[]], and axes=[[],[]] are equivalent cases.
F
From00 已提交
4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
            x = paddle.arange(4, dtype=data_type).reshape([2, 2])
            y = paddle.arange(4, dtype=data_type).reshape([2, 2])
            z = paddle.tensordot(x, y, axes=0)
            # z = [[[[0., 0.],
            #        [0., 0.]],
            #
            #       [[0., 1.],
            #        [2., 3.]]],
            #
            #
            #      [[[0., 2.],
            #        [4., 6.]],
            #
            #       [[0., 3.],
            #        [6., 9.]]]]


            # For two 1-d tensor x and y, the case axes=1 is equivalent to inner product.
            x = paddle.arange(10, dtype=data_type)
            y = paddle.arange(10, dtype=data_type)
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.dot(x, y)
            # z1 = z2 = [285.]


            # For two 2-d tensor x and y, the case axes=1 is equivalent to matrix multiplication.
            x = paddle.arange(6, dtype=data_type).reshape([2, 3])
            y = paddle.arange(12, dtype=data_type).reshape([3, 4])
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.matmul(x, y)
            # z1 = z2 =  [[20., 23., 26., 29.],
            #             [56., 68., 80., 92.]]


            # When axes is a 1-d int list, x and y will be contracted along the same given axes.
            # Note that axes=[1, 2] is equivalent to axes=[[1, 2]], axes=[[1, 2], []], axes=[[1, 2], [1]], and axes=[[1, 2], [1, 2]].
            x = paddle.arange(24, dtype=data_type).reshape([2, 3, 4])
            y = paddle.arange(36, dtype=data_type).reshape([3, 3, 4])
            z = paddle.tensordot(x, y, axes=[1, 2])
            # z =  [[506. , 1298., 2090.],
            #       [1298., 3818., 6338.]]


            # When axes is a list containing two 1-d int list, the first will be applied to x and the second to y.
            x = paddle.arange(60, dtype=data_type).reshape([3, 4, 5])
            y = paddle.arange(24, dtype=data_type).reshape([4, 3, 2])
            z = paddle.tensordot(x, y, axes=([1, 0], [0, 1]))
            # z =  [[4400., 4730.],
            #       [4532., 4874.],
            #       [4664., 5018.],
            #       [4796., 5162.],
            #       [4928., 5306.]]


            # Thanks to the support of axes expansion, axes=[[0, 1, 3, 4], [1, 0, 3, 4]] can be abbreviated as axes= [[0, 1, 3, 4], [1, 0]].
            x = paddle.arange(720, dtype=data_type).reshape([2, 3, 4, 5, 6])
            y = paddle.arange(720, dtype=data_type).reshape([3, 2, 4, 5, 6])
            z = paddle.tensordot(x, y, axes=[[0, 1, 3, 4], [1, 0]])
            # z = [[23217330., 24915630., 26613930., 28312230.],
            #      [24915630., 26775930., 28636230., 30496530.],
            #      [26613930., 28636230., 30658530., 32680830.],
L
Ligoml 已提交
4129
            #      [28312230., 30496530., 32680830., 34865130.]]
F
From00 已提交
4130 4131 4132 4133 4134 4135 4136 4137 4138
    """
    op_type = 'tensordot'
    input_dtype = ['float32', 'float64']

    check_variable_and_dtype(x, 'x', input_dtype, op_type)
    check_variable_and_dtype(y, 'y', input_dtype, op_type)
    check_type(axes, 'axes', (int, tuple, list, Variable), op_type)

    def _var_to_list(var):
Z
zhiboniu 已提交
4139
        if paddle.in_dynamic_mode():
F
From00 已提交
4140 4141
            return tolist(var)
        raise TypeError(
L
Ligoml 已提交
4142 4143 4144
            "The 'axes' with type 'Tensor' in "
            + op_type
            + " is not available in static graph mode, "
F
From00 已提交
4145 4146 4147 4148 4149 4150 4151
            "please convert its type to int|Tuple|List, or use dynamic graph mode."
        )

