manipulation.py 169.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
Wilber 已提交
15
from __future__ import print_function
16
from collections import Counter
W
Wilber 已提交
17

Z
zhiboniu 已提交
18
from ..static import Variable, device_guard
19
from ..framework import core, in_dygraph_mode
L
Ligoml 已提交
20 21 22 23 24
from ..fluid.framework import (
    _in_legacy_dygraph,
    _in_eager_without_dygraph_check,
    _non_static_mode,
)
25
from ..framework import LayerHelper
Z
zhiboniu 已提交
26
from ..framework import OpProtoHolder, convert_np_dtype_to_dtype_, dygraph_only
L
Ligoml 已提交
27 28 29 30 31 32
from ..fluid.data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
33
from ..fluid.layers import utils
myq406450149's avatar
myq406450149 已提交
34
import numpy as np
L
Ligoml 已提交
35

36
# TODO: define functions to manipulate a tensor
37
from ..fluid.layers.nn import _elementwise_op_in_dygraph
38
from ..fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
39
import paddle
40
from paddle import _C_ops, _legacy_C_ops
41 42 43 44 45
from ..common_ops_import import dygraph_utils, fill_constant, _varbase_creator
import warnings
from .creation import zeros
from .creation import _complex_to_real_dtype
from .creation import _real_to_complex_dtype
46

47 48
__all__ = []

W
Wilber 已提交
49

50 51 52 53 54 55 56 57
def cast(x, dtype):
    """

    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.

    Args:
58
        x (Tensor): An input N-D Tensor with data type bool, float16,
59
            float32, float64, int32, int64, uint8.
60
        dtype (np.dtype|str): Data type of the output:
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
            bool, float16, float32, float64, int8, int32, int64, uint8.

    Returns:
        Tensor: A Tensor with the same shape as input's.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
    """
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
77
        return _C_ops.cast(x, dtype)
78 79 80 81

    if _non_static_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
82
        out = _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
83 84
        return out

L
Ligoml 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    check_variable_and_dtype(
        x,
        'x',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'cast',
    )
    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'cast',
    )
118 119 120

    helper = LayerHelper('cast', **locals())
    out = helper.create_variable_for_type_inference(
L
Ligoml 已提交
121 122 123 124 125 126 127 128
        dtype=dtype, stop_gradient=x.stop_gradient
    )
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype, 'out_dtype': out.dtype},
    )
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    return out


def slice(input, axes, starts, ends):
    """
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` (here 0 is the initial position).
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` and ``ends``.
    Following examples will explain how slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]       # -1 denotes the reverse 0th position of dimension 0.
            Then:
                result = [ [2, 3, 4], ] # result = data[0:1, 1:4]
L
Ligoml 已提交
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    Args:
        input (Tensor): A ``Tensor`` . The data type is ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to .
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.

    Returns:
        Tensor:  A ``Tensor``. The data type is same as ``input``.

    Raises:
        TypeError: The type of ``starts`` must be list, tuple or Tensor.
        TypeError: The type of ``ends`` must be list, tuple or Tensor.

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand(shape=[4, 5, 6], dtype='float32')
            # example 1:
            # attr starts is a list which doesn't contain tensor.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = paddle.slice(input, axes=axes, starts=starts, ends=ends)
            # sliced_1 is input[0:3, 0:2, 2:4].

            # example 2:
            # attr starts is a list which contain tensor.
            minus_3 = paddle.full([1], -3, "int32")
            sliced_2 = paddle.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
            # sliced_2 is input[0:3, 0:2, 2:4].
    """
    if in_dygraph_mode():
        attrs = ()
        starts_tensor = None
        ends_tensor = None

        if isinstance(axes, (list, tuple)):
            axes = list(axes)
            if len(axes) == 0:
                raise ValueError(
L
Ligoml 已提交
213 214
                    "Input axes should not be an empty list/tuple."
                )
215 216 217 218 219 220 221 222
            for i in range(len(axes)):
                if axes[i] < 0:
                    axes[i] = max(0, axes[i] + len(input.shape))
                else:
                    axes[i] = min(len(input.shape) - 1, axes[i])

        else:
            raise ValueError(
L
Ligoml 已提交
223 224 225 226
                "Input axes must be a python list or tuple, but reveived {}".format(
                    type(axes)
                )
            )
227 228 229 230 231 232 233 234

        infer_flags = list(1 for i in range(len(axes)))

        tmp_tensor_type = core.eager.Tensor

        if isinstance(starts, (list, tuple)):
            starts = [
                item.numpy().item(0)
L
Ligoml 已提交
235 236
                if isinstance(item, tmp_tensor_type)
                else item
237 238 239
                for item in starts
            ]
        elif isinstance(starts, tmp_tensor_type):
240 241
            tensor_t = starts.numpy()
            starts = [ele for ele in tensor_t]
242 243 244 245 246
            infer_flags = list(-1 for i in range(len(axes)))

        if isinstance(ends, (list, tuple)):
            ends = [
                item.numpy().item(0)
L
Ligoml 已提交
247 248 249
                if isinstance(item, tmp_tensor_type)
                else item
                for item in ends
250 251
            ]
        elif isinstance(ends, tmp_tensor_type):
252
            tensor_t = ends.numpy()
253
            ends = [ele for ele in tensor_t]
254
            infer_flags = list(-1 for i in range(len(axes)))
255

256
        return _C_ops.slice(input, axes, starts, ends, infer_flags, [])
257 258 259 260 261 262 263 264 265 266
    else:
        if _in_legacy_dygraph():
            attrs = ()
            starts_tensor = None
            ends_tensor = None

            if isinstance(axes, (list, tuple)):
                axes = list(axes)
                if len(axes) == 0:
                    raise ValueError(
L
Ligoml 已提交
267 268
                        "Input axes should not be an empty list/tuple."
                    )
269 270 271 272 273 274 275 276
                for i in range(len(axes)):
                    if axes[i] < 0:
                        axes[i] = max(0, axes[i] + len(input.shape))
                    else:
                        axes[i] = min(len(input.shape) - 1, axes[i])

            else:
                raise ValueError(
L
Ligoml 已提交
277 278 279 280
                    "Input axes must be a python list or tuple, but reveived {}".format(
                        type(axes)
                    )
                )
281 282 283 284 285 286 287 288

            infer_flags = list(1 for i in range(len(axes)))

            tmp_tensor_type = Variable

            if isinstance(starts, (list, tuple)):
                starts = [
                    item.numpy().item(0)
L
Ligoml 已提交
289 290
                    if isinstance(item, tmp_tensor_type)
                    else item
291 292 293 294 295 296 297 298 299 300 301
                    for item in starts
                ]
                attrs += ('starts', starts)
            elif isinstance(starts, tmp_tensor_type):
                starts_tensor = starts
                starts.stop_gradient = True
                infer_flags = list(-1 for i in range(len(axes)))

            if isinstance(ends, (list, tuple)):
                ends = [
                    item.numpy().item(0)
L
Ligoml 已提交
302 303
                    if isinstance(item, tmp_tensor_type)
                    else item
304 305 306 307 308 309 310 311
                    for item in ends
                ]
                attrs += ('ends', ends)
            elif isinstance(ends, tmp_tensor_type):
                ends_tensor = ends
                ends_tensor.stop_gradient = True
                infer_flags = list(-1 for i in range(len(axes)))

L
Ligoml 已提交
312 313 314 315 316 317 318 319 320 321 322 323
            return _legacy_C_ops.slice(
                input,
                starts_tensor,
                ends_tensor,
                None,
                None,
                'axes',
                axes,
                'infer_flags',
                infer_flags,
                *attrs,
            )
324 325 326

    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
L
Ligoml 已提交
327 328
            "Input starts must be an Variable, python list or tuple."
        )
329 330
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
L
Ligoml 已提交
331 332
            "Input ends must be an Variable, python list or tuple."
        )
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378

    helper = LayerHelper('slice', **locals())

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

    # starts
    if isinstance(starts, Variable):
        starts.stop_gradient = True
        inputs['StartsTensor'] = starts
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(starts, (list, tuple)):
        attrs['starts'] = []
        if utils._contain_var(starts):
            inputs['StartsTensorList'] = utils._convert_to_tensor_list(starts)
            for i, dim in enumerate(starts):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
        else:
            attrs['starts'] = starts

    # ends
    if isinstance(ends, Variable):
        ends.stop_gradient = True
        inputs['EndsTensor'] = ends
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(ends, (list, tuple)):
        attrs['ends'] = []
        if utils._contain_var(ends):
            inputs['EndsTensorList'] = utils._convert_to_tensor_list(ends)
            for i, dim in enumerate(ends):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
        else:
            attrs['ends'] = ends

    # infer_flags
    attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
L
Ligoml 已提交
379 380 381 382 383
        dtype=helper.input_dtype('input')
    )
    helper.append_op(
        type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out}
    )
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

    return out


def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
        Tensor: A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
439
        return _C_ops.transpose(x, perm)
440 441
    else:
        if _in_legacy_dygraph():
442
            out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
443 444
            return out

L
Ligoml 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
    check_variable_and_dtype(
        x,
        'x',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'transpose',
    )
460 461 462 463 464 465 466 467
    check_type(perm, 'perm', (list, tuple), 'transpose')
    if isinstance(perm, tuple):
        perm = list(perm)
    if len(perm) != len(x.shape):
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
L
Ligoml 已提交
468 469
            "the length of Input(perm) is %s." % (len(x.shape), len(perm))
        )
470 471 472 473 474
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
L
Ligoml 已提交
475 476
                "dimension %d." % (idx, perm[idx], len(x.shape))
            )
477 478 479 480

    helper = LayerHelper('transpose', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
L
Ligoml 已提交
481 482 483 484 485 486
    helper.append_op(
        type='transpose2',
        inputs={'X': [x]},
        outputs={'Out': [out], 'XShape': [x_shape]},
        attrs={'axis': perm},
    )
487 488 489 490 491 492
    return out


def unstack(x, axis=0, num=None):
    """
    :alias_main: paddle.unstack
L
Ligoml 已提交
493 494
        :alias: paddle.unstack,paddle.tensor.unstack,paddle.tensor.manipulation.unstack
        :old_api: paddle.fluid.layers.unstack
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523

    **UnStack Layer**

    This layer unstacks input Tensor :code:`x` into several Tensors along :code:`axis`.

    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised.

    Args:
        x (Tensor): Input Tensor. It is a N-D Tensors of data types float32, float64, int32, int64.
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.

    Returns:
        list(Tensor): The unstacked Tensors list. The list elements are N-D Tensors of data types float32, float64, int32, int64.

    Raises:
        ValueError: If x.shape[axis] <= 0 or axis is not in range [-D, D).

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.ones(name='x', shape=[2, 3, 5], dtype='float32')  # create a tensor with shape=[2, 3, 5]
            y = paddle.unstack(x, axis=1)  # unstack with second axis, which results 3 tensors with shape=[2, 5]

    """
524 525 526 527 528
    if in_dygraph_mode():
        if num == None:
            num = x.shape[axis]
        if num == 0:
            return []
529
        return _C_ops.unstack(x, axis, num)
530

531 532 533 534 535
    if _non_static_mode():
        if num == None:
            num = x.shape[axis]
        if num == 0:
            return []
536
        return _legacy_C_ops.unstack(x, num, 'axis', int(axis), 'num', num)
537 538 539 540 541 542 543 544 545 546 547 548

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in range(num):
        outs.append(helper.create_variable_for_type_inference(x.dtype))

L
Ligoml 已提交
549 550 551 552 553 554
    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis, 'num': num},
    )
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
    return outs


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
    Reset the values of `input` according to the shard it beloning to.
    Every value in `input` must be a non-negative integer, and
    the parameter `index_num` represents the integer above the maximum
    value of `input`. Thus, all values in `input` must be in the range
    [0, index_num) and each value can be regarded as the offset to the beginning
    of the range. The range is further split into multiple shards. Specifically,
    we first compute the `shard_size` according to the following formula,
    which represents the number of integers each shard can hold. So for the
    i'th shard, it can hold values in the range [i*shard_size, (i+1)*shard_size).
    ::

        shard_size = (index_num + nshards - 1) // nshards

    For each value `v` in `input`, we reset it to a new value according to the
    following formula:
    ::
L
Ligoml 已提交
576

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
        v = v - shard_id * shard_size if shard_id * shard_size <= v < (shard_id+1) * shard_size else ignore_value

    That is, the value `v` is set to the new offset within the range represented by the shard `shard_id`
    if it in the range. Otherwise, we reset it to be `ignore_value`.

    Args:
        input (Tensor): Input tensor with data type int64 or int32. It's last dimension must be 1.
        index_num (int): An integer represents the integer above the maximum value of `input`.
        nshards (int): The number of shards.
        shard_id (int): The index of the current shard.
        ignore_value (int): An integer value out of sharded index range.

    Returns:
        Tensor.

    Examples:
        .. code-block:: python

            import paddle
            label = paddle.to_tensor([[16], [1]], "int64")
            shard_label = paddle.shard_index(input=label,
                                             index_num=20,
                                             nshards=2,
                                             shard_id=0)
            print(shard_label)
            # [[-1], [1]]
    """
    if in_dygraph_mode():
L
Ligoml 已提交
605 606 607
        return _C_ops.shard_index(
            input, index_num, nshards, shard_id, ignore_value
        )
608 609 610 611 612

    check_variable_and_dtype(input, 'input', ['int64', 'int32'], 'shard_index')
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
L
Ligoml 已提交
613 614 615
        raise ValueError(
            'The shard_id(%d) should be in [0, %d)' % (shard_id, nshards)
        )
616 617

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
L
Ligoml 已提交
618 619 620 621 622 623 624 625 626 627 628 629
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value,
        },
        stop_gradient=True,
    )
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
    return out


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1 (input is a 2-D Tensor):
            Input:
                X.shape = [3, 5]
                X.data = [[0, 1, 2, 0, 0],
                          [0, 3, 4, 0, 0],
                          [0, 0, 0, 0, 0]]
            Parameters:
                shape = [2, 2]
                offsets = [0, 1]
            Output:
                Out.shape = [2, 2]
                Out.data = [[1, 2],
                            [3, 4]]
        * Case 2 (input is a 3-D Tensor):
            Input:
                X.shape = [2, 3, 4]
                X.data =  [[[0, 1, 2, 3],
                            [0, 5, 6, 7],
                            [0, 0, 0, 0]],
                           [[0, 3, 4, 5],
                            [0, 6, 7, 8],
                            [0, 0, 0, 0]]]
            Parameters:
                shape = [2, 2, -1]
                offsets = [0, 0, 1]
            Output:
                Out.shape = [2, 2, 3]
                Out.data  = [[[1, 2, 3],
                              [5, 6, 7]],
                             [[3, 4, 5],
                              [6, 7, 8]]]

    Parameters:
        x (Tensor): 1-D to 6-D Tensor, the data type is float32, float64, int32 or int64.
673
        shape (list|tuple|Tensor, optional): The output shape is specified
674 675 676 677 678 679 680 681 682 683 684
            by `shape`. Its data type is int32. If a list/tuple, it's length must be
            the same as the dimension size of `x`. If a Tensor, it should be a 1-D Tensor.
            When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the shape may
            be changed each iteration.
        offsets (list|tuple|Variable, optional): Specifies the cropping
            offsets at each dimension. Its data type is int32. If a list/tuple, it's length
            must be the same as the dimension size of `x`. If a Tensor, it should be a 1-D
            Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the offsets may be changed
            each iteration. Default: None, the offsets are 0 at each dimension.
685
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718

    Returns:
        Tensor: The cropped Tensor has same data type with `x`.

    Examples:

        .. code-block:: python

            import paddle
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
            # x.shape = [3, 3]
            # x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

            # shape can be a 1-D Tensor or list or tuple.
            shape = paddle.to_tensor([2, 2], dtype='int32')
            # shape = [2, 2]
            # shape = (2, 2)
            out = paddle.crop(x, shape)
            # out.shape = [2, 2]
            # out = [[1,2], [4,5]]

            # offsets can be a 1-D Tensor or list or tuple.
            offsets = paddle.to_tensor([0, 1], dtype='int32')
            # offsets = [1, 0]
            # offsets = (1, 1)
            out = paddle.crop(x, shape, offsets)
            # out.shape = [2, 2]
            # if offsets = [0, 0], out = [[1,2], [4,5]]
            # if offsets = [0, 1], out = [[2,3], [5,6]]
            # if offsets = [1, 0], out = [[4,5], [7,8]]
            # if offsets = [1, 1], out = [[5,6], [8,9]]

    """
719

720
    helper = LayerHelper('crop_tensor', **locals())
L
Ligoml 已提交
721 722 723
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'crop_tensor'
    )
724
    check_type(shape, 'shape', (list, tuple, Variable), 'crop_tensor')
L
Ligoml 已提交
725 726 727
    check_type(
        offsets, 'offsets', (list, tuple, Variable, type(None)), 'crop_tensor'
    )
728 729 730 731

    if offsets is None:
        offsets = [0] * len(x.shape)

732
    if in_dygraph_mode():
733
        return _C_ops.crop_tensor(x, shape, offsets)
734

735 736 737 738 739 740 741 742
    out = helper.create_variable_for_type_inference(x.dtype)
    ipts = {'X': x}
    attrs = {}

    def _attr_shape_check(shape_val):
        if not isinstance(shape_val, int):
            raise TypeError(
                "Attr(shape)'s dtype of Op(crop_tensor) should be int32, but received: %s."
L
Ligoml 已提交
743 744
                % type(shape_val)
            )
745 746 747
        if shape_val == 0:
            raise ValueError(
                "Attr(shape) of Op(crop_tensor) should not be zero, but received: %s."
L
Ligoml 已提交
748 749
                % str(shape_val)
            )
750 751 752
        if shape_val < -1:
            raise ValueError(
                "When the element in Attr(shape) of Op(crop_tensor) is negative, only -1 is supported, but received: %s."
L
Ligoml 已提交
753 754
                % str(shape_val)
            )
755 756 757 758 759

    def _attr_offsets_check(offset_val):
        if not isinstance(offset_val, int):
            raise TypeError(
                "Attr(offsets)'s dtype of Op(crop_tensor) should be int32, but received: %s."
L
Ligoml 已提交
760 761
                % type(offset_val)
            )
762 763 764
        if offset_val < 0:
            raise ValueError(
                "Attr(offsets) of Op(crop_tensor) should be greater or equal to zero, but received: %s."
L
Ligoml 已提交
765 766
                % str(offset_val)
            )
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806

    if isinstance(offsets, Variable):
        offsets.stop_gradient = True
        ipts['Offsets'] = offsets
        attrs['offsets'] = [-1] * len(x.shape)
    elif utils._contain_var(offsets):
        new_offsets_tensor = []
        offsets_attr = []
        for dim in offsets:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_offsets_tensor.append(dim)
                offsets_attr.append(-1)
            else:
                _attr_offsets_check(dim)
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_offsets_tensor.append(temp_out)
                offsets_attr.append(dim)
        ipts['OffsetsTensor'] = new_offsets_tensor
        attrs['offsets'] = offsets_attr
    else:
        for offset in offsets:
            _attr_offsets_check(offset)
        attrs['offsets'] = offsets

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        ipts['Shape'] = shape
    elif utils._contain_var(shape):
        new_shape_tensor = []
        shape_attr = []
        for dim_size in shape:
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                new_shape_tensor.append(dim_size)
                shape_attr.append(0)
            else:
                _attr_shape_check(dim_size)
                temp_out = helper.create_variable_for_type_inference('int32')
L
Ligoml 已提交
807 808 809
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out
                )
810 811 812 813 814 815 816 817 818
                new_shape_tensor.append(temp_out)
                shape_attr.append(dim_size)
        ipts['ShapeTensor'] = new_shape_tensor
        attrs['shape'] = shape_attr
    else:
        for dim_size in shape:
            _attr_shape_check(dim_size)
        attrs['shape'] = shape

L
Ligoml 已提交
819 820 821 822 823 824
    helper.append_op(
        type='crop_tensor',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs,
    )
825 826 827
    return out


828 829 830 831 832 833 834 835 836
@dygraph_only
def fill_(x, value):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with value inplace.

    Args:
837 838
        x (Tensor): ``x`` is the Tensor we want to filled data inplace
        value (Scale): ``value`` is the value to be filled in x
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855

    Returns:
        x(Tensor): Tensor x filled with value inplace

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.fill_(0)
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
    if not isinstance(value, (float, int)):
        raise TypeError(
L
Ligoml 已提交
856 857 858
            "The type of 'value'  must be int or float, but received %s."
            % (type(value))
        )
859
    if in_dygraph_mode():
860
        return _C_ops.fill_(x, value)
861
    else:
L
Ligoml 已提交
862 863 864
        return _legacy_C_ops.fill_any_(
            x, "value_float", float(value), "value_int", int(value)
        )
865 866 867 868 869 870 871 872 873 874 875


@dygraph_only
def zero_(x):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with zero inplace.

    Args:
876
        x (Tensor): ``x`` is the Tensor we want to filled with zero inplace
877 878

    Returns:
879
        x (Tensor): Tensor x filled with zero inplace
880 881 882 883 884 885 886 887 888 889 890 891

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.zero_()
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
892
    if in_dygraph_mode():
L
Ligoml 已提交
893
        return _C_ops.fill_(x, 0.0)
894
    else:
L
Ligoml 已提交
895 896 897
        return _legacy_C_ops.fill_any_(
            x, "value_float", 0.0, "value_int", int(0)
        )
898 899


900 901 902
@dygraph_only
def fill_diagonal_(x, value, offset=0, wrap=False, name=None):
    """
903 904
    Note:
        This API is ONLY available in Dygraph mode.
L
Ligoml 已提交
905

906
    This function fill the value into the x Tensor's diagonal inplace.
L
Ligoml 已提交
907

908 909 910 911 912 913
    Args:
        x(Tensor): ``x`` is the original Tensor
        value(Scale): ``value`` is the value to filled in x
        offset(int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        wrap(bool,optional): the diagonal 'wrapped' after N columns for tall matrices.
        name(str,optional): Name for the operation (optional, default is None)
L
Ligoml 已提交
914

915 916
    Returns:
        Tensor: Tensor with diagonal filled with value.
917

918 919 920 921 922 923 924
    Examples:
        .. code-block:: python
            import paddle
            x = paddle.ones((4, 3)) * 2
            x.fill_diagonal_(1.0)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]
    """
Z
zhiboniu 已提交
925

926 927 928
    helper = LayerHelper("fill_diagonal_", **locals())
    check_type(x, 'X', (Variable), 'fill_diagonal_')
    dtype = helper.input_dtype('x')
L
Ligoml 已提交
929 930 931 932 933 934
    check_dtype(
        dtype,
        'X',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'fill_diagonal_',
    )
935 936 937 938 939
    check_type(value, 'value', (bool, int, float), 'fill_diagonal_')
    check_type(wrap, 'wrap', (bool), 'fill_diagonal_')

    inshape = x.shape
    inshapeset = set(inshape)
L
Ligoml 已提交
940
    assert len(inshape) >= 2, 'Tensor dims should >= 2 in fill_diagonal_ API'
941
    if len(inshape) > 2:
L
Ligoml 已提交
942 943 944
        assert (
            len(inshapeset) == 1
        ), 'Tensor dims should be equal while input dims > 2 in fill_diagonal_ API'
Z
zhiboniu 已提交
945 946
    if in_dygraph_mode():
        if len(inshape) == 2:
947 948
            return _C_ops.fill_diagonal_(x, value, offset, wrap)
        return _C_ops.fill_diagonal_(x, value, offset, True)
Z
zhiboniu 已提交
949

950
    if len(inshape) == 2:
L
Ligoml 已提交
951 952 953 954 955 956
        return _legacy_C_ops.fill_diagonal_(
            x, 'value', value, 'offset', offset, 'wrap', wrap
        )
    return _legacy_C_ops.fill_diagonal_(
        x, 'value', value, 'offset', offset, 'wrap', True
    )
957 958


959 960
def _fill_diagonal_tensor_impl(x, y, offset=0, dim1=0, dim2=1, inplace=False):
    inshape = x.shape
L
Ligoml 已提交
961 962 963 964 965 966 967
    assert dim1 < len(inshape) and dim1 >= -len(
        inshape
    ), 'dim1 should between [-rank,rank) in fill_diagonal_tensor_'
    assert dim2 < len(inshape) and dim2 >= -len(
        inshape
    ), 'dim2 should between [-rank,rank) in fill_diagonal_tensor_'
    assert len(inshape) >= 2, 'Tensor dims should >= 2 in fill_diagonal_tensor_'
968 969 970 971 972 973 974
    dim1 %= len(inshape)
    dim2 %= len(inshape)

    predshape = []
    for i in range(len(inshape)):
        if i != dim1 and i != dim2:
            predshape.append(inshape[i])
L
Ligoml 已提交
975 976 977 978
    diaglen = min(
        min(inshape[dim1], inshape[dim1] + offset),
        min(inshape[dim2], inshape[dim2] - offset),
    )
979
    predshape.append(diaglen)
980
    assert tuple(predshape) == tuple(
L
Ligoml 已提交
981 982
        y.shape
    ), "the y shape should be {}".format(predshape)
983 984 985 986
    if len(y.shape) == 1:
        y = y.reshape([1, -1])

    if inplace:
Z
zhiboniu 已提交
987
        if in_dygraph_mode():
988
            return _C_ops.fill_diagonal_tensor_(x, y, offset, dim1, dim2)
Z
zhiboniu 已提交
989
        else:
L
Ligoml 已提交
990 991 992
            return _legacy_C_ops.fill_diagonal_tensor_(
                x, y, 'offset', offset, 'dim1', dim1, 'dim2', dim2
            )
Z
zhiboniu 已提交
993
    if in_dygraph_mode():
994
        return _C_ops.fill_diagonal_tensor(x, y, offset, dim1, dim2)
Z
zhiboniu 已提交
995
    else:
L
Ligoml 已提交
996 997 998
        return _legacy_C_ops.fill_diagonal_tensor(
            x, y, 'offset', offset, 'dim1', dim1, 'dim2', dim2
        )
999 1000 1001 1002


def fill_diagonal_tensor_(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
1003 1004
    Note:
        This API is ONLY available in Dygraph mode.
1005 1006 1007 1008

    This function fill the source Tensor y into the x Tensor's diagonal inplace.

    Args:
1009 1010 1011 1012 1013 1014
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029

    Returns:
        Tensor: Tensor with diagonal filled with y.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            x.fill_diagonal_tensor_(y)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
L
Ligoml 已提交
1030 1031 1032
    return _fill_diagonal_tensor_impl(
        x, y, offset=offset, dim1=dim1, dim2=dim2, inplace=True
    )
1033 1034 1035 1036 1037 1038 1039


def fill_diagonal_tensor(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
    This function fill the source Tensor y into the x Tensor's diagonal.

    Args:
1040 1041 1042 1043 1044 1045
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060

    Returns:
        Tensor: Tensor with diagonal filled with y.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            nx = x.fill_diagonal_tensor(y)
            print(nx.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
L
Ligoml 已提交
1061 1062 1063
    return _fill_diagonal_tensor_impl(
        x, y, offset=offset, dim1=dim1, dim2=dim2, inplace=False
    )
1064 1065


Z
zhiboniu 已提交
1066 1067 1068
@dygraph_only
def tolist(x):
    """
1069 1070
    Note:
        This API is ONLY available in Dygraph mode.
Z
zhiboniu 已提交
1071 1072 1073 1074

    This function translate the paddle.Tensor to python list.

    Args:
1075
        x (Tensor): ``x`` is the Tensor we want to translate to list.
Z
zhiboniu 已提交
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096

    Returns:
        list: A list that contain the same value of current Tensor.


    Examples:
        .. code-block:: python

            import paddle

            t = paddle.to_tensor([0,1,2,3,4])
            expectlist = t.tolist()
            print(expectlist)   #[0, 1, 2, 3, 4]

            expectlist = paddle.tolist(t)
            print(expectlist)   #[0, 1, 2, 3, 4]

    """
    return x.numpy().tolist()


1097 1098 1099
def concat(x, axis=0, name=None):
    """

1100
    Concatenates the input along the axis.
1101 1102

    Args:
1103
        x (list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16,
1104
            float32, float64, int32, int64, int8, uint8. All the Tensors in ``x`` must have same data type.
1105
        axis (int|Tensor, optional): Specify the axis to operate on the input Tensors.
L
Ligoml 已提交
1106
            It's a scalar with data type int or a Tensor with shape [1] and data type int32
1107 1108
            or int64. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``,
            it works the same way as ``axis+R``. Default is 0.
1109
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1110 1111

    Returns:
1112
        Tensor: A Tensor with the same data type as ``x``.
1113 1114 1115

    Examples:
        .. code-block:: python
L
Ligoml 已提交
1116

1117
            import paddle
L
Ligoml 已提交
1118

1119 1120 1121 1122 1123 1124
            x1 = paddle.to_tensor([[1, 2, 3],
                                   [4, 5, 6]])
            x2 = paddle.to_tensor([[11, 12, 13],
                                   [14, 15, 16]])
            x3 = paddle.to_tensor([[21, 22],
                                   [23, 24]])
1125 1126 1127
            zero = paddle.full(shape=[1], dtype='int32', fill_value=0)
            # When the axis is negative, the real axis is (axis + Rank(x))
            # As follow, axis is -1, Rank(x) is 2, the real axis is 1
1128 1129 1130
            out1 = paddle.concat(x=[x1, x2, x3], axis=-1)
            out2 = paddle.concat(x=[x1, x2], axis=0)
            out3 = paddle.concat(x=[x1, x2], axis=zero)
1131 1132 1133 1134 1135 1136 1137 1138 1139
            # out1
            # [[ 1  2  3 11 12 13 21 22]
            #  [ 4  5  6 14 15 16 23 24]]
            # out2 out3
            # [[ 1  2  3]
            #  [ 4  5  6]
            #  [11 12 13]
            #  [14 15 16]]
    """
1140 1141 1142 1143 1144 1145 1146
    input = x
    if in_dygraph_mode():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
1147
        return _C_ops.concat(input, axis)
1148 1149 1150 1151 1152 1153 1154 1155

    if _in_legacy_dygraph():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
        out = _varbase_creator()
1156
        _legacy_C_ops.concat(input, out, 'axis', axis)
1157 1158 1159 1160 1161
        return out

    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
L
Ligoml 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
            check_variable_and_dtype(
                x,
                'input[' + str(id) + ']',
                [
                    'bool',
                    'float16',
                    'float32',
                    'float64',
                    'int32',
                    'int64',
                    'int8',
                    'unit8',
                ],
                'concat',
            )
1177 1178
            if x.dtype != input[0].dtype:
                raise TypeError(
1179 1180
                    "All the Tensors in the input must have the same data type."
                )
1181 1182 1183 1184 1185 1186
    else:
        input = [input]
    check_type(axis, 'axis', (int, Variable), 'concat')

    if isinstance(axis, Variable):
        check_dtype(
L
Ligoml 已提交
1187 1188 1189 1190 1191
            axis.dtype,
            'axis',
            ['int32', 'int64'],
            'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor",
1192
        )
1193 1194 1195 1196 1197 1198 1199 1200 1201

    helper = LayerHelper('concat', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

L
Ligoml 已提交
1202 1203 1204 1205
        assert len(input) == 1, (
            "If the elements of 'input' in concat are Variable(LoDTensorArray), "
            "number of the elements must be 1, but received %s." % len(input)
        )
1206
        out_index = helper.create_variable_for_type_inference(dtype="int32")
L
Ligoml 已提交
1207 1208 1209 1210 1211 1212
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out], 'OutIndex': [out_index]},
            attrs={'axis': axis, 'use_stack': False},
        )
1213 1214 1215 1216 1217
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
1218 1219 1220
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis
1221

L
Ligoml 已提交
1222 1223 1224
        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs
        )
1225
    return out
1226 1227


1228 1229 1230 1231 1232 1233 1234 1235
def broadcast_tensors(input, name=None):
    """
    This OP broadcast a list of tensors following broadcast semantics

    .. note::
        If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.

    Args:
1236
        input (list|tuple): ``input`` is a Tensor list or Tensor tuple which is with data type bool,
1237 1238
            float16, float32, float64, int32, int64. All the Tensors in ``input`` must have same data type.
            Currently we only support tensors with rank no greater than 5.
1239
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255

    Returns:
        list(Tensor): The list of broadcasted tensors following the same order as ``input``.