    axes_x = []
    axes_y = []
    if np.issubdtype(type(axes), np.integer):
        assert axes >= 0, (
L
Ligoml 已提交
4152 4153 4154 4155
            "The 'axes' in "
            + op_type
            + f" should not be negative, but received axes={axes}."
        )
F
From00 已提交
4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194
        axes_x = range(x.ndim - axes, x.ndim)
        axes_y = range(axes)
    else:
        if isinstance(axes, Variable):
            axes = _var_to_list(axes)

        if not axes or np.issubdtype(type(axes[0]), np.integer):
            axes_x = axes
        else:
            axes_x = axes[0]
            if len(axes) > 1:
                axes_y = axes[1]

            if isinstance(axes_x, Variable):
                axes_x = _var_to_list(axes_x)
            if isinstance(axes_y, Variable):
                axes_y = _var_to_list(axes_y)

    axes_x, axes_y = list(axes_x), list(axes_y)
    len_axes_x, len_axes_y = len(axes_x), len(axes_y)
    if len_axes_x < len_axes_y:
        axes_x.extend(axes_y[len_axes_x:])
    elif len_axes_y < len_axes_x:
        axes_y.extend(axes_x[len_axes_y:])

    shape_x, shape_y = list(x.shape), list(y.shape)
    need_contracted_dim_x = np.zeros((x.ndim), dtype=bool)
    need_contracted_dim_y = np.zeros((y.ndim), dtype=bool)
    contraction_size = 1
    for i in range(len(axes_x)):
        dim_x, dim_y = axes_x[i], axes_y[i]
        sx, sy = shape_x[dim_x], shape_y[dim_y]
        if sx == 1:
            shape_y[dim_y] = 1
            y = y.sum(dim_y).reshape(shape_y)
        elif sy == 1:
            shape_x[dim_x] = 1
            x = x.sum(dim_x).reshape(shape_x)
        else:
L
Ligoml 已提交
4195 4196 4197 4198 4199
            assert sx == sy, (
                "The dimensional size for 'x' and 'y' in "
                + op_type
                + f" should match each other, but 'x' has size {sx} in dim {dim_x} while 'y' has size {sy} in dim {dim_y}."
            )
F
From00 已提交
4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226

        need_contracted_dim_x[dim_x] = True
        need_contracted_dim_y[dim_y] = True
        contraction_size *= shape_x[dim_x]

    perm_x = []
    perm_y = []
    shape_out = []
    not_contraction_size_x = 1
    not_contraction_size_y = 1
    for i in range(x.ndim):
        if not need_contracted_dim_x[i]:
            perm_x.append(i)
            shape_out.append(shape_x[i])
            not_contraction_size_x *= shape_x[i]
    perm_x.extend(axes_x)
    perm_y.extend(axes_y)
    for i in range(y.ndim):
        if not need_contracted_dim_y[i]:
            perm_y.append(i)
            shape_out.append(shape_y[i])
            not_contraction_size_y *= shape_y[i]

    if not shape_out:
        shape_out = [1]

    x = x.transpose(perm=perm_x).reshape(
L
Ligoml 已提交
4227 4228
        [not_contraction_size_x, contraction_size]
    )
F
From00 已提交
4229
    y = y.transpose(perm=perm_y).reshape(
L
Ligoml 已提交
4230 4231
        [contraction_size, not_contraction_size_y]
    )
F
From00 已提交
4232 4233
    out = x.matmul(y).reshape(shape_out)
    return out
4234 4235 4236


def as_complex(x, name=None):
L
Ligoml 已提交
4237 4238
    """Transform a real tensor to a complex tensor.

4239 4240 4241
    The data type of the input tensor is 'float32' or 'float64', and the data
    type of the returned tensor is 'complex64' or 'complex128', respectively.

L
Ligoml 已提交
4242
    The shape of the input tensor is ``(* ,2)``, (``*`` means arbitary shape), i.e.
4243 4244 4245 4246 4247 4248 4249 4250 4251
    the size of the last axis shoule be 2, which represent the real and imag part
    of a complex number. The shape of the returned tensor is ``(*,)``.