    Examples:
        .. code-block:: python

            import paddle
            x1 = paddle.rand([1, 2, 3, 4]).astype('float32')
            x2 = paddle.rand([1, 2, 1, 4]).astype('float32')
            x3 = paddle.rand([1, 1, 3, 1]).astype('float32')
            out1, out2, out3 = paddle.broadcast_tensors(input=[x1, x2, x3])
            # out1, out2, out3: tensors broadcasted from x1, x2, x3 with shape [1,2,3,4]
    """

    num_inputs = len(input)
1256
    if paddle.framework.in_dygraph_mode():
1257
        return _C_ops.broadcast_tensors(input)
1258
    if paddle.framework._non_static_mode():
1259
        return _legacy_C_ops.broadcast_tensors(input, num_inputs)
1260 1261 1262 1263

    check_type(input, 'input', (list, tuple), 'broadcast_tensors')
    if num_inputs < 1:
        raise TypeError(
L
Ligoml 已提交
1264 1265
            "At least 1 tensor is needed to perform broadcast_tensors"
        )
1266 1267 1268 1269

    # Check input types
    for id, x in enumerate(input):
        check_variable_and_dtype(
L
Ligoml 已提交
1270 1271
            x,
            'input[' + str(id) + ']',
1272
            ['bool', 'float32', 'float64', 'int32', 'int64'],
L
Ligoml 已提交
1273 1274
            'broadcast_tensors',
        )
1275 1276
        if x.dtype != input[0].dtype:
            raise TypeError(
L
Ligoml 已提交
1277 1278
                "All the Tensors in the input must have the same data type."
            )
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295

    # Check bcast semantics
    output_shape_r_last_tensor_index = []
    output_shape_r = []

    # Use while loop due to weird behaviour of "range()"
    j = 0
    while j < len(input):
        tensor = input[j]
        shape = list(reversed(tensor.shape))

        i = 0
        while i < len(shape):
            if len(output_shape_r) <= i:
                output_shape_r.append(shape[i])
                output_shape_r_last_tensor_index.append(j)
            else:
L
Ligoml 已提交
1296 1297 1298 1299 1300
                invalid = (
                    output_shape_r[i] != shape[i]
                    and output_shape_r[i] != 1
                    and shape[i] != 1
                )
1301 1302 1303 1304
                if invalid:
                    last_index = output_shape_r_last_tensor_index[i]
                    raise TypeError(
                        "Input tensors to broadcast_tensors does not follow bcast semantics"
1305
                        "Tensor {last_index} conflicts with Tensor {j} in reversed dimension {i}"
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
                    )
                if output_shape_r[i] <= shape[i]:
                    output_shape_r[i] = shape[i]
                    output_shape_r_last_tensor_index[i] = j
            i += 1  # while i < len(shape)
        j += 1  # while j < len(input)

    helper = LayerHelper('broadcast_tensors', **locals())
    i = 0
    out = []
    while i < num_inputs:
        out.append(
1318
            helper.create_variable_for_type_inference(
L
Ligoml 已提交
1319 1320 1321
                dtype=helper.input_dtype()
            )
        )
1322 1323 1324
        i += 1

    inputs = {'X': input}
L
Ligoml 已提交
1325 1326 1327
    helper.append_op(
        type='broadcast_tensors', inputs=inputs, outputs={'Out': out}, attrs={}
    )
1328 1329 1330 1331

    return out


Y
yaoxuefeng 已提交
1332
def flip(x, axis, name=None):
W
Wilber 已提交
1333
    """
Y
yaoxuefeng 已提交
1334
    Reverse the order of a n-D tensor along given axis in axis.
W
Wilber 已提交
1335 1336

    Args:
Y
yaoxuefeng 已提交
1337
        x (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor x
W
Wilber 已提交
1338
            should be float32, float64, int32, int64, bool.
R
Roc 已提交
1339
        axis (list|tuple|int): The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
1340
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
Wilber 已提交
1341 1342

    Returns:
Y
yaoxuefeng 已提交
1343
        Tensor: Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
W
Wilber 已提交
1344 1345 1346 1347 1348 1349

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np
Y
yaoxuefeng 已提交
1350 1351 1352 1353

          image_shape=(3, 2, 2)
          x = np.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape)
          x = x.astype('float32')
1354
          img = paddle.to_tensor(x)
R
Roc 已提交
1355 1356
          tmp = paddle.flip(img, [0,1])
          print(tmp) # [[[10,11],[8, 9]], [[6, 7],[4, 5]], [[2, 3],[0, 1]]]
Y
yaoxuefeng 已提交
1357

R
Roc 已提交
1358 1359
          out = paddle.flip(tmp,-1)
          print(out) # [[[11,10],[9, 8]], [[7, 6],[5, 4]], [[3, 2],[1, 0]]]
W
Wilber 已提交
1360
    """
R
Roc 已提交
1361 1362
    if isinstance(axis, int):
        axis = [axis]
H
hong 已提交
1363 1364

    if in_dygraph_mode():
1365
        return _C_ops.flip(x, axis)
H
hong 已提交
1366

Z
zhiboniu 已提交
1367
    if paddle.in_dynamic_mode():
1368
        return _legacy_C_ops.flip(x, "axis", axis)
R
Roc 已提交
1369

W
Wilber 已提交
1370
    helper = LayerHelper("flip", **locals())
Y
yaoxuefeng 已提交
1371 1372
    check_type(x, 'X', (Variable), 'flip')
    dtype = helper.input_dtype('x')
L
Ligoml 已提交
1373 1374 1375 1376 1377 1378
    check_dtype(
        dtype,
        'X',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        'flip',
    )
Y
yaoxuefeng 已提交
1379
    check_type(axis, 'axis', (list, tuple), 'flip')
W
Wilber 已提交
1380 1381 1382 1383 1384
    if name is None:
        out = helper.create_variable_for_type_inference(dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

L
Ligoml 已提交
1385 1386 1387
    helper.append_op(
        type="flip", inputs={"X": x}, outputs={"Out": out}, attrs={"axis": axis}
    )
W
Wilber 已提交
1388
    return out
1389 1390


Z
zmxdream 已提交
1391 1392
def rot90(x, k=1, axes=[0, 1], name=None):
    """
1393
    Rotate a n-D tensor by 90 degrees. The rotation direction and times are specified by axes and the absolute value of k. Rotation direction is from axes[0] towards axes[1] if k > 0, and from axes[1] towards axes[0] for k < 0.
Z
zmxdream 已提交
1394 1395 1396

    Args:
        x (Tensor): The input Tensor(or LoDTensor). The data type of the input Tensor x
Z
zmxdream 已提交
1397
            should be float16, float32, float64, int32, int64, bool. float16 is only supported on gpu.
Z
zmxdream 已提交
1398 1399
        k (int, optional): Direction and number of times to rotate, default value: 1.
        axes (list|tuple, optional): Axes to rotate, dimension must be 2. default value: [0, 1].
Z
zmxdream 已提交
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: Tensor or LoDTensor calculated by rot90 layer. The data type is same with input x.

    Examples:
        .. code-block:: python

          import paddle

          data = paddle.arange(4)
          data = paddle.reshape(data, (2, 2))
L
Ligoml 已提交
1413
          print(data)
Z
zmxdream 已提交
1414 1415 1416
          #[[0, 1],
          # [2, 3]]

Z
zmxdream 已提交
1417
          y = paddle.rot90(data, 1, [0, 1])
L
Ligoml 已提交
1418
          print(y)
Z
zmxdream 已提交
1419 1420 1421
          #[[1, 3],
          # [0, 2]]

Z
zmxdream 已提交
1422
          y= paddle.rot90(data, -1, [0, 1])
L
Ligoml 已提交
1423
          print(y)
Z
zmxdream 已提交
1424 1425 1426
          #[[2, 0],
          # [3, 1]]

Z
zmxdream 已提交
1427 1428
          data2 = paddle.arange(8)
          data2 = paddle.reshape(data2, (2,2,2))
L
Ligoml 已提交
1429
          print(data2)
Z
zmxdream 已提交
1430 1431 1432 1433 1434
          #[[[0, 1],
          #  [2, 3]],
          # [[4, 5],
          #  [6, 7]]]

Z
zmxdream 已提交
1435
          y = paddle.rot90(data2, 1, [1, 2])
Z
zmxdream 已提交
1436 1437 1438 1439 1440
          print(y)
          #[[[1, 3],
          #  [0, 2]],
          # [[5, 7],
          #  [4, 6]]]
Z
zmxdream 已提交
1441 1442 1443 1444 1445
    """

    helper = LayerHelper("rot90", **locals())
    check_type(x, 'X', (Variable), 'rot90')
    dtype = helper.input_dtype('x')
L
Ligoml 已提交
1446 1447 1448 1449 1450 1451
    check_dtype(
        dtype,
        'X',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        'rot90',
    )
Z
zmxdream 已提交
1452 1453 1454 1455 1456
    check_type(axes, 'axes', (list, tuple), 'rot90')

    input_total_dims = len(x.shape)
    total_rot_dims = len(axes)
    if total_rot_dims != 2:
1457 1458
        raise ValueError(
            "expected total rotation axes == 2, but got axes = {}".format(
L
Ligoml 已提交
1459 1460 1461
                total_rot_dims
            )
        )
Z
zmxdream 已提交
1462
    if input_total_dims < 2:
1463 1464
        raise ValueError(
            "expected total dims >= 2, but got total dims = {}".format(
L
Ligoml 已提交
1465 1466 1467
                input_total_dims
            )
        )
Z
zmxdream 已提交
1468 1469 1470

    if not (axes[0] != axes[1] and abs(axes[0] - axes[1]) != input_total_dims):
        raise ValueError(
L
Ligoml 已提交
1471 1472 1473 1474
            "expected rotation axes to be different, but got axis0 = {}, and axis1 = {}".format(
                axes[0], axes[1]
            )
        )
Z
zmxdream 已提交
1475 1476

    if not (axes[0] < input_total_dims and axes[0] >= -input_total_dims):
L
Ligoml 已提交
1477 1478 1479
        raise ValueError(
            "Rotation axis0 out of range, axis0 = {}".format(axes[0])
        )
Z
zmxdream 已提交
1480
    if not (axes[1] < input_total_dims and axes[1] >= -input_total_dims):
L
Ligoml 已提交
1481 1482 1483
        raise ValueError(
            "Rotation axis1 out of range, axis1 = {}".format(axes[1])
        )
Z
zmxdream 已提交
1484

Z
zmxdream 已提交
1485
    k %= 4
Z
zmxdream 已提交
1486 1487 1488 1489 1490 1491
    if k == 0:
        return x
    if k == 2:
        return flip(flip(x, axes[0]), axes[1])

    axes_list = list(range(0, input_total_dims))
L
Ligoml 已提交
1492 1493 1494 1495
    (axes_list[axes[0]], axes_list[axes[1]]) = (
        axes_list[axes[1]],
        axes_list[axes[0]],
    )
Z
zmxdream 已提交
1496 1497 1498 1499 1500 1501 1502
    if k == 1:
        return transpose(flip(x, axes[1]), axes_list)
    else:
        # k == 3
        return flip(transpose(x, axes_list), axes[1])


1503
def flatten(x, start_axis=0, stop_axis=-1, name=None):
1504
    r"""
1505 1506
    Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis.

1507 1508 1509
    Note:
        The output Tensor will share data with origin Tensor and doesn't have a Tensor copy in ``dygraph`` mode. 
        If you want to use the Tensor copy version, please use `Tensor.clone` like ``flatten_clone_x = x.flatten().clone()``.
1510

1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
    For Example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 1
            end_axis = 2

          We get:
            Out.shape = (3, 1000 * 100, 2)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 0
            stop_axis = -1

          We get:
            Out.shape = (3 * 100 * 100 * 4)

    Args:
Y
yaoxuefeng 已提交
1540
        x (Tensor): A tensor of number of dimentions >= axis. A tensor with data type float32,
1541
                      float64, int8, int32, int64, uint8.
1542 1543
        start_axis (int): the start axis to flatten
        stop_axis (int): the stop axis to flatten
1544
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1545 1546

    Returns:
Y
yaoxuefeng 已提交
1547
        Tensor: A tensor with the contents of the input tensor, with input \
1548 1549 1550 1551
                  axes flattened by indicated start axis and end axis. \
                  A Tensor with data type same as input x.

    Raises:
Y
yaoxuefeng 已提交
1552
        ValueError: If x is not a Tensor.
1553 1554 1555 1556 1557 1558 1559 1560 1561
        ValueError: If start_axis or stop_axis is illegal.

    Examples:

        .. code-block:: python

            import paddle

            image_shape=(2, 3, 4, 4)
1562

Y
yaoxuefeng 已提交
1563 1564
            x = paddle.arange(end=image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3])
            img = paddle.reshape(x, image_shape)
1565

1566 1567
            out = paddle.flatten(img, start_axis=1, stop_axis=2)
            # out shape is [2, 12, 4]
1568 1569 1570 1571

            # out shares data with img in dygraph mode
            img[0, 0, 0, 0] = -1
            print(out[0, 0, 0]) # [-1]
1572 1573
    """
    if not (isinstance(x, Variable)):
Y
yaoxuefeng 已提交
1574
        raise ValueError("The input x should be a Tensor")
1575

Z
zhiboniu 已提交
1576
    if not paddle.in_dynamic_mode():
1577
        check_variable_and_dtype(
L
Ligoml 已提交
1578 1579
            x,
            'x',
1580
            ['float32', 'float64', 'int8', 'int16', 'int32', 'int64', 'uint8'],
L
Ligoml 已提交
1581 1582
            'flatten',
        )
1583 1584

    x_dim = len(x.shape)
L
Ligoml 已提交
1585 1586 1587 1588 1589
    if (
        not (isinstance(start_axis, int))
        or (start_axis > x_dim - 1)
        or start_axis < -x_dim
    ):
1590
        raise ValueError(
L
Ligoml 已提交
1591 1592 1593 1594 1595 1596 1597
            "The start_axis should be a int, and in range [-rank(x), rank(x))"
        )
    if (
        not (isinstance(stop_axis, int))
        or (stop_axis > x_dim - 1)
        or stop_axis < -x_dim
    ):
1598
        raise ValueError(
L
Ligoml 已提交
1599 1600
            "The stop_axis should be a int, and in range [-rank(x), rank(x))"
        )
1601 1602 1603 1604 1605 1606 1607
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

1608
    if in_dygraph_mode():
1609
        return _C_ops.flatten(x, start_axis, stop_axis)
1610 1611

    if _in_legacy_dygraph():
1612
        dy_out, _ = _legacy_C_ops.flatten_contiguous_range(
L
Ligoml 已提交
1613 1614
            x, 'start_axis', start_axis, 'stop_axis', stop_axis
        )
1615 1616
        return dy_out

1617
    helper = LayerHelper('flatten', **locals())
1618 1619
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
L
Ligoml 已提交
1620 1621 1622 1623 1624 1625
    helper.append_op(
        type='flatten_contiguous_range',
        inputs={"X": x},
        outputs={'Out': out, 'XShape': x_shape},
        attrs={"start_axis": start_axis, "stop_axis": stop_axis},
    )
1626 1627 1628
    return out


1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
@inplace_apis_in_dygraph_only
def flatten_(x, start_axis=0, stop_axis=-1, name=None):
    """
    Inplace version of ``flatten`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_flatten`.
    """
    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Tensor")

    x_dim = len(x.shape)
L
Ligoml 已提交
1639 1640 1641 1642 1643
    if (
        not (isinstance(start_axis, int))
        or (start_axis > x_dim - 1)
        or start_axis < -x_dim
    ):
1644
        raise ValueError(
L
Ligoml 已提交
1645 1646 1647 1648 1649 1650 1651
            "The start_axis should be a int, and in range [-rank(x), rank(x))"
        )
    if (
        not (isinstance(stop_axis, int))
        or (stop_axis > x_dim - 1)
        or stop_axis < -x_dim
    ):
1652
        raise ValueError(
L
Ligoml 已提交
1653 1654
            "The stop_axis should be a int, and in range [-rank(x), rank(x))"
        )
1655 1656 1657 1658 1659 1660 1661
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

1662
    if in_dygraph_mode():
1663
        return _C_ops.flatten_(x, start_axis, stop_axis)
1664 1665

    if _in_legacy_dygraph():
1666
        dy_out, _ = _legacy_C_ops.flatten_contiguous_range_(
L
Ligoml 已提交
1667 1668
            x, 'start_axis', start_axis, 'stop_axis', stop_axis
        )
1669
        return dy_out
1670 1671


Y
yaoxuefeng 已提交
1672
def roll(x, shifts, axis=None, name=None):
1673
    """
L
Ligoml 已提交
1674 1675 1676
    Roll the `x` tensor along the given axis(axes). With specific 'shifts', Elements that
    roll beyond the last position are re-introduced at the first according to 'shifts'.
    If a axis is not specified,
1677 1678 1679
    the tensor will be flattened before rolling and then restored to the original shape.