    Args:
        x (Tensor): The input tensor. Data type is 'float32' or 'float64'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The output. Data type is 'complex64' or 'complex128', with the same precision as the input.
L
Ligoml 已提交
4252

4253 4254 4255 4256 4257 4258
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
4259
            print(y)
4260

4261 4262 4263
            # Tensor(shape=[2, 3], dtype=complex64, place=Place(gpu:0), stop_gradient=True,
            #        [[1j      , (2+3j)  , (4+5j)  ],
            #         [(6+7j)  , (8+9j)  , (10+11j)]])
4264
    """
4265 4266
    if in_dygraph_mode():
        return _C_ops.as_complex(x)
4267 4268
    if _in_legacy_dygraph():
        return _legacy_C_ops.as_complex(x)
4269 4270 4271 4272 4273 4274

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'as_complex')
    op_type = "as_complex"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
L
Ligoml 已提交
4275 4276
        dtype=_real_to_complex_dtype(x.dtype)
    )
4277 4278 4279 4280 4281 4282 4283
    outputs = {"Out": out}
    attrs = {}
    helper.append_op(type=op_type, inputs=inputs, attrs=attrs, outputs=outputs)
    return out


def as_real(x, name=None):
L
Ligoml 已提交
4284 4285 4286
    """Transform a complex tensor to a real tensor.

    The data type of the input tensor is 'complex64' or 'complex128', and the data
4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
    type of the returned tensor is 'float32' or 'float64', respectively.

    When the shape of the input tensor is ``(*, )``, (``*`` means arbitary shape),
    the shape of the output tensor is ``(*, 2)``, i.e. the shape of the output is
    the shape of the input appended by an extra ``2``.

    Args:
        x (Tensor): The input tensor. Data type is 'complex64' or 'complex128'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The output. Data type is 'float32' or 'float64', with the same precision as the input.
L
Ligoml 已提交
4299

4300 4301 4302 4303 4304 4305 4306
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
            z = paddle.as_real(y)
4307
            print(z)
4308

4309 4310 4311 4312
            # Tensor(shape=[2, 3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[0. , 1. ],
            #          [2. , 3. ],
            #          [4. , 5. ]],
4313

4314 4315 4316
            #         [[6. , 7. ],
            #          [8. , 9. ],
            #          [10., 11.]]])
4317
    """
4318 4319
    if in_dygraph_mode():
        return _C_ops.as_real(x)
4320 4321
    if _in_legacy_dygraph():
        return _legacy_C_ops.as_real(x)
4322 4323 4324 4325 4326 4327

    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'as_real')
    op_type = "as_real"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
L
Ligoml 已提交
4328 4329
        dtype=_complex_to_real_dtype(x.dtype)
    )
4330 4331 4332
    outputs = {"Out": out}
    helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out
4333 4334


K
kuizhiqing 已提交
4335 4336 4337 4338 4339 4340 4341 4342 4343
def repeat_interleave(x, repeats, axis=None, name=None):
    """

    Returns a new tensor which repeats the ``x`` tensor along dimension ``axis`` using
    the entries in ``repeats`` which is a int or a Tensor.

    Args:
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        repeats (Tensor or int): The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis.
4344
        axis (int, optional): The dimension in which we manipulate. Default: None, the output tensor is flatten.
K
kuizhiqing 已提交
4345 4346 4347 4348 4349 4350 4351
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor with same data type as ``x``.

4352 4353 4354 4355 4356
    Examples:
        .. code-block:: python

            import paddle

K
kuizhiqing 已提交
4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            repeats  = paddle.to_tensor([3, 2, 1], dtype='int32')

            paddle.repeat_interleave(x, repeats, 1)
            # [[1, 1, 1, 2, 2, 3],
            #  [4, 4, 4, 5, 5, 6]]

            paddle.repeat_interleave(x, 2, 0)
            # [[1, 2, 3], [1, 2, 3], [4, 5, 6], [4, 5, 6]]

            paddle.repeat_interleave(x, 2, None)
            # [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6]
    """

    if axis is None:
        x = paddle.flatten(x)
        axis = 0

S
seemingwang 已提交
4375 4376
    if in_dygraph_mode():
        if isinstance(repeats, Variable):
4377 4378
            return _C_ops.repeat_interleave_with_tensor_index(x, repeats, axis)
        return _C_ops.repeat_interleave(x, repeats, axis)
K
kuizhiqing 已提交
4379 4380

    helper = LayerHelper("repeat_interleave", **locals())
L
Ligoml 已提交
4381 4382 4383 4384 4385 4386
    check_variable_and_dtype(
        x,
        'x',
        ['float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.repeat_interleave',
    )
K
kuizhiqing 已提交
4387 4388 4389

    out = helper.create_variable_for_type_inference(x.dtype)