    Args:
Y
yaoxuefeng 已提交
1680
        x (Tensor): The x tensor as input.
1681
        shifts (int|list|tuple): The number of places by which the elements
Y
yaoxuefeng 已提交
1682
                           of the `x` tensor are shifted.
Y
Yuang Liu 已提交
1683
        axis (int|list|tuple, optional): axis(axes) along which to roll. Default: None
C
Chen Long 已提交
1684 1685 1686
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                For more information, please refer to :ref:`api_guide_Name` .

1687 1688

    Returns:
Y
yaoxuefeng 已提交
1689
        Tensor: A Tensor with same data type as `x`.
1690 1691 1692

    Examples:
        .. code-block:: python
L
Ligoml 已提交
1693

1694 1695
            import paddle

1696 1697 1698
            x = paddle.to_tensor([[1.0, 2.0, 3.0],
                                  [4.0, 5.0, 6.0],
                                  [7.0, 8.0, 9.0]])
Y
yaoxuefeng 已提交
1699
            out_z1 = paddle.roll(x, shifts=1)
Y
yaoxuefeng 已提交
1700
            print(out_z1)
Y
yaoxuefeng 已提交
1701 1702 1703 1704
            #[[9. 1. 2.]
            # [3. 4. 5.]
            # [6. 7. 8.]]
            out_z2 = paddle.roll(x, shifts=1, axis=0)
Y
yaoxuefeng 已提交
1705
            print(out_z2)
Y
yaoxuefeng 已提交
1706 1707 1708
            #[[7. 8. 9.]
            # [1. 2. 3.]
            # [4. 5. 6.]]
Y
Yuang Liu 已提交
1709 1710 1711 1712 1713
            out_z3 = paddle.roll(x, shifts=1, axis=1)
            print(out_z3)
            #[[3. 1. 2.]
            # [6. 4. 5.]
            # [9. 7. 8.]]
1714
    """
Y
yaoxuefeng 已提交
1715
    origin_shape = x.shape
1716 1717
    if type(shifts) == int:
        shifts = [shifts]
Y
yaoxuefeng 已提交
1718 1719 1720 1721
    if type(axis) == int:
        axis = [axis]

    len_origin_shape = len(origin_shape)
1722
    if axis is not None:
Y
yaoxuefeng 已提交
1723 1724 1725
        for i in range(len(axis)):
            if axis[i] >= len_origin_shape or axis[i] < -len_origin_shape:
                raise ValueError(
L
Ligoml 已提交
1726 1727 1728 1729
                    "axis is out of range, it should be in range [{}, {}), but received {}".format(
                        -len_origin_shape, len_origin_shape, axis
                    )
                )
S
sunli 已提交
1730 1731 1732
    else:
        axis = []

F
From00 已提交
1733
    if in_dygraph_mode():
1734
        return _C_ops.roll(x, shifts, axis)
F
From00 已提交
1735 1736

    if _in_legacy_dygraph():
1737
        return _legacy_C_ops.roll(x, 'axis', axis, 'shifts', shifts)
1738

1739 1740
    helper = LayerHelper("roll", **locals())
    check_type(axis, 'axis', (list, tuple), 'roll')
1741

Y
yaoxuefeng 已提交
1742
    out = helper.create_variable_for_type_inference(x.dtype)
1743

1744
    if isinstance(shifts, Variable):
L
Ligoml 已提交
1745 1746 1747 1748 1749 1750
        helper.append_op(
            type='roll',
            inputs={'X': x, "ShiftsTensor": shifts},
            outputs={'Out': out},
            attrs={'axis': axis},
        )
1751 1752
    else:
        check_type(shifts, 'shifts', (list, tuple), 'roll')
L
Ligoml 已提交
1753 1754 1755 1756 1757 1758
        helper.append_op(
            type='roll',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'axis': axis, 'shifts': shifts},
        )
1759
    return out
1760 1761


L
Leo Chen 已提交
1762
def stack(x, axis=0, name=None):
1763
    """
L
Ligoml 已提交
1764
    Stacks all the input tensors ``x`` along ``axis`` dimemsion.
L
Leo Chen 已提交
1765
    All tensors must be of the same shape and same dtype.
L
Ligoml 已提交
1766 1767 1768

    For example, given N tensors of shape [A, B], if ``axis == 0``, the shape of stacked
    tensor is [N, A, B]; if ``axis == 1``, the shape of stacked
L
Leo Chen 已提交
1769
    tensor is [A, N, B], etc.
L
Ligoml 已提交
1770

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805

    .. code-block:: text

        Case 1:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
            Out.dims = [3, 1, 2]
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]


        Case 2:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]


          Attrs:
L
Leo Chen 已提交
1806
            axis = 1 or axis = -2  # If axis = -2, axis = axis+ndim(x[0])+1 = -2+2+1 = 1.
1807 1808 1809 1810 1811 1812 1813 1814

          Output:
            Out.shape = [1, 3, 2]
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]

    Args:
L
Leo Chen 已提交
1815
        x (list[Tensor]|tuple[Tensor]): Input ``x`` can be a ``list`` or ``tuple`` of tensors, the Tensors in ``x``
1816
                                     must be of the same shape and dtype. Supported data types: float32, float64, int32, int64.
L
Leo Chen 已提交
1817
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``,
L
Ligoml 已提交
1818
                              where ``R`` is the number of dimensions of the first input tensor ``x[0]``.
L
Leo Chen 已提交
1819
                              If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0.
1820
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
L
Ligoml 已提交
1821

1822
    Returns:
L
Leo Chen 已提交
1823
        Tensor: The stacked tensor with same data type as input.
1824

L
Ligoml 已提交
1825
    Example:
1826
        .. code-block:: python
L
Leo Chen 已提交
1827

1828
            import paddle
L
Ligoml 已提交
1829

L
Leo Chen 已提交
1830 1831 1832
            x1 = paddle.to_tensor([[1.0, 2.0]])
            x2 = paddle.to_tensor([[3.0, 4.0]])
            x3 = paddle.to_tensor([[5.0, 6.0]])
L
Ligoml 已提交
1833

L
Leo Chen 已提交
1834 1835
            out = paddle.stack([x1, x2, x3], axis=0)
            print(out.shape)  # [3, 1, 2]
L
Leo Chen 已提交
1836
            print(out)
L
Leo Chen 已提交
1837 1838 1839
            # [[[1., 2.]],
            #  [[3., 4.]],
            #  [[5., 6.]]]
L
Ligoml 已提交
1840 1841 1842 1843 1844 1845 1846

            out = paddle.stack([x1, x2, x3], axis=-2)
            print(out.shape)  # [1, 3, 2]
            print(out)
            # [[[1., 2.],
            #   [3., 4.],
            #   [5., 6.]]]
L
Leo Chen 已提交
1847
    """
1848 1849 1850
    axis = 0 if axis is None else axis

    if in_dygraph_mode():
1851
        return _C_ops.stack(x, axis)
1852 1853

    if _in_legacy_dygraph():
1854
        return _legacy_C_ops.stack(x, 'axis', axis)
1855 1856 1857 1858

    if not isinstance(x, list) and not isinstance(x, tuple):
        # NOTE:(zhiqiu) Only support Variable as input if the Variable is a LOD_TENSOR_ARRAY create by create_array, array_write, array_read, etc.
        # In that case, Variable is array of tensors indeed.
L
Ligoml 已提交
1859 1860 1861 1862
        if (
            isinstance(x, Variable)
            and x.desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY
        ):
1863 1864
            x = [x]
        else:
1865
            raise TypeError(
L
Ligoml 已提交
1866 1867 1868 1869 1870 1871 1872 1873
                "The type of '%s' in %s must be %s, but received %s"
                % (
                    'x',
                    'stack',
                    'list[Tensor], tuple[Tensor] or TensorArray',
                    type(x),
                )
            )
1874 1875 1876 1877 1878

    helper = LayerHelper('stack', **locals())

    out = helper.create_variable_for_type_inference(x[0].dtype)
    if x[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
L
Ligoml 已提交
1879 1880 1881 1882
        assert len(x) == 1, (
            "If the elements of 'x' in stack are Variable(LoDTensorArray), "
            "number of the elements must be 1, but received %s." % len(x)
        )
1883 1884 1885
        out_index = helper.create_variable_for_type_inference(dtype="int32")

        for i in x:
L
Ligoml 已提交
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
            check_variable_and_dtype(
                i,
                'x',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'stack',
            )

        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': x[0]},
            outputs={'Out': [out], 'OutIndex': [out_index]},
            attrs={'axis': axis, 'use_stack': True},
        )
1899
    else:
L
Ligoml 已提交
1900 1901 1902 1903 1904 1905
        helper.append_op(
            type='stack',
            inputs={'X': x},
            outputs={'Y': out},
            attrs={'axis': axis},
        )
1906 1907

    return out
1908 1909


1910
def split(x, num_or_sections, axis=0, name=None):
1911 1912
    """
    Split the input tensor into multiple sub-Tensors.
L
Ligoml 已提交
1913

1914
    Args:
1915
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, uint8, int8, int32 or int64.
L
Ligoml 已提交
1916
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections``
1917 1918 1919 1920
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of specified ``axis``.
L
Ligoml 已提交
1921
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type
1922 1923 1924 1925
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
1926
    Returns:
1927
        list(Tensor): The list of segmented Tensors.
L
Ligoml 已提交
1928

1929 1930
    Example:
        .. code-block:: python
L
Ligoml 已提交
1931

1932
            import paddle
L
Ligoml 已提交
1933

L
Leo Chen 已提交
1934 1935
            # x is a Tensor of shape [3, 9, 5]
            x = paddle.rand([3, 9, 5])
1936

L
Leo Chen 已提交
1937 1938 1939 1940
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=1)
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1941 1942

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1)
L
Leo Chen 已提交
1943 1944 1945
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
1946 1947

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1)
L
Leo Chen 已提交
1948 1949 1950
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
L
Ligoml 已提交
1951

L
Leo Chen 已提交
1952
            # axis is negative, the real axis is (rank(x) + axis)=1
1953
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2)
L
Leo Chen 已提交
1954 1955 1956
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1957
    """
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
    input = x
    dim = axis
    if _non_static_mode():
        num = None
        attrs = ()

        if isinstance(dim, Variable):
            dim = dim.numpy()
            dim = dim.item(0)
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
        dim = (len(input.shape) + dim) if dim < 0 else dim
        attrs += ('axis', dim)

        if isinstance(num_or_sections, int):
            num = num_or_sections
            attrs += ('num', num_or_sections)
        elif isinstance(num_or_sections, (list, tuple)):
            num = len(num_or_sections)
            if utils._contain_var(num_or_sections):
                for index, item in enumerate(num_or_sections):
                    if isinstance(item, Variable):
L
Ligoml 已提交
1979 1980 1981
                        num_or_sections[index] = num_or_sections[index].numpy()[
                            0
                        ]
1982 1983 1984 1985 1986 1987
                attrs += ('sections', list(num_or_sections))
            else:
                attrs += ('sections', list(num_or_sections))
        else:
            raise TypeError(
                "The type of 'num_or_sections' in split must be int, list or tuple in imperative mode, but "
L
Ligoml 已提交
1988 1989
                "received %s." % (type(num_or_sections))
            )
1990
        if in_dygraph_mode():
C
Charles-hit 已提交
1991 1992 1993 1994
            if isinstance(num_or_sections, int):
                return _C_ops.split_with_num(input, num_or_sections, dim)
            else:
                return _C_ops.split(input, num_or_sections, dim)
1995 1996
        elif _in_legacy_dygraph():
            out = [_varbase_creator() for n in range(num)]
1997
            _legacy_C_ops.split(input, out, *attrs)
1998
            return out
1999

L
Ligoml 已提交
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
    check_variable_and_dtype(
        input,
        'input',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'uint8',
            'int8',
        ],
        'split',
    )
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
    check_type(num_or_sections, 'num_or_sections', (list, int, tuple), 'split')
    check_type(dim, 'dim', (int, Variable), 'split')
    if isinstance(dim, Variable):
        check_dtype(dim.dtype, 'dim', ['int32', 'int64'], 'split')

    helper = LayerHelper('split', **locals())

    input_shape = input.shape
    inputs = {'X': input}
    attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}

    def _get_SectionsTensorList(one_list):
        tensor_list = []
        unk_dim_idx = -1
        for idx, dim_size in enumerate(one_list):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                tensor_list.append(dim_size)
            else:
L
Ligoml 已提交
2034
                assert isinstance(dim_size, int)
2035 2036 2037
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one value of 'num_or_section' in split can "
L
Ligoml 已提交
2038 2039 2040
                        "be -1. But received num_or_section[%d] is also -1."
                        % idx
                    )
2041 2042
                    unk_dim_idx = idx
                temp_out = helper.create_variable_for_type_inference('int32')
L
Ligoml 已提交
2043 2044 2045
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out
                )
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
                tensor_list.append(temp_out)
        return tensor_list

    if isinstance(dim, Variable):
        dim.stop_gradient = True
        inputs['AxisTensor'] = dim
    else:
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
        dim = (len(input_shape) + dim) if dim < 0 else dim
        attrs['axis'] = dim

    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        if isinstance(dim, int) and input_shape[dim] > 0:
L
Ligoml 已提交
2060 2061 2062 2063 2064 2065
            assert input_shape[dim] % num_or_sections == 0, (
                "The input's size along the split dimension "
                "must be evenly divisible by Attr(num_or_sections). "
                "But %d is not evenly divisible by %d. "
                % (num_or_sections, input_shape[dim])
            )
2066 2067 2068
        num = num_or_sections
    else:
        if isinstance(dim, int) and input_shape[dim] > 0:
L
Ligoml 已提交
2069 2070 2071
            assert (
                len(num_or_sections) <= input_shape[dim]
            ), 'len(num_or_sections) must not be more than input.shape[dim].'
2072 2073
        num = len(num_or_sections)
        attrs['sections'] = list(
L
Ligoml 已提交
2074 2075 2076 2077 2078
            map(
                lambda ele: -1 if isinstance(ele, Variable) else ele,
                num_or_sections,
            )
        )
2079 2080
        if utils._contain_var(num_or_sections):
            inputs['SectionsTensorList'] = _get_SectionsTensorList(
L
Ligoml 已提交
2081 2082
                num_or_sections
            )
2083 2084 2085 2086 2087

    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]
L
Ligoml 已提交
2088 2089 2090
    helper.append_op(
        type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs
    )
2091
    return outs
2092 2093


L
Leo Chen 已提交
2094
def squeeze(x, axis=None, name=None):
2095
    """
L
Ligoml 已提交
2096 2097 2098 2099
    Squeeze the dimension(s) of size 1 of input tensor x's shape.

    Note that the output Tensor will share data with origin Tensor and doesn't have a
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version,
2100
    please use `Tensor.clone` like ``squeeze_clone_x = x.squeeze().clone()``.
2101

L
Ligoml 已提交
2102 2103
    If axis is provided, it will remove the dimension(s) by given axis that of size 1.
    If the dimension of given axis is not of size 1, the dimension remain unchanged.
L
Leo Chen 已提交
2104
    If axis is not provided, all dims equal of size 1 will be removed.
2105 2106 2107 2108 2109 2110

    .. code-block:: text

        Case1:

          Input:
L
Leo Chen 已提交
2111 2112
            x.shape = [1, 3, 1, 5]  # If axis is not provided, all dims equal of size 1 will be removed.
            axis = None
2113
          Output:
L
Leo Chen 已提交
2114
            out.shape = [3, 5]
2115 2116 2117 2118

        Case2:

          Input:
L
Leo Chen 已提交
2119 2120 2121 2122
            x.shape = [1, 3, 1, 5]  # If axis is provided, it will remove the dimension(s) by given axis that of size 1.
            axis = 0
          Output:
            out.shape = [3, 1, 5]
L
Ligoml 已提交
2123

L
Leo Chen 已提交
2124 2125 2126
        Case4:

          Input:
L
Ligoml 已提交
2127
            x.shape = [1, 3, 1, 5]  # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged.
L
Leo Chen 已提交
2128
            axis = [0, 2, 3]
2129
          Output:
L
Leo Chen 已提交
2130
            out.shape = [3, 5]
2131

L
Leo Chen 已提交
2132
        Case4:
2133 2134

          Input:
L
Ligoml 已提交
2135
            x.shape = [1, 3, 1, 5]  # If axis is negative, axis = axis + ndim (number of dimensions in x).
L
Leo Chen 已提交
2136
            axis = [-2]
2137
          Output:
L
Leo Chen 已提交
2138
            out.shape = [1, 3, 5]
2139 2140

    Args:
2141
        x (Tensor): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
2142
        axis (int|list|tuple, optional): An integer or list/tuple of integers, indicating the dimensions to be squeezed. Default is None.
2143 2144 2145
                          The range of axis is :math:`[-ndim(x), ndim(x))`.
                          If axis is negative, :math:`axis = axis + ndim(x)`.
                          If axis is None, all the dimensions of x of size 1 will be removed.
2146 2147 2148
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.

    Returns:
2149
        Tensor: Squeezed Tensor with the same data type as input Tensor.
2150 2151 2152

    Examples:
        .. code-block:: python
2153

2154
            import paddle
L
Ligoml 已提交
2155

L
Leo Chen 已提交
2156 2157
            x = paddle.rand([5, 1, 10])
            output = paddle.squeeze(x, axis=1)
2158 2159

            print(x.shape)  # [5, 1, 10]
L
Leo Chen 已提交
2160
            print(output.shape)  # [5, 10]
2161

2162 2163 2164 2165
            # output shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(output[0, 0]) # [10.]

2166
    """
L
Leo Chen 已提交
2167 2168 2169 2170 2171 2172
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)
2173

2174 2175 2176
    input = x
    axes = axis
    if in_dygraph_mode():
2177
        return _C_ops.squeeze(input, axes)
2178
    if _in_legacy_dygraph():
2179
        out, _ = _legacy_C_ops.squeeze2(input, 'axes', axes)
2180 2181 2182
        return out

    helper = LayerHelper("squeeze", **locals())
L
Ligoml 已提交
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
    check_variable_and_dtype(
        input,
        'input',
        [
            'float16',
            'float32',
            'float64',
            'bool',
            'int8',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'squeeze',
    )
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'squeeze')
    attrs = {}
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        attrs["axes"] = axes
    elif isinstance(axes, (list, tuple)):
        if utils._contain_var(axes):
            attrs["axes"] = utils._convert_to_tensor_list(axes)
        else:
            attrs["axes"] = axes

2211 2212
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
L
Ligoml 已提交
2213 2214 2215 2216 2217 2218
    helper.append_op(
        type="squeeze2",
        inputs={"X": input},
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
2219 2220

    return out
2221 2222


2223
@inplace_apis_in_dygraph_only
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
def squeeze_(x, axis=None, name=None):
    """
    Inplace version of ``squeeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_squeeze`.
    """
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)

2236 2237 2238
    input = x
    axes = axis
    if in_dygraph_mode():
2239
        return _C_ops.squeeze_(input, axes)
2240
    if _in_legacy_dygraph():
2241
        out, _ = _legacy_C_ops.squeeze2_(input, 'axes', axes)
2242
        return out
2243 2244


L
Ligoml 已提交
2245 2246 2247 2248 2249 2250 2251 2252
def unique_consecutive(
    x,
    return_inverse=False,
    return_counts=False,
    axis=None,
    dtype="int64",
    name=None,
):
D
duanboqiang 已提交
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
    r"""
    Eliminates all but the first element from every consecutive group of equivalent elements.

    .. note:: This function is different from :func:`paddle.unique` in the sense that this function
        only eliminates consecutive duplicate values. This semantics is similar to `std::unique` in C++.

    Args:
        x(Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique consecutive tensor. Default is False.
        return_counts(bool, optional): If True, also return the counts for each unique consecutive element.
            Default is False.
        axis(int, optional): The axis to apply unique consecutive. If None, the input will be flattened.
            Default is None.
        dtype(np.dtype|str, optional): The data type `inverse` tensor: int32 or int64.
            Default: int64.
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default is None.

    Returns:
        tuple: (out, inverse, counts). `out` is the unique consecutive tensor for `x`. `inverse` is provided only if `return_inverse` is True. `counts` is provided only if `return_counts` is True.

    Example:
        .. code-block:: python

L
Ligoml 已提交
2278
            import paddle
D
duanboqiang 已提交
2279 2280

            x = paddle.to_tensor([1, 1, 2, 2, 3, 1, 1, 2])
L
Ligoml 已提交
2281
            output = paddle.unique_consecutive(x) #
D
duanboqiang 已提交
2282 2283 2284 2285 2286 2287
            np_output = output.numpy() # [1 2 3 1 2]
            _, inverse, counts = paddle.unique_consecutive(x, return_inverse=True, return_counts=True)
            np_inverse = inverse.numpy() # [0 0 1 1 2 3 3 4]
            np_counts = inverse.numpy() # [2 2 1 2 1]

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
L
Ligoml 已提交
2288
            output = paddle.unique_consecutive(x, axis=0) #
D
duanboqiang 已提交
2289 2290 2291
            np_output = output.numpy() # [2 1 3 0 1 2 1 3 2 1 3]

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
L
Ligoml 已提交
2292
            output = paddle.unique_consecutive(x, axis=0) #
D
duanboqiang 已提交
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
            np_output = output.numpy()
            # [[2 1 3]
            #  [3 0 1]
            #  [2 1 3]]
    """

    if axis is None:
        axis = []
    else:
        axis = [axis]
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2304
    if in_dygraph_mode():
2305
        out, inverse, counts = _C_ops.unique_consecutive(
L
Ligoml 已提交
2306 2307
            x, return_inverse, return_counts, axis, attr_dtype
        )
2308 2309 2310 2311 2312 2313 2314 2315 2316
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)
    elif paddle.in_dynamic_mode():
2317
        out, inverse, counts = _legacy_C_ops.unique_consecutive(
L
Ligoml 已提交
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
            x,
            'dtype',
            attr_dtype,
            'return_inverse',
            return_inverse,
            'return_counts',
            return_counts,
            'axis',
            axis,
        )
D
duanboqiang 已提交
2328 2329 2330 2331 2332 2333 2334 2335
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)
L
Ligoml 已提交
2336 2337 2338 2339 2340 2341
    check_variable_and_dtype(
        x,
        "input",
        ['float32', 'float64', 'int32', 'int64'],
        'unique_consecutive',
    )
D
duanboqiang 已提交
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
    check_type(return_inverse, 'return_inverse', bool, 'unique_consecutive')
    check_type(return_counts, 'return_counts', bool, 'unique_consecutive')
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique_consecutive')
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique_consecutive')
    helper = LayerHelper('unique_consecutive', **locals())
    attrs = {
        'dtype': attr_dtype,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
    }
L
Ligoml 已提交
2354 2355 2356 2357 2358 2359 2360 2361 2362
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True
    )
    inverse = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
    counts = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
D
duanboqiang 已提交
2363 2364 2365 2366 2367 2368
    outputs = {"Out": out, "Index": inverse, "Counts": counts}
    outs = [out]
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        outs.append(counts)
L
Ligoml 已提交
2369 2370 2371
    helper.append_op(
        type="unique_consecutive", inputs={"X": x}, attrs=attrs, outputs=outputs
    )
D
duanboqiang 已提交
2372 2373 2374 2375 2376
    if len(outs) == 1:
        return outs[0]
    return tuple(outs)


L
Ligoml 已提交
2377 2378 2379 2380 2381 2382 2383 2384 2385
def unique(
    x,
    return_index=False,
    return_inverse=False,
    return_counts=False,
    axis=None,
    dtype="int64",
    name=None,
):
2386
    r"""
Z
Zhang Ting 已提交
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
    Returns the unique elements of `x` in ascending order.

    Args:
        x(Tensor): The input tensor, it's data type should be float32, float64, int32, int64.
        return_index(bool, optional): If True, also return the indices of the input tensor that
            result in the unique Tensor.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique tensor.
        return_counts(bool, optional): If True, also return the counts for each unique element.
        axis(int, optional): The axis to apply unique. If None, the input will be flattened.
            Default: None.
Z
Zhang Ting 已提交
2398 2399
        dtype(np.dtype|str, optional): The date type of `indices` or `inverse` tensor: int32 or int64.
            Default: int64.
Z
Zhang Ting 已提交
2400 2401 2402 2403
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default: None.

    Returns: 
2404
        tuple (out, indices, inverse, counts). `out` is the unique tensor for `x`. `indices` is \
Z
Zhang Ting 已提交
2405 2406 2407 2408 2409
            provided only if `return_index` is True. `inverse` is provided only if `return_inverse` \
            is True. `counts` is provided only if `return_counts` is True.

    Examples:
        .. code-block:: python
2410

Z
Zhang Ting 已提交
2411 2412
            import paddle

2413
            x = paddle.to_tensor([2, 3, 3, 1, 5, 3])
Z
Zhang Ting 已提交
2414 2415 2416 2417 2418 2419 2420
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [1 2 3 5]
            _, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
            np_indices = indices.numpy() # [3 0 1 4]
            np_inverse = inverse.numpy() # [1 2 2 0 3 2]
            np_counts = counts.numpy() # [1 1 3 1]

2421
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
Z
Zhang Ting 已提交
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [0 1 2 3]

            unique = paddle.unique(x, axis=0)
            np_unique = unique.numpy() 
            # [[2 1 3]
            #  [3 0 1]]
    """
    if axis is None:
        axis = []
    else:
        axis = [axis]
Z
Zhang Ting 已提交
2434
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2435 2436
    if _non_static_mode():
        if in_dygraph_mode():
2437
            out, indices, inverse, counts = _C_ops.unique(
L
Ligoml 已提交
2438 2439
                x, return_index, return_inverse, return_counts, axis, attr_dtype
            )
2440
        if _in_legacy_dygraph():
2441
            out, inverse, indices, counts = _legacy_C_ops.unique(
L
Ligoml 已提交
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
                x,
                'dtype',
                attr_dtype,
                'return_index',
                return_index,
                'return_inverse',
                return_inverse,
                'return_counts',
                return_counts,
                'axis',
                axis,
                "is_sorted",
                True,
            )
Z
Zhang Ting 已提交
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
        outs = [out]
        if return_index:
            outs.append(indices)
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)

        if len(outs) == 1:
            return outs[0]

        return tuple(outs)

L
Ligoml 已提交
2469 2470 2471
    check_variable_and_dtype(
        x, "input", ['float32', 'float64', 'int32', 'int64'], 'unique'
    )
Z
Zhang Ting 已提交
2472 2473 2474
    check_type(return_index, 'return_index', bool, 'unique')
    check_type(return_inverse, 'return_inverse', bool, 'unique')
    check_type(return_counts, 'return_counts', bool, 'unique')
Z
Zhang Ting 已提交
2475
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique')
Z
Zhang Ting 已提交
2476 2477 2478 2479 2480
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique')

    helper = LayerHelper('unique', **locals())
    attrs = {
Z
Zhang Ting 已提交
2481
        'dtype': attr_dtype,
Z
Zhang Ting 已提交
2482 2483 2484 2485
        "return_index": return_index,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
L
Ligoml 已提交
2486
        "is_sorted": True,
Z
Zhang Ting 已提交
2487
    }
L
Ligoml 已提交
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True
    )
    indices = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
    inverse = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
    counts = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
2500 2501 2502 2503
    outputs = {
        "Out": out,
        "Indices": indices,
        "Index": inverse,
L
Ligoml 已提交
2504
        "Counts": counts,
2505
    }
Z
Zhang Ting 已提交
2506 2507 2508 2509 2510 2511 2512 2513
    outs = [out]
    if return_index:
        outs.append(indices)
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        outs.append(counts)

L
Ligoml 已提交
2514 2515 2516
    helper.append_op(
        type="unique", inputs={"X": x}, attrs=attrs, outputs=outputs
    )
Z
Zhang Ting 已提交
2517 2518 2519 2520 2521 2522 2523

    if len(outs) == 1:
        return outs[0]

    return tuple(outs)


2524
def unsqueeze(x, axis, name=None):
2525
    """
2526 2527 2528
    Insert single-dimensional entries to the shape of input Tensor ``x``. Takes one
    required argument axis, a dimension or list of dimensions that will be inserted.
    Dimension indices in axis are as seen in the output tensor.
2529

L
Ligoml 已提交
2530 2531
    Note that the output Tensor will share data with origin Tensor and doesn't have a
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version,
2532 2533
    please use `Tensor.clone` like ``unsqueeze_clone_x = x.unsqueeze(-1).clone()``.

2534
    Args:
2535
        x (Tensor): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
L
Ligoml 已提交
2536 2537
        axis (int|list|tuple|Tensor): Indicates the dimensions to be inserted. The data type is ``int32`` .
                                    If ``axis`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
2538 2539 2540
                                    If ``axis`` is a Tensor, it should be an 1-D Tensor .
                                    If ``axis`` is negative, ``axis = axis + ndim(x) + 1``.
        name (str|None): Name for this layer. Please refer to :ref:`api_guide_Name`, Default None.
2541 2542

    Returns:
2543
        Tensor: Unsqueezed Tensor with the same data type as input Tensor.
2544 2545 2546

    Examples:
        .. code-block:: python
2547

2548 2549
            import paddle

2550 2551
            x = paddle.rand([5, 10])
            print(x.shape)  # [5, 10]
L
Ligoml 已提交
2552

2553 2554
            out1 = paddle.unsqueeze(x, axis=0)
            print(out1.shape)  # [1, 5, 10]
L
Ligoml 已提交
2555 2556

            out2 = paddle.unsqueeze(x, axis=[0, 2])
2557
            print(out2.shape)  # [1, 5, 1, 10]
2558

L
Leo Chen 已提交
2559
            axis = paddle.to_tensor([0, 1, 2])
L
Ligoml 已提交
2560
            out3 = paddle.unsqueeze(x, axis=axis)
2561
            print(out3.shape)  # [1, 1, 1, 5, 10]
2562 2563 2564 2565 2566 2567

            # out1, out2, out3 share data with x in dygraph mode
            x[0, 0] = 10.
            print(out1[0, 0, 0]) # [10.]
            print(out2[0, 0, 0, 0]) # [10.]
            print(out3[0, 0, 0, 0, 0]) # [10.]
L
Ligoml 已提交
2568

2569
    """
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
    input = x
    axes = axis
    if _non_static_mode():
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
            axes = axes.numpy().tolist()
        elif isinstance(axes, (list, tuple)):
            axes = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in axes
            ]
        if _in_legacy_dygraph():
2583
            out, _ = _legacy_C_ops.unsqueeze2(input, 'axes', axes)
2584
            return out
2585
        return _C_ops.unsqueeze(input, axes)
2586 2587

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
L
Ligoml 已提交
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
    check_variable_and_dtype(
        input,
        'input',
        [
            'float16',
            'float32',
            'float64',
            'bool',
            'int8',
            'int16',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'unsqueeze',
    )
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
        if utils._contain_var(axes):
            inputs["AxesTensorList"] = utils._convert_to_tensor_list(axes)
        else:
            attrs["axes"] = axes

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
L
Ligoml 已提交
2622 2623 2624 2625 2626 2627
    helper.append_op(
        type="unsqueeze2",
        inputs=inputs,
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
2628

2629
    return out
2630 2631


2632
@inplace_apis_in_dygraph_only
2633 2634 2635 2636 2637
def unsqueeze_(x, axis, name=None):
    """
    Inplace version of ``unsqueeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_unsqueeze`.
    """
2638 2639 2640 2641 2642 2643 2644 2645
    input = x
    axes = axis
    if isinstance(axes, int):
        axes = [axes]
    elif isinstance(axes, Variable):
        axes = axes.numpy().tolist()
    elif isinstance(axes, (list, tuple)):
        axes = [
2646
            item.numpy().item(0) if isinstance(item, Variable) else item
2647
            for item in axes
2648
        ]
2649
    if in_dygraph_mode():
2650 2651
        return _C_ops.unsqueeze_(input, axes)
    out, _ = _legacy_C_ops.unsqueeze2_(input, 'axes', axes)
2652
    return out
2653 2654


2655
def gather(x, index, axis=None, name=None):
2656
    """
2657 2658
    Output is obtained by gathering entries of ``axis``
    of ``x`` indexed by ``index`` and concatenate them together.
2659 2660 2661 2662 2663 2664