L
Ligoml 已提交
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401
    helper.append_op(
        type='repeat_interleave',
        inputs={
            'X': x,
            'RepeatsTensor': repeats if isinstance(repeats, Variable) else None,
        },
        outputs={'Out': out},
        attrs={
            'dim': axis,
            'Repeats': repeats if isinstance(repeats, int) else 0,
        },
    )
K
kuizhiqing 已提交
4402 4403 4404
    return out


4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422
def moveaxis(x, source, destination, name=None):
    """
    Move the axis of tensor from ``source`` position to ``destination`` position.

    Other axis that have not been moved remain their original order.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, int32, int64, float32, float64, complex64, complex128.
        source(int|tuple|list): ``source`` position of axis that will be moved. Each element must be unique and integer.
        destination(int|tuple|list(int)): ``destination`` position of axis that has been moved. Each element must be unique and integer.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A new tensor whose axis have been moved.

    Examples:
        .. code-block:: python
L
Ligoml 已提交
4423

4424 4425 4426 4427 4428 4429 4430
            import paddle

            x = paddle.ones([3, 2, 4])
            paddle.moveaxis(x, [0, 1], [1, 2]).shape
            # [4, 3, 2]

            x = paddle.ones([2, 3])
4431
            paddle.moveaxis(x, 0, 1).shape # equivalent to paddle.t(x)
L
Ligoml 已提交
4432
            # [3, 2]
4433 4434 4435 4436 4437
    """
    src = [source] if isinstance(source, int) else source
    dst = [destination] if isinstance(destination, int) else destination

    assert len(src) == len(
L
Ligoml 已提交
4438 4439
        dst
    ), "'source' must have the same number with 'destination'"
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455

    count = Counter(src).most_common(1)
    if count[0][1] > 1:
        raise ValueError("Each elemment of 'source' must be unique!")
    count = Counter(dst).most_common(1)
    if count[0][1] > 1:
        raise ValueError("Each elemment of 'destination' must be unique!")

    ndim = len(x.shape)

    # perm is the new order after move axis
    perm = list(range(ndim))
    src_dims = list(range(ndim))
    dst_dims = list(range(ndim))

    for i, axis in enumerate(zip(src, dst)):
L
Ligoml 已提交
4456 4457 4458
        assert isinstance(
            axis[0], int
        ), "Each elemment of 'source' must be integer."
4459
        if axis[0] < 0:
L
Ligoml 已提交
4460 4461 4462
            assert (
                axis[0] >= -ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4463 4464
            src[i] += ndim
        else:
L
Ligoml 已提交
4465 4466 4467
            assert (
                axis[0] < ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4468

L
Ligoml 已提交
4469 4470 4471
        assert isinstance(
            axis[1], int
        ), "Each elemment of 'source' must be integer."
4472
        if axis[1] < 0:
L
Ligoml 已提交
4473 4474 4475
            assert (
                axis[1] >= -ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4476 4477
            dst[i] += ndim
        else:
L
Ligoml 已提交
4478 4479 4480
            assert (
                axis[1] < ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4481 4482 4483 4484 4485 4486 4487
        perm[dst[i]] = src[i]
        src_dims.remove(src[i])
        dst_dims.remove(dst[i])

    for i in range(len(src_dims)):
        perm[dst_dims[i]] = src_dims[i]

4488
    if in_dygraph_mode():
4489
        out = _C_ops.transpose(x, perm)
4490 4491 4492
        return out

    if _in_legacy_dygraph():
4493
        out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
4494 4495
        return out

L
Ligoml 已提交
4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
    check_variable_and_dtype(
        x,
        'x',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'moveaxis',
    )
4511 4512 4513 4514

    helper = LayerHelper('moveaxis', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
L
Ligoml 已提交
4515 4516 4517 4518 4519 4520
    helper.append_op(
        type='transpose2',
        inputs={'X': [x]},
        outputs={'Out': [out], 'XShape': [x_shape]},
        attrs={'axis': perm},
    )
4521
    return out
4522 4523


4524 4525 4526
def non_negative_axis(arr, axis):
    ndim = len(arr.shape)
    if axis >= 0:
L
Ligoml 已提交
4527 4528 4529
        assert (
            axis < ndim
        ), "'axis'  must be in the range of [-{0}, {0})".format(ndim)
4530
    else:
L
Ligoml 已提交
4531 4532 4533
        assert (
            axis >= -ndim
        ), "'axis'  must be in the range of [-{0}, {0})".format(ndim)
4534 4535 4536 4537 4538 4539
        axis += ndim

    return axis


def infer_broadcast_shape(arr, indices, axis):
4540
    # This function is used in take/put_along_axis
4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
    broadcast_shape_list = list(arr.shape)
    broadcast_shape_list[axis] = list(indices.shape)[axis]
    broadcast_shape = tuple(broadcast_shape_list)
    for i in range(len(arr.shape)):
        if arr.shape[i] < indices.shape[i]:
            # if indices matrix has larger size than arr matrix, do not broadcast.
            return None
    return broadcast_shape


4551 4552 4553 4554 4555
def take_along_axis(arr, indices, axis):
    """
    Take values from the input array by given indices matrix along the designated axis.

    Args:
4556
        arr (Tensor) : The input Tensor. Supported data types are float32 and float64.
4557
        indices (Tensor) : Indices to take along each 1d slice of arr. This must match the dimension of arr,
4558
            and need to broadcast against arr. Supported data type are int and int64.
L
Ligoml 已提交
4559
        axis (int) : The axis to take 1d slices along.
4560

L
Ligoml 已提交
4561
    Returns:
4562
        Tensor: The indexed element, same dtype with arr
L
Ligoml 已提交
4563

4564 4565 4566 4567 4568
    Examples:
        .. code-block:: python

            import paddle

4569 4570
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7,8,9]])
            index = paddle.to_tensor([[0]])
4571 4572 4573 4574 4575
            axis = 0
            result = paddle.take_along_axis(x, index, axis)
            print(result)
            # [[1, 2, 3]]
    """
L
Ligoml 已提交
4576
    if len(arr.shape) != len(indices.shape):
4577
        raise ValueError(
L
Ligoml 已提交
4578 4579
            "`indices` and `arr` must have the same number of dimensions!"
        )
4580 4581 4582 4583 4584
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
    if not broadcast_shape:
        # if indices matrix have larger size than arr, arr should broadcast into indices shape.
        broadcast_shape = indices.shape
H
hong 已提交
4585
    if _non_static_mode():
4586
        indices = paddle.broadcast_to(indices, broadcast_shape)
4587 4588 4589 4590
        broadcast_shape_list = list(broadcast_shape)
        broadcast_shape_list[axis] = list(arr.shape)[axis]
        broadcast_shape = tuple(broadcast_shape_list)
        arr = paddle.broadcast_to(arr, broadcast_shape)
H
hong 已提交
4591
        if not _in_legacy_dygraph():
4592 4593
            return _C_ops.take_along_axis(arr, indices, axis)
        return _legacy_C_ops.take_along_axis(arr, indices, 'Axis', axis)
4594
    check_variable_and_dtype(
L
Ligoml 已提交
4595 4596 4597 4598 4599 4600 4601 4602
        arr,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'take_along_axis',
    )
    check_variable_and_dtype(
        indices, 'index', ['int32', 'int64'], 'take_along_axis'
    )
4603
    indices = paddle.broadcast_to(indices, broadcast_shape)
4604 4605 4606 4607
    broadcast_shape_list = list(broadcast_shape)
    broadcast_shape_list[axis] = list(arr.shape)[axis]
    broadcast_shape = tuple(broadcast_shape_list)
    arr = paddle.broadcast_to(arr, broadcast_shape)
4608 4609 4610
    helper = LayerHelper('take_along_axis', **locals())
    dtype = helper.input_dtype()
    result = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
4611 4612 4613 4614 4615 4616
    helper.append_op(
        type="take_along_axis",
        inputs={"Input": arr, "Index": indices},
        attrs={"Axis": axis},
        outputs={"Result": result},
    )
4617
    return result
4618 4619 4620 4621 4622 4623 4624 4625 4626 4627


def put_along_axis(arr, indices, values, axis, reduce='assign'):
    """
    Put values into the destination array by given indices matrix along the designated axis.