    .. code-block:: text


                Given:

2665
                x = [[1, 2],
2666 2667 2668
                     [3, 4],
                     [5, 6]]

2669 2670
                index = [1, 2]
                axis=[0]
2671 2672 2673

                Then:

2674
                out = [[3, 4],
L
Ligoml 已提交
2675
                       [5, 6]]
2676

2677
    Args:
2678
        x (Tensor): The source input tensor with rank>=1. Supported data type is
2679 2680
            int32, int64, float32, float64 and uint8 (only for CPU),
            float16 (only for GPU).
2681
        index (Tensor): The index input tensor with rank=1. Data type is int32 or int64.
2682
        axis (Tensor|int, optional): The axis of input to be gathered, it's can be int or a Tensor with data type is int32 or int64. The default value is None, if None, the ``axis`` is 0.
2683 2684
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
2685 2686

    Returns:
2687
        output (Tensor): The output is a tensor with the same rank as ``x``.
L
Ligoml 已提交
2688

2689 2690 2691 2692 2693 2694
    Examples:

        .. code-block:: python

            import paddle

2695 2696
            input = paddle.to_tensor([[1,2],[3,4],[5,6]])
            index = paddle.to_tensor([0,1])
2697 2698
            output = paddle.gather(input, index, axis=0)
            # expected output: [[1,2],[3,4]]
2699
    """
2700 2701
    if axis is None:
        axis = 0
2702

2703
    if in_dygraph_mode():
2704
        return _C_ops.gather(x, index, axis)
2705
    if _in_legacy_dygraph():
2706
        axis = axis.item() if isinstance(axis, paddle.Tensor) else axis
L
Ligoml 已提交
2707 2708 2709
        return _legacy_C_ops.gather(
            x, index, None, "axis", axis, "overwrite", False
        )
2710 2711

    check_variable_and_dtype(
L
Ligoml 已提交
2712 2713
        x,
        'x',
2714
        ['float16', 'float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
L
Ligoml 已提交
2715 2716
        'gather',
    )
2717
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather')
2718

2719 2720 2721
    if isinstance(axis, Variable):
        check_variable_and_dtype(axis, 'axis', ['int32', 'int64'], 'gather')

2722
    helper = LayerHelper('gather', **locals())
2723
    dtype = helper.input_dtype('x')
2724
    out = helper.create_variable_for_type_inference(dtype)
2725
    if not isinstance(axis, Variable):
L
Ligoml 已提交
2726 2727 2728 2729 2730 2731
        helper.append_op(
            type="gather",
            inputs={"X": x, "Index": index},
            attrs={'axis': axis, 'overwrite': False},
            outputs={"Out": out},
        )
2732
    else:
L
Ligoml 已提交
2733 2734 2735 2736 2737 2738
        helper.append_op(
            type="gather",
            inputs={"X": x, "Index": index, "Axis": axis},
            attrs={"overwrite": False},
            outputs={"Out": out},
        )
2739

2740
    return out
myq406450149's avatar
myq406450149 已提交
2741 2742 2743 2744


def unbind(input, axis=0):
    """
S
swtkiwi 已提交
2745

myq406450149's avatar
myq406450149 已提交
2746
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
2747

myq406450149's avatar
myq406450149 已提交
2748
    Args:
2749
        input (Tensor): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
L
Ligoml 已提交
2750
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind.
2751
            If :math:`axis < 0`, the dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
myq406450149's avatar
myq406450149 已提交
2752
    Returns:
2753
        list(Tensor): The list of segmented Tensor variables.
myq406450149's avatar
myq406450149 已提交
2754 2755 2756

    Example:
        .. code-block:: python
2757

myq406450149's avatar
myq406450149 已提交
2758
            import paddle
2759

C
Chen Long 已提交
2760 2761
            # input is a Tensor which shape is [3, 4, 5]
            input = paddle.rand([3, 4, 5])
L
Ligoml 已提交
2762

2763
            [x0, x1, x2] = paddle.unbind(input, axis=0)
myq406450149's avatar
myq406450149 已提交
2764 2765 2766
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
C
Chen Long 已提交
2767

2768
            [x0, x1, x2, x3] = paddle.unbind(input, axis=1)
myq406450149's avatar
myq406450149 已提交
2769 2770 2771 2772 2773
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]
    """
2774
    if in_dygraph_mode():
2775
        return _C_ops.unbind(input, axis)
2776

myq406450149's avatar
myq406450149 已提交
2777
    if not isinstance(axis, (int)):
L
Ligoml 已提交
2778 2779 2780
        raise TypeError(
            "The type of 'axis'  must be int, but received %s." % (type(axis))
        )
myq406450149's avatar
myq406450149 已提交
2781 2782 2783 2784 2785
    if isinstance(axis, np.generic):
        axis = np.asscalar(axis)
    input_shape = input.shape
    axis_ = axis if axis >= 0 else len(input_shape) + axis
    num = input_shape[axis_]
2786
    if _in_legacy_dygraph():
2787
        return _legacy_C_ops.unbind(input, num, 'axis', axis)
2788 2789 2790 2791

    helper = LayerHelper("unbind", **locals())
    check_type(input, 'input', (Variable), 'unbind')
    dtype = helper.input_dtype()
L
Ligoml 已提交
2792 2793 2794
    check_dtype(
        dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'], 'unbind'
    )
myq406450149's avatar
myq406450149 已提交
2795 2796 2797 2798
    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]
L
Ligoml 已提交
2799 2800 2801 2802 2803 2804
    helper.append_op(
        type="unbind",
        inputs={"X": input},
        outputs={"Out": outs},
        attrs={"axis": axis},
    )
myq406450149's avatar
myq406450149 已提交
2805
    return outs
L
lilong12 已提交
2806 2807


S
ShenLiang 已提交
2808 2809 2810 2811
def scatter(x, index, updates, overwrite=True, name=None):
    """
    **Scatter Layer**
    Output is obtained by updating the input on selected indices based on updates.
L
Ligoml 已提交
2812

S
ShenLiang 已提交
2813
    .. code-block:: python
L
Ligoml 已提交
2814

S
ShenLiang 已提交
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
        import numpy as np
        #input:
        x = np.array([[1, 1], [2, 2], [3, 3]])
        index = np.array([2, 1, 0, 1])
        # shape of updates should be the same as x
        # shape of updates with dim > 1 should be the same as input
        updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]])
        overwrite = False
        # calculation:
        if not overwrite:
            for i in range(len(index)):
                x[index[i]] = np.zeros((2))
        for i in range(len(index)):
            if (overwrite):
                x[index[i]] = updates[i]
            else:
                x[index[i]] += updates[i]
        # output:
        out = np.array([[3, 3], [6, 6], [1, 1]])
        out.shape # [3, 2]

L
Ligoml 已提交
2836
    **NOTICE**: The order in which updates are applied is nondeterministic,
S
ShenLiang 已提交
2837 2838 2839 2840 2841 2842
    so the output will be nondeterministic if index contains duplicates.

    Args:
        x (Tensor): The input N-D Tensor with ndim>=1. Data type can be float32, float64.
        index (Tensor): The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
        updates (Tensor): update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 should be the same as input.
L
Ligoml 已提交
2843 2844
        overwrite (bool): The mode that updating the output when there are same indices.

S
sunzhongkai588 已提交
2845
            If True, use the overwrite mode to update the output of the same index,
L
Ligoml 已提交
2846 2847
                if False, use the accumulate mode to update the output of the same index.Default value is True.

S
ShenLiang 已提交
2848
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
L
Ligoml 已提交
2849

S
ShenLiang 已提交
2850 2851 2852 2853 2854
    Returns:
        Tensor: The output is a Tensor with the same shape as x.

    Examples:
        .. code-block:: python
L
Ligoml 已提交
2855

S
ShenLiang 已提交
2856 2857
            import paddle

2858 2859 2860
            x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32')
            index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
            updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
L
Ligoml 已提交
2861

S
ShenLiang 已提交
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
            output1 = paddle.scatter(x, index, updates, overwrite=False)
            # [[3., 3.],
            #  [6., 6.],
            #  [1., 1.]]

            output2 = paddle.scatter(x, index, updates, overwrite=True)
            # CPU device:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # GPU device maybe have two results because of the repeated numbers in index
            # result 1:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # result 2:
            # [[3., 3.],
            #  [2., 2.],
            #  [1., 1.]]
    """
J
Jiabin Yang 已提交
2882
    if in_dygraph_mode():
2883
        return _C_ops.scatter(x, index, updates, overwrite)
J
Jiabin Yang 已提交
2884 2885
    else:
        if _in_legacy_dygraph():
L
Ligoml 已提交
2886 2887 2888
            return _legacy_C_ops.scatter(
                x, index, updates, 'overwrite', overwrite
            )
J
Jiabin Yang 已提交
2889 2890
        else:
            check_variable_and_dtype(
L
Ligoml 已提交
2891 2892 2893 2894 2895
                x,
                'dtype',
                ['float32', 'float64', 'float16', 'int32', 'int64'],
                'scatter',
            )
J
Jiabin Yang 已提交
2896 2897 2898
            check_type(overwrite, 'overwrite', bool, 'scatter')
            helper = LayerHelper('scatter', **locals())
            out = helper.create_variable_for_type_inference(x.dtype)
L
Ligoml 已提交
2899 2900 2901 2902 2903 2904
            helper.append_op(
                type="scatter",
                inputs={"X": x, "Ids": index, "Updates": updates},
                attrs={'overwrite': overwrite},
                outputs={"Out": out},
            )
J
Jiabin Yang 已提交
2905
            return out
S
ShenLiang 已提交
2906 2907


2908
@inplace_apis_in_dygraph_only
2909 2910 2911 2912 2913
def scatter_(x, index, updates, overwrite=True, name=None):
    """
    Inplace version of ``scatter`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_scatter`.
    """
2914
    if in_dygraph_mode():
2915 2916
        return _C_ops.scatter_(x, index, updates, overwrite)
    return _legacy_C_ops.scatter_(x, index, updates, 'overwrite', overwrite)
2917 2918


2919
def scatter_nd_add(x, index, updates, name=None):
2920
    r"""
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961

    Output is obtained by applying sparse addition to a single value
    or slice in a Tensor.

    :attr:`x` is a Tensor with ndim :math:`R`
    and :attr:`index` is a Tensor with ndim :math:`K` . Thus, :attr:`index`
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates`
    is a Tensor with ndim :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + x.shape[index.shape[-1]:]` .

    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`x` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text

        Given:

        * Case 1:
            x = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:

            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            x = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            x.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:

            output = [[67, 19], [-16, -27]]

    Args:
Z
Zeng Jinle 已提交
2962
        x (Tensor): The x input. Its dtype should be int32, int64, float32, float64.
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= x.ndim.
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd_add op, and it must have the same dtype
                            as x. It must have the shape index.shape[:-1] + x.shape[index.shape[-1]:].
        name (str|None): The output tensor name. If set None, the layer will be named automatically.

    Returns:
        output (Tensor): The output is a tensor with the same shape and dtype as x.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.rand(shape=[3, 5, 9, 10], dtype='float32')
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
C
Chen Long 已提交
2980 2981 2982
            index = paddle.to_tensor([[1, 1],
                                    [0, 1],
                                    [1, 3]], dtype='int64')
L
Ligoml 已提交
2983

2984
            output = paddle.scatter_nd_add(x, index, updates)
C
Chen Long 已提交
2985 2986
            print(output.shape)
            # [3, 5, 9, 10]
2987
    """
2988
    if in_dygraph_mode():
2989
        return _C_ops.scatter_nd_add(x, index, updates)
2990 2991
    else:
        if _in_legacy_dygraph():
2992
            op = getattr(_legacy_C_ops, 'scatter_nd_add')
2993 2994 2995 2996 2997 2998 2999 3000
            return op(x, index, updates)
        else:
            if x.dtype != updates.dtype:
                raise ValueError("x and updates must have same data type.")

            helper = LayerHelper('scatter_nd_add', **locals())
            dtype = helper.input_dtype(input_param_name='x')
            output = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
3001 3002 3003 3004 3005
            helper.append_op(
                type="scatter_nd_add",
                inputs={"X": x, "Index": index, "Updates": updates},
                outputs={"Out": output},
            )
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
            return output


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)`
    is equal to :code:`scatter_nd_add(paddle.zeros(shape, updates.dtype), index, updates)` .
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated.
    Because of the numerical approximation issues, the different order of repeated elements
    in :attr:`index` may cause different results. The specific calculation method can be
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= len(shape).
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd op. Its dtype should be float32, float64.
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
        name (str|None): The output Tensor name. If set None, the layer will be named automatically.

    Returns:
        output (Tensor): The output is a tensor with the same type as :attr:`updates` .

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

            index_data = np.array([[1, 1],
                                   [0, 1],
                                   [1, 3]]).astype(np.int64)
            index = paddle.to_tensor(index_data)
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
            shape = [3, 5, 9, 10]

            output = paddle.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)
3050 3051


3052 3053 3054
def chunk(x, chunks, axis=0, name=None):
    """
    Split the input tensor into multiple sub-Tensors.
L
Ligoml 已提交
3055

3056 3057 3058
    Args:
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        chunks(int): The number of tensor to be split along the certain axis.
L
Ligoml 已提交
3059
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type
3060 3061 3062 3063 3064 3065
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list(Tensor): The list of segmented Tensors.
L
Ligoml 已提交
3066

3067 3068
    Example:
        .. code-block:: python
L
Ligoml 已提交
3069

3070 3071
            import numpy as np
            import paddle
L
Ligoml 已提交
3072

3073 3074
            # x is a Tensor which shape is [3, 9, 5]
            x_np = np.random.random([3, 9, 5]).astype("int32")
3075
            x = paddle.to_tensor(x_np)
3076

3077
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=1)
3078 3079 3080 3081
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

L
Ligoml 已提交
3082

3083 3084 3085 3086 3087 3088 3089 3090
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
    """
    check_type(chunks, 'chunks', (int), 'chunk')
3091
    return split(x, num_or_sections=chunks, axis=axis, name=name)
3092 3093


L
lilong12 已提交
3094 3095
def tile(x, repeat_times, name=None):
    """
L
lilong12 已提交
3096 3097

    Construct a new Tensor by repeating ``x`` the number of times given by ``repeat_times``.
3098
    After tiling, the value of the i'th dimension of the output is equal to ``x.shape[i]*repeat_times[i]``.
L
lilong12 已提交
3099 3100 3101

    Both the number of dimensions of ``x`` and the number of elements in ``repeat_times`` should be less than or equal to 6.

L
lilong12 已提交
3102
    Args:
L
lilong12 已提交
3103
        x (Tensor): The input tensor, its data type should be bool, float32, float64, int32 or int64.
3104
        repeat_times (list|tuple|Tensor): The number of repeating times. If repeat_times is a list or tuple, all its elements
L
lilong12 已提交
3105 3106 3107
            should be integers or 1-D Tensors with the data type int32. If repeat_times is a Tensor, it should be an 1-D Tensor with the data type int32.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

L
lilong12 已提交
3108
    Returns:
3109
        N-D Tensor. The data type is the same as ``x``. The size of the i-th dimension is equal to ``x[i] * repeat_times[i]``.
L
lilong12 已提交
3110

L
lilong12 已提交
3111 3112
    Examples:
        .. code-block:: python
L
lilong12 已提交
3113

L
lilong12 已提交
3114
            import paddle
L
lilong12 已提交
3115

3116
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
3117
            out = paddle.tile(data, repeat_times=[2, 1])
3118
            np_out = out.numpy()
3119 3120
            # [[1, 2, 3]
            #  [1, 2, 3]]
L
lilong12 已提交
3121

3122
            out = paddle.tile(data, repeat_times=(2, 2))
3123
            np_out = out.numpy()
3124 3125
            # [[1, 2, 3, 1, 2, 3]
            #  [1, 2, 3, 1, 2, 3]]
L
lilong12 已提交
3126

3127
            repeat_times = paddle.to_tensor([1, 2], dtype='int32')
L
lilong12 已提交
3128
            out = paddle.tile(data, repeat_times=repeat_times)
3129
            np_out = out.numpy()
3130
            # [[1, 2, 3, 1, 2, 3]]
L
lilong12 已提交
3131
    """
H
hong 已提交
3132
    if in_dygraph_mode():
3133
        if isinstance(repeat_times, core.eager.Tensor):
L
Ligoml 已提交
3134 3135 3136
            assert (
                repeat_times.ndim == 1
            ), "Only support ndim == 1 while repeat_times is a Tensor."
3137 3138
            repeat_times = repeat_times.numpy().tolist()

3139
        return _C_ops.tile(x, repeat_times)
H
hong 已提交
3140 3141

    if _in_legacy_dygraph():
3142
        return _legacy_C_ops.tile(x, 'repeat_times', repeat_times)
H
hong 已提交
3143

3144 3145
    check_type(repeat_times, 'repeat_times', (list, tuple, Variable), 'tile')
    if isinstance(repeat_times, Variable):
L
Ligoml 已提交
3146 3147 3148
        assert (
            len(repeat_times.shape) == 1
        ), 'repeat_times must be an 1-D Tensor.'
3149 3150 3151
    else:
        for elem in repeat_times:
            if isinstance(elem, Variable):
L
Ligoml 已提交
3152 3153 3154
                assert (
                    len(elem.shape) == 1
                ), 'Elements in repeat_times must be 1-D Tensors or integers.'
3155
            else:
T
tianshuo78520a 已提交
3156
                type_tuple = (int, np.int32, np.int64)
L
Ligoml 已提交
3157 3158 3159
                assert isinstance(
                    elem, type_tuple
                ), 'Elements in repeat_times must be 1-D Tensors or integers.'
3160

L
Ligoml 已提交
3161 3162 3163
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'tile'
    )
L
lilong12 已提交
3164
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
L
lilong12 已提交
3165 3166
        raise ValueError(
            "When the date type is bool for the input 'x' of tile op, you "
L
lilong12 已提交
3167
            "must set its stop_gradient to be True by "
L
Ligoml 已提交
3168 3169
            "some_var.stop_gradient == True supporting some_var is the input."
        )
3170 3171

    helper = LayerHelper('tile', **locals())
L
lilong12 已提交
3172

L
lilong12 已提交
3173 3174 3175
    inputs = {"X": [x]}
    attrs = {}

L
lilong12 已提交
3176 3177 3178 3179 3180 3181 3182
    def get_attr_repeat_times(list_repeat_times):
        attrs_repeat_times = []
        for idx, times in enumerate(list_repeat_times):
            if isinstance(times, Variable):
                attrs_repeat_times.append(-1)
            else:
                attrs_repeat_times.append(times)
L
Ligoml 已提交
3183 3184 3185
                assert (
                    times > 0
                ), "All elements in repeat_times must be positive for tile."
L
lilong12 已提交
3186 3187 3188 3189
        return attrs_repeat_times

    if isinstance(repeat_times, Variable):
        repeat_times.stop_gradient = True
3190 3191
        inputs['RepeatTimes'] = repeat_times
        attrs['repeat_times'] = [-1]
L
lilong12 已提交
3192 3193 3194
    elif isinstance(repeat_times, (list, tuple)):
        attrs['repeat_times'] = get_attr_repeat_times(repeat_times)
        if utils._contain_var(repeat_times):
3195
            inputs['repeat_times_tensor'] = utils._convert_to_tensor_list(
L
Ligoml 已提交
3196 3197
                repeat_times
            )
L
lilong12 已提交
3198 3199 3200

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
3201 3202 3203
    helper.append_op(
        type='tile', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
L
lilong12 已提交
3204
    return out
3205 3206


L
lilong12 已提交
3207 3208 3209 3210 3211 3212 3213 3214 3215
def expand_as(x, y, name=None):
    """

    Expand the input tensor ``x`` to the same shape as the input tensor ``y``.

    Both the number of dimensions of ``x`` and ``y`` must be less than or equal to 6, and the number of dimensions of ``y`` must be greather than or equal to that of ``x``. The dimension to expand must have a value of 1.

    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
3216
        y (Tensor): The input tensor that gives the shape to expand to.
L
lilong12 已提交
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor: A Tensor with the same shape as ``y``. The data type is the same as ``x``.

    Examples:
        .. code-block:: python

            import paddle

3227 3228
            data_x = paddle.to_tensor([1, 2, 3], 'int32')
            data_y = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], 'int32')
L
lilong12 已提交
3229
            out = paddle.expand_as(data_x, data_y)
3230
            np_out = out.numpy()
L
lilong12 已提交
3231 3232
            # [[1, 2, 3], [1, 2, 3]]
    """
H
hong 已提交
3233
    if in_dygraph_mode():
3234
        return _C_ops.expand_as(x, None, y.shape)
H
hong 已提交
3235

H
hong 已提交
3236
    if _non_static_mode():
3237
        return _legacy_C_ops.expand_as_v2(x, 'target_shape', y.shape)
3238

L
Ligoml 已提交
3239 3240 3241
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand_as'
    )
L
lilong12 已提交
3242 3243 3244 3245 3246 3247 3248
    check_type(y, 'y', Variable, 'expand_as')

    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
        raise ValueError(
            "When the data type of input 'x' for expand_as is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
L
Ligoml 已提交
3249 3250
            "some_var as the input 'x'."
        )
3251
    inputs = {"X": [x], "Y": [y]}
L
lilong12 已提交
3252

3253
    helper = LayerHelper('expand_as', **locals())
L
lilong12 已提交
3254 3255
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
3256 3257 3258 3259 3260 3261
    helper.append_op(
        type='expand_as_v2',
        inputs=inputs,
        attrs={'target_shape': y.shape},
        outputs={'Out': out},
    )
L
lilong12 已提交
3262 3263 3264
    return out


3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
def broadcast_to(x, shape, name=None):
    """

    Broadcast the input tensor to a given shape.

    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to broadcast to must have a value 1.


    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
        shape (list|tuple|Tensor): The result shape after broadcasting. The data type is int32. If shape is a list or tuple, all its elements
L
Ligoml 已提交
3276
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32.
3277
            The value -1 in shape means keeping the corresponding dimension unchanged.
3278
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
    Returns:
        N-D Tensor: A Tensor with the given shape. The data type is the same as ``x``.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([1, 2, 3], dtype='int32')
            out = paddle.broadcast_to(data, shape=[2, 3])
            print(out)
            # [[1, 2, 3], [1, 2, 3]]
    """
3292
    if in_dygraph_mode():
3293
        return _C_ops.expand(x, shape)
3294
    if _in_legacy_dygraph():
3295
        return _legacy_C_ops.expand_v2(x, 'shape', shape)
3296 3297

    if isinstance(shape, Variable):
L
Ligoml 已提交
3298
        assert len(shape.shape) == 1, 'shape must be an 1-D Tensor.'
3299 3300 3301
    else:
        for elem in shape:
            if isinstance(elem, Variable):
L
Ligoml 已提交
3302 3303 3304
                assert (
                    len(elem.shape) == 1
                ), 'Elements in shape must be 1-D Tensors or integers.'
3305
            else:
T
tianshuo78520a 已提交
3306
                type_tuple = (int, np.int32, np.int64)
L
Ligoml 已提交
3307 3308 3309
                assert isinstance(
                    elem, type_tuple
                ), 'Elements in shape must be 1-D Tensors or integers.'
3310

L
Ligoml 已提交
3311 3312 3313
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'broadcast_to'
    )
3314 3315 3316 3317 3318 3319
    check_type(shape, 'shape', (list, tuple, Variable), 'broadcast_to')
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
        raise ValueError(
            "When the data type of input 'x' for broadcast_to is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
L
Ligoml 已提交
3320 3321
            "some_var as the input."
        )
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334

    inputs = {"X": [x]}
    attrs = {}

    helper = LayerHelper('expand', **locals())

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
                attrs_expand_shape.append(-1)
            else:
                attrs_expand_shape.append(shape)
L
Ligoml 已提交
3335 3336 3337
                assert (
                    shape > 0 or shape == -1
                ), "All elements in shape of broadcast_to must be positive or -1."
3338 3339 3340 3341 3342 3343 3344 3345 3346
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
L
Ligoml 已提交
3347 3348
                shape
            )
3349 3350 3351

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
3352 3353 3354
    helper.append_op(
        type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
3355 3356 3357
    return out


3358 3359 3360 3361 3362
def expand(x, shape, name=None):
    """

    Expand the input tensor to a given shape.

3363
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. And the number of dimensions of ``x`` should be less than the number of elements in ``shape``. The dimension to expand must have a value 1.
3364 3365 3366


    Args:
C
Chen Long 已提交
3367
        x (Tensor): The input Tensor, its data type is bool, float32, float64, int32 or int64.
L
lilong12 已提交
3368
        shape (list|tuple|Tensor): The result shape after expanding. The data type is int32. If shape is a list or tuple, all its elements
L
Ligoml 已提交
3369
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32.
L
lilong12 已提交
3370
            The value -1 in shape means keeping the corresponding dimension unchanged.
3371 3372 3373
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
lilong12 已提交
3374
        N-D Tensor: A Tensor with the given shape. The data type is the same as ``x``.
3375 3376 3377 3378 3379 3380

    Examples:
        .. code-block:: python

            import paddle

3381
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
3382
            out = paddle.expand(data, shape=[2, 3])
3383
            print(out)
3384 3385
            # [[1, 2, 3], [1, 2, 3]]
    """
H
hong 已提交
3386
    if in_dygraph_mode():
3387
        return _C_ops.expand(x, shape)
H
hong 已提交
3388

Z
zhiboniu 已提交
3389
    if paddle.in_dynamic_mode():
3390
        return _legacy_C_ops.expand_v2(x, 'shape', shape)
3391

3392
    if isinstance(shape, Variable):
L
Ligoml 已提交
3393
        assert len(shape.shape) == 1, 'shape must be an 1-D Tensor.'
3394 3395 3396
    else:
        for elem in shape:
            if isinstance(elem, Variable):
L
Ligoml 已提交
3397 3398 3399
                assert (
                    len(elem.shape) == 1
                ), 'Elements in shape must be 1-D Tensors or integers.'
3400
            else:
T
tianshuo78520a 已提交
3401
                type_tuple = (int, np.int32, np.int64)
L
Ligoml 已提交
3402 3403 3404
                assert isinstance(
                    elem, type_tuple
                ), 'Elements in shape must be 1-D Tensors or integers.'
3405

3406
    check_variable_and_dtype(
L
Ligoml 已提交
3407 3408 3409 3410 3411
        x,
        'x',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'expand',
    )
3412
    check_type(shape, 'shape', (list, tuple, Variable), 'expand')
L
lilong12 已提交
3413
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
L
Ligoml 已提交
3414 3415 3416 3417 3418 3419
        raise ValueError(
            "When the data type of input 'x' for expand is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
            "some_var as the input."
        )
3420

3421 3422 3423
    inputs = {"X": [x]}
    attrs = {}

3424
    helper = LayerHelper('expand', **locals())
3425 3426 3427 3428 3429

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
L
lilong12 已提交
3430
                attrs_expand_shape.append(-2)
3431 3432
            else:
                attrs_expand_shape.append(shape)
L
Ligoml 已提交
3433 3434 3435
                assert (
                    shape > 0 or shape == -1
                ), "All elements in shape of expand must be positive or -1."
3436 3437 3438 3439 3440 3441 3442 3443 3444
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
L
Ligoml 已提交
3445 3446
                shape
            )
3447 3448 3449

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
3450 3451 3452
    helper.append_op(
        type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
3453
    return out
L
lilong12 已提交
3454 3455


3456 3457
def reshape(x, shape, name=None):
    """
3458
    Changes the shape of ``x`` without changing its data.
3459

3460
    Note that the output Tensor will share data with origin Tensor and doesn't
L
Ligoml 已提交
3461 3462
    have a Tensor copy in ``dygraph`` mode.
    If you want to use the Tensor copy version, please use `Tensor.clone` like
3463 3464
    ``reshape_clone_x = x.reshape([-1]).clone()``.

3465 3466
    Some tricks exist when specifying the target shape.

3467
        - 1. -1 means the value of this dimension is inferred from the total element number of x and remaining dimensions. Thus one and only one dimension can be set -1.
3468

3469
        - 2. 0 means the actual dimension value is going to be copied from the corresponding dimension of x. The index of 0s in shape can not exceed the dimension of x.
3470 3471 3472

    Here are some examples to explain it.

3473
        - 1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [6, 8], the reshape operator will transform x into a 2-D tensor with shape [6, 8] and leaving x's data unchanged.
3474

3475
        - 2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape specified is [2, 3, -1, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this case, one dimension of the target shape is set to -1, the value of this dimension is inferred from the total element number of x and remaining dimensions.
3476

3477
        - 3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case, besides -1, 0 means the actual dimension value is going to be copied from the corresponding dimension of x.
3478 3479

    Args:
3480 3481
        x (Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
        shape (list|tuple|Tensor): Define the target shape. At most one dimension of the target shape can be -1.
3482 3483
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
                        If ``shape`` is an Tensor, it should be an 1-D Tensor .
3484
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3485 3486 3487 3488 3489 3490 3491 3492 3493

    Returns:
        Tensor: A reshaped Tensor with the same data type as ``x``.

    Examples:
        .. code-block:: python

            import paddle

3494 3495
            x = paddle.rand([2, 4, 6], dtype="float32")
            positive_four = paddle.full([1], 4, "int32")
3496

3497 3498 3499
            out = paddle.reshape(x, [-1, 0, 3, 2])
            print(out)
            # the shape is [2,4,3,2].
3500

3501 3502
            out = paddle.reshape(x, shape=[positive_four, 12])
            print(out)
3503
            # the shape of out_2 is [4, 12].
3504

3505
            shape_tensor = paddle.to_tensor([8, 6], dtype=paddle.int32)
3506
            out = paddle.reshape(x, shape=shape_tensor)
3507
            print(out.shape)
3508
            # the shape is [8, 6].
3509 3510 3511 3512 3513
            # out shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(out[0, 0])
            # the value is [10.]

3514
    """
3515 3516 3517 3518 3519 3520
    actual_shape = None
    act = None
    inplace = False

    if in_dygraph_mode():
        tmp_tensor_type = core.eager.Tensor
L
Ligoml 已提交
3521
        # TODO(zhiqiu): enable inplace in dygraph mode.
3522 3523 3524 3525 3526 3527
        if inplace:
            warnings.warn(
                "Inplace on reshape is not allowed and will be discarded in dygraph mode currently."
            )
        if isinstance(shape, (list, tuple)):
            shape = [
3528
                item.numpy().item(0)
L
Ligoml 已提交
3529 3530 3531
                if isinstance(item, tmp_tensor_type)
                else item
                for item in shape
3532
            ]
3533
            out = _C_ops.reshape(x, shape)
3534 3535
        elif isinstance(shape, tmp_tensor_type):
            shape.stop_gradient = True
3536
            out = _C_ops.reshape(x, shape)
3537 3538 3539
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
L
Ligoml 已提交
3540 3541
                " got '{}.'".format(type(shape))
            )
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555

        return dygraph_utils._append_activation_in_dygraph(out, act)
    else:
        if _in_legacy_dygraph():
            tmp_tensor_type = Variable
            if inplace:
                warnings.warn(
                    "Inplace on reshape is not allowed and will be discarded in dygraph mode currently."
                )
            if isinstance(shape, (list, tuple)):
                shape = [
                    item.numpy().item(0) if isinstance(item, Variable) else item
                    for item in shape
                ]
3556
                out, _ = _legacy_C_ops.reshape2(x, None, 'shape', shape)
3557 3558
            elif isinstance(shape, tmp_tensor_type):
                shape.stop_gradient = True
3559
                out, _ = _legacy_C_ops.reshape2(x, shape)
3560 3561 3562
            else:
                raise ValueError(
                    "shape must be an instance of `list`, `tuple` or `Variable`,"
L
Ligoml 已提交
3563 3564
                    " got '{}.'".format(type(shape))
                )
3565 3566 3567

            return dygraph_utils._append_activation_in_dygraph(out, act)

L
Ligoml 已提交
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
    check_variable_and_dtype(
        x,
        'x',
        [
            'float16',
            'float32',
            'float64',
            'int16',
            'int32',
            'int64',
            'bool',
            'uint16',
        ],
        'reshape',
    )
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
    check_type(shape, 'shape', (list, tuple, Variable), 'reshape')
    check_type(actual_shape, 'actual_shape', (Variable, type(None)), 'reshape')

    helper = LayerHelper("reshape2", **locals())