    Args:
        arr (Tensor) : The Destination Tensor. Supported data types are float32 and float64.
        indices (Tensor) : Indices to put along each 1d slice of arr. This must match the dimension of arr,
            and need to broadcast against arr. Supported data type are int and int64.
L
Ligoml 已提交
4628
        axis (int) : The axis to put 1d slices along.
4629
        reduce (string | optinal) : The reduce operation, default is 'assign', support 'add', 'assign', 'mul' and 'multiply'.
L
Ligoml 已提交
4630
    Returns :
4631
        Tensor: The indexed element, same dtype with arr
L
Ligoml 已提交
4632

4633 4634 4635 4636 4637
    Examples:
        .. code-block:: python

            import paddle

4638 4639
            x = paddle.to_tensor([[10, 30, 20], [60, 40, 50]])
            index = paddle.to_tensor([[0]])
4640 4641 4642 4643 4644 4645 4646 4647
            value = 99
            axis = 0
            result = paddle.put_along_axis(x, index, value, axis)
            print(result)
            # [[99, 99, 99],
            # [60, 40, 50]]

    """
L
Ligoml 已提交
4648
    if len(arr.shape) != len(indices.shape):
4649
        raise ValueError(
L
Ligoml 已提交
4650 4651
            "`indices` and `arr` must have the same number of dimensions!"
        )
4652 4653
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
H
hong 已提交
4654
    if _non_static_mode():
L
Ligoml 已提交
4655 4656 4657 4658 4659
        values = (
            paddle.to_tensor(values)
            if not isinstance(values, paddle.Tensor)
            else values
        )
4660 4661 4662
        if broadcast_shape:
            indices = paddle.broadcast_to(indices, broadcast_shape)
        values = paddle.broadcast_to(values, indices.shape)
H
hong 已提交
4663
        if in_dygraph_mode():
4664
            return _C_ops.put_along_axis(arr, indices, values, axis, reduce)
L
Ligoml 已提交
4665 4666 4667
        return _legacy_C_ops.put_along_axis(
            arr, indices, values, "Axis", axis, "Reduce", reduce
        )
4668 4669

    check_variable_and_dtype(
L
Ligoml 已提交
4670 4671 4672 4673 4674 4675 4676 4677
        arr,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'put_along_axis',
    )
    check_variable_and_dtype(
        indices, 'index', ['int32', 'int64'], 'put_along_axis'
    )
4678 4679 4680
    if broadcast_shape:
        indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.broadcast_to(values, indices.shape)
4681 4682 4683
    helper = LayerHelper('put_along_axis', **locals())
    dtype = helper.input_dtype()
    result = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
4684 4685 4686 4687 4688 4689
    helper.append_op(
        type="put_along_axis",
        inputs={"Input": arr, "Index": indices, "Value": values},
        attrs={"Axis": axis, "Reduce": reduce},
        outputs={"Result": result},
    )
4690 4691 4692 4693 4694 4695
    return result


@inplace_apis_in_dygraph_only
def put_along_axis_(arr, indices, values, axis, reduce='assign'):
    r"""
4696
    Inplace version of ``put_along_axis`` API, the output Tensor will be inplaced with input ``arr``.
4697 4698
    Please refer to :ref:`api_tensor_put_along_axis`.
    """
L
Ligoml 已提交
4699
    if len(arr.shape) != len(indices.shape):
4700
        raise ValueError(
L
Ligoml 已提交
4701 4702
            "`indices` and `arr` must have the same number of dimensions!"
        )
4703 4704
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
L
Ligoml 已提交
4705 4706 4707 4708 4709
    values = (
        paddle.to_tensor(values)
        if not isinstance(values, paddle.Tensor)
        else values
    )
4710 4711 4712
    if broadcast_shape:
        indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.broadcast_to(values, indices.shape)
4713
    if in_dygraph_mode():
4714
        return _C_ops.put_along_axis_(arr, indices, values, axis, reduce)
L
Ligoml 已提交
4715 4716 4717
    return _legacy_C_ops.put_along_axis_(
        arr, indices, values, "Axis", axis, "Reduce", reduce
    )
4718 4719


L
Li Min 已提交
4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757
def _index_add_params_check(x, index, input_axis, add_value):
    dims = len(x.shape)
    add_value_dims = len(add_value.shape)

    if input_axis >= 0:
        axis = input_axis
    else:
        axis = input_axis + dims

    check_axis = axis
    if check_axis >= dims or check_axis < -dims:
        raise ValueError("Axis should be in range [-rank(x), rank(x)).")

    if isinstance(index, Variable):
        if index.dtype not in [paddle.int64, paddle.int32]:
            raise TypeError("The index dtype should be int32 or int64.")
        if len(index.shape) != 1:
            raise ValueError("The index should be a 1-D Tensor.")

    if dims != add_value_dims:
        raise ValueError(
            "The add_value does not support broadcast now. It must have the same dimension as x."
        )
    for i in range(dims):
        if i != axis and x.shape[i] != add_value.shape[i]:
            raise ValueError(
                "The add_value.shape[i] should be equal to x.shape[i] when i != axis."
            )


def index_add(x, index, axis, value, name=None):
    """
    Adds the elements of the input tensor with value tensor by selecting the indices in the order given in index.

    Args:
        x (Tensor) : The Destination Tensor. Supported data types are int32, int64, float16, float32, float64.
        index (Tensor): The 1-D Tensor containing the indices to index.
            The data type of ``index`` must be int32 or int64.
L
Ligoml 已提交
4758
        axis (int): The dimension in which we index.
L
Li Min 已提交
4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
        value (Tensor): The tensor used to add the elements along the target axis.
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        Tensor: same dimention and dtype with x.

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1, 1], [1, 1, 1]], dtype="float32")
            outplace_res = paddle.index_add(input_tensor, index, 0, value)
4775 4776 4777 4778 4779
            print(outplace_res)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[2., 2., 2.],
            #         [1., 1., 1.],
            #         [2., 2., 2.]])
L
Li Min 已提交
4780 4781 4782 4783 4784 4785 4786 4787
    """
    _index_add_params_check(x, index, axis, value)

    if in_dygraph_mode():
        return _C_ops.index_add(x, index, value, axis)

    helper = LayerHelper("index_add", **locals())
    check_variable_and_dtype(
L
Ligoml 已提交
4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
        x,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.index_add',
    )
    check_variable_and_dtype(
        index,
        'index',
        ['int32', 'int64'],
        'paddle.tensor.manipulation.index_add',
    )
L
Li Min 已提交
4799
    check_variable_and_dtype(
L
Ligoml 已提交
4800 4801 4802 4803 4804
        value,
        'add_value',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.index_add',
    )
L
Li Min 已提交
4805 4806 4807

    out = helper.create_variable_for_type_inference(x.dtype)

L
Ligoml 已提交
4808 4809 4810 4811 4812 4813 4814 4815 4816 4817
    helper.append_op(
        type='index_add',
        inputs={
            'X': x,
            'Index': index,
            'AddValue': value,
        },
        outputs={'Out': out},
        attrs={'axis': axis},
    )
L
Li Min 已提交
4818 4819 4820 4821 4822 4823 4824 4825
    return out


@inplace_apis_in_dygraph_only
def index_add_(x, index, axis, value, name=None):
    """
    Inplace version of ``index_add`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_index_add`.
L
Ligoml 已提交
4826

L
Li Min 已提交
4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1], [1, 1], [1, 1]], dtype="float32")
            inplace_res = paddle.index_add_(input_tensor, index, 1, value)
4837 4838 4839 4840 4841
            print(inplace_res)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[2., 1., 2.],
            #         [2., 1., 2.],
            #         [2., 1., 2.]])
L
Li Min 已提交
4842 4843 4844 4845 4846 4847
    """

    _index_add_params_check(x, index, axis, value)
    return _C_ops.index_add_(x, index, value, axis)


4848 4849 4850 4851 4852 4853 4854
# TODO(dev): We need avoid implementing it by this way.
__METHODS = {
    'fill_': fill_,
    'zero_': zero_,
    'fill_diagonal_': fill_diagonal_,
    'fill_diagonal_tensor_': fill_diagonal_tensor_,
    "fill_diagonal_tensor": fill_diagonal_tensor,
L
Ligoml 已提交
4855
    'tolist': tolist,
4856 4857 4858 4859
}
for name, func in __METHODS.items():
    setattr(core.VarBase, name, func)
    setattr(core.eager.Tensor, name, func)