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one dimension value of 'shape' in reshape can "
                        "be -1. But received shape[%d] is also -1.\n"
                        "\n\t# N = x.shape()[2]\t\t# N is an int. "
                        "(NOT recommend under @to_static)\n\tN = paddle.shape(x)[2]\t\t"
                        "# N is a Tensor. (Recommend)\n\tz = paddle.reshape([N, -1, 4])"
                        "\t# z.shape is [-1, -1, 4]\n\n"
                        "    If your target shape in Reshape represents dynamic shape, "
                        "please turn it into a Tensor under @to_static. See above example for details."
L
Ligoml 已提交
3606 3607
                        % dim_idx
                    )
3608 3609 3610 3611 3612
                    unk_dim_idx = dim_idx
                elif dim_size == 0:
                    assert dim_idx < len(x.shape), (
                        "The index of 0 in `shape` must be less than "
                        "the input tensor X's dimensions. "
L
Ligoml 已提交
3613 3614 3615
                        "But received shape[%d] = 0, X's dimensions = %d."
                        % (dim_idx, len(x.shape))
                    )
3616 3617 3618 3619
                else:
                    assert dim_size > 0, (
                        "Each dimension value of 'shape' in reshape must not "
                        "be negative except one unknown dimension. "
L
Ligoml 已提交
3620 3621 3622
                        "But received shape[%d] = %s."
                        % (dim_idx, str(dim_size))
                    )
3623 3624 3625 3626 3627 3628 3629 3630
        return attrs_shape

    inputs = {"X": x}
    attrs = {}
    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs["Shape"] = shape
    elif isinstance(shape, (list, tuple)):
L
Ligoml 已提交
3631 3632 3633 3634
        assert len(shape) > 0, (
            "The size of 'shape' in reshape can't be zero, "
            "but received %s." % len(shape)
        )
3635 3636 3637 3638 3639 3640 3641
        attrs["shape"] = get_attr_shape(shape)
        if utils._contain_var(shape):
            inputs['ShapeTensor'] = utils._convert_to_tensor_list(shape)
        elif isinstance(actual_shape, Variable):
            actual_shape.stop_gradient = True
            inputs["Shape"] = actual_shape

L
Ligoml 已提交
3642 3643 3644 3645 3646
    out = (
        x
        if inplace
        else helper.create_variable_for_type_inference(dtype=x.dtype)
    )
3647
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Ligoml 已提交
3648 3649 3650 3651 3652 3653
    helper.append_op(
        type="reshape2",
        inputs=inputs,
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
3654 3655

    return helper.append_activation(out)
3656 3657


3658
@inplace_apis_in_dygraph_only
3659 3660 3661 3662 3663
def reshape_(x, shape, name=None):
    """
    Inplace version of ``reshape`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_reshape`.
    """
3664 3665 3666 3667 3668
    if in_dygraph_mode():
        tmp_tensor_type = core.eager.Tensor
        if isinstance(shape, (list, tuple)):
            shape = [
                item.numpy().item(0)
L
Ligoml 已提交
3669 3670 3671
                if isinstance(item, tmp_tensor_type)
                else item
                for item in shape
3672
            ]
3673
            out = _C_ops.reshape_(x, shape)
3674 3675
        elif isinstance(shape, tmp_tensor_type):
            shape.stop_gradient = True
3676
            out = _C_ops.reshape_(x, shape)
3677 3678 3679
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
L
Ligoml 已提交
3680 3681
                " got '{}.'".format(type(shape))
            )
3682

3683
        return out
3684 3685 3686 3687 3688 3689
    else:
        if isinstance(shape, (list, tuple)):
            shape = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in shape
            ]
3690
            out, _ = _legacy_C_ops.reshape2_(x, None, 'shape', shape)
3691 3692 3693 3694 3695 3696 3697 3698 3699
            return out
        elif isinstance(shape, Variable):
            shape.stop_gradient = True
            # NOTE(pangyoki): Cannot support the case where the shape Tensor
            # is negative. In the infer_shape stage, the input's dim will
            # be changed to a negative number.
            # Thus, convert Shape Tensor to list firstly and then call
            # reshape inplace op.
            shape_list = shape.numpy().tolist()
3700
            out, _ = _legacy_C_ops.reshape2_(x, None, 'shape', shape_list)
3701
            return out
3702 3703


3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
def gather_nd(x, index, name=None):
    """

    This function is actually a high-dimensional extension of :code:`gather`
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional
    tensor of :attr:`index` into :attr:`input`, where each element defines
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
3723 3724 3725 3726 3727 3728 3729
                x =  [[[ 0,  1,  2,  3],
                       [ 4,  5,  6,  7],
                       [ 8,  9, 10, 11]],
                      [[12, 13, 14, 15],
                       [16, 17, 18, 19],
                       [20, 21, 22, 23]]]
                x.shape = (2, 3, 4)
3730 3731 3732 3733

            * Case 1:
                index = [[1]]

3734 3735
                gather_nd(x, index)
                         = [x[1, :, :]]
3736 3737 3738 3739 3740 3741 3742
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

3743 3744
                gather_nd(x, index)
                         = [x[0, 2, :]]
3745 3746 3747 3748 3749
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

3750 3751
                gather_nd(x, index)
                         = [x[1, 2, 3]]
3752 3753 3754 3755 3756 3757
                         = [23]

    Args:
        x (Tensor): The input Tensor which it's data type should be bool, float32, float64, int32, int64.
        index (Tensor): The index input with rank > 1, index.shape[-1] <= input.rank.
                        Its dtype should be int32, int64.
3758
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3759 3760 3761

    Returns:
        output (Tensor): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
L
Ligoml 已提交
3762

3763 3764 3765
    Examples:

        .. code-block:: python
L
Ligoml 已提交
3766

3767
            import paddle
L
Ligoml 已提交
3768

3769 3770 3771
            x = paddle.to_tensor([[[1, 2], [3, 4], [5, 6]],
                                  [[7, 8], [9, 10], [11, 12]]])
            index = paddle.to_tensor([[0, 1]])
L
Ligoml 已提交
3772

3773 3774 3775
            output = paddle.gather_nd(x, index) #[[3, 4]]

    """
3776
    if in_dygraph_mode():
3777
        return _C_ops.gather_nd(x, index)
3778 3779
    else:
        if _in_legacy_dygraph():
3780
            return _legacy_C_ops.gather_nd(x, index)
3781
    check_variable_and_dtype(
L
Ligoml 已提交
3782 3783 3784 3785 3786
        x,
        'x',
        ['bool', 'float32', 'float64', 'int16', 'int32', 'int64'],
        'gather_np',
    )
3787 3788 3789 3790
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather_np')
    helper = LayerHelper('gather_nd', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
3791 3792 3793 3794 3795
    helper.append_op(
        type="gather_nd",
        inputs={"X": x, "Index": index},
        outputs={"Out": output},
    )
3796
    return output
3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844


def strided_slice(x, axes, starts, ends, strides, name=None):
    """
    This operator produces a slice of ``x`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of
    slicing and if the ``strides`` is negative, slice operation is in the opposite direction.
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``.
    Following examples will explain how strided_slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
                strides = [1, 1]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [2, 0]
                strides = [1, -1]
            Then:
                result = [ [8, 7, 6], ]
        Case3:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
                strides = [1, 3]
            Then:
                result = [ [2], ]
3845

3846
    Args:
3847
        x (Tensor): An N-D ``Tensor``. The data type is ``bool``, ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of                                                                                          it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.                                                                                    It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .                                                                                     It represents ending indices of corresponding axis in ``axes``.
        strides (list|tuple|Tensor): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``strides`` is an Tensor, it should be an 1-D Tensor .                                                                                  It represents slice step of corresponding axis in ``axes``.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor:  A ``Tensor`` with the same dimension as ``x``. The data type is same as ``x``.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.zeros(shape=[3,4,5,6], dtype="float32")
            # example 1:
            # attr starts is a list which doesn't contain Tensor.
            axes = [1, 2, 3]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            strides_1 = [1, 1, 1]
            strides_2 = [1, 1, 2]
            sliced_1 = paddle.strided_slice(x, axes=axes, starts=starts, ends=ends, strides=strides_1)
L
Ligoml 已提交
3874
            # sliced_1 is x[:, 1:3:1, 0:2:1, 2:4:1].
3875 3876
            # example 2:
            # attr starts is a list which contain tensor Tensor.
3877
            minus_3 = paddle.full(shape=[1], fill_value=-3, dtype='int32')
3878 3879 3880
            sliced_2 = paddle.strided_slice(x, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2)
            # sliced_2 is x[:, 1:3:1, 0:2:1, 2:4:2].
    """
3881
    if in_dygraph_mode():
3882
        return _C_ops.strided_slice(x, axes, starts, ends, strides)
3883

3884 3885
    helper = LayerHelper('strided_slice', **locals())

3886
    check_variable_and_dtype(
L
Ligoml 已提交
3887 3888 3889 3890 3891
        x,
        'x',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'strided_slice',
    )
3892 3893 3894 3895 3896 3897 3898
    check_type(axes, 'axes', (list, tuple), 'strided_slice')
    check_type(starts, 'starts', (list, tuple, Variable), 'strided_slice')
    check_type(ends, 'ends', (list, tuple, Variable), 'strided_slice')
    check_type(strides, 'strides', (list, tuple, Variable), 'strided_slice')

    def check_list_elements_dtype(list_input, input_name):
        if isinstance(list_input, Variable):
L
Ligoml 已提交
3899 3900 3901
            check_dtype(
                list_input.dtype, input_name, ['int32'], 'strided_slice'
            )
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
        else:
            for i, var in enumerate(list_input):
                var_name = input_name + '[' + str(i) + ']'
                if isinstance(var, Variable):
                    check_dtype(var.dtype, var_name, ['int32'], 'strided_slice')

    check_list_elements_dtype(axes, 'axes')
    check_list_elements_dtype(starts, 'starts')
    check_list_elements_dtype(ends, 'ends')
    check_list_elements_dtype(strides, 'strides')

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
L
Ligoml 已提交
3920
                assert isinstance(dim, int)
3921 3922 3923 3924 3925 3926 3927 3928 3929
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': x}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

3930
    if _in_legacy_dygraph():
3931 3932 3933 3934 3935 3936
        inputs = {'Input': x}
        attrs = {
            'axes': axes,
            'starts': starts,
            'ends': ends,
            'strides': strides,
L
Ligoml 已提交
3937
            'infer_flags': infer_flags,
3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
        }
    else:
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
            if utils._contain_var(starts):
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)
            else:
                attrs['starts'] = starts

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
            if utils._contain_var(ends):
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
            else:
                attrs['ends'] = ends

        # strides
        if isinstance(strides, Variable):
            strides.stop_gradient = True
            inputs['StridesTensor'] = strides
        elif isinstance(strides, (list, tuple)):
            attrs['strides'] = []
            if utils._contain_var(strides):
                inputs['StridesTensorList'] = get_new_list_tensor(strides)
                for i, dim in enumerate(strides):
                    if isinstance(dim, Variable):
                        attrs['strides'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['strides'].append(dim)
            else:
                attrs['strides'] = strides
        attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
L
Ligoml 已提交
3992 3993 3994 3995 3996
        dtype=helper.input_dtype('x')
    )
    helper.append_op(
        type='strided_slice', inputs=inputs, attrs=attrs, outputs={'Out': out}
    )
3997 3998

    return out
F
From00 已提交
3999 4000 4001 4002


def tensordot(x, y, axes=2, name=None):
    r"""
L
Ligoml 已提交
4003
    This function computes a contraction, which sum the product of elements from two tensors along the given axes.
F
From00 已提交
4004 4005 4006 4007 4008 4009

    Args:
        x (Tensor): The left tensor for contraction with data type ``float32`` or ``float64``.
        y (Tensor): The right tensor for contraction with the same data type as ``x``.
        axes (int|tuple|list|Tensor, optional):  The axes to contract for ``x`` and ``y``, defaulted to integer ``2``.

L
Ligoml 已提交
4010
            1. It could be a non-negative integer ``n``,
F
From00 已提交
4011
               in which the function will sum over the last ``n`` axes of ``x`` and the first ``n`` axes of ``y`` in order.
L
Ligoml 已提交
4012 4013

            2. It could be a 1-d tuple or list with data type ``int``, in which ``x`` and ``y`` will be contracted along the same given axes.
F
From00 已提交
4014
               For example, ``axes`` =[0, 1] applies contraction along the first two axes for ``x`` and the first two axes for ``y``.
L
Ligoml 已提交
4015 4016 4017 4018

            3. It could be a tuple or list containing one or two 1-d tuple|list|Tensor with data type ``int``.
               When containing one tuple|list|Tensor, the data in tuple|list|Tensor specified the same axes for ``x`` and ``y`` to contract.
               When containing two tuple|list|Tensor, the first will be applied to ``x`` and the second to ``y``.
F
From00 已提交
4019
               When containing more than two tuple|list|Tensor, only the first two axis sequences will be used while the others will be ignored.
L
Ligoml 已提交
4020 4021 4022

            4. It could be a tensor, in which the ``axes`` tensor will be translated to a python list
               and applied the same rules described above to determine the contraction axes.
F
From00 已提交
4023
               Note that the ``axes`` with Tensor type is ONLY available in Dygraph mode.
L
Ligoml 已提交
4024
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
F
From00 已提交
4025 4026
                             For more information, please refer to :ref:`api_guide_Name` .

L
Ligoml 已提交
4027 4028
    Return:
        Output (Tensor): The contraction result with the same data type as ``x`` and ``y``.
F
From00 已提交
4029
        In general, :math:`output.ndim = x.ndim + y.ndim - 2 \times n_{axes}`, where :math:`n_{axes}` denotes the number of axes to be contracted.
L
Ligoml 已提交
4030

F
From00 已提交
4031
    NOTES:
L
Ligoml 已提交
4032
        1. This function supports tensor broadcast,
F
From00 已提交
4033
           the size in the corresponding dimensions of ``x`` and ``y`` should be equal, or applies to the broadcast rules.
L
Ligoml 已提交
4034 4035 4036 4037 4038
        2. This function also supports axes expansion,
           when the two given axis sequences for ``x`` and ``y`` are of different lengths,
           the shorter sequence will expand the same axes as the longer one at the end.
           For example, if ``axes`` =[[0, 1, 2, 3], [1, 0]],
           the axis sequence for ``x`` is [0, 1, 2, 3],
F
From00 已提交
4039
           while the corresponding axis sequences for ``y`` will be expanded from [1, 0] to [1, 0, 2, 3].
L
Ligoml 已提交
4040

F
From00 已提交
4041 4042 4043 4044 4045 4046 4047 4048
    Examples:
        .. code-block:: python

            import paddle

            data_type = 'float64'

            # For two 2-d tensor x and y, the case axes=0 is equivalent to outer product.
L
Ligoml 已提交
4049
            # Note that tensordot supports empty axis sequence, so all the axes=0, axes=[], axes=[[]], and axes=[[],[]] are equivalent cases.
F
From00 已提交
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110
            x = paddle.arange(4, dtype=data_type).reshape([2, 2])
            y = paddle.arange(4, dtype=data_type).reshape([2, 2])
            z = paddle.tensordot(x, y, axes=0)
            # z = [[[[0., 0.],
            #        [0., 0.]],
            #
            #       [[0., 1.],
            #        [2., 3.]]],
            #
            #
            #      [[[0., 2.],
            #        [4., 6.]],
            #
            #       [[0., 3.],
            #        [6., 9.]]]]


            # For two 1-d tensor x and y, the case axes=1 is equivalent to inner product.
            x = paddle.arange(10, dtype=data_type)
            y = paddle.arange(10, dtype=data_type)
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.dot(x, y)
            # z1 = z2 = [285.]


            # For two 2-d tensor x and y, the case axes=1 is equivalent to matrix multiplication.
            x = paddle.arange(6, dtype=data_type).reshape([2, 3])
            y = paddle.arange(12, dtype=data_type).reshape([3, 4])
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.matmul(x, y)
            # z1 = z2 =  [[20., 23., 26., 29.],
            #             [56., 68., 80., 92.]]


            # When axes is a 1-d int list, x and y will be contracted along the same given axes.
            # Note that axes=[1, 2] is equivalent to axes=[[1, 2]], axes=[[1, 2], []], axes=[[1, 2], [1]], and axes=[[1, 2], [1, 2]].
            x = paddle.arange(24, dtype=data_type).reshape([2, 3, 4])
            y = paddle.arange(36, dtype=data_type).reshape([3, 3, 4])
            z = paddle.tensordot(x, y, axes=[1, 2])
            # z =  [[506. , 1298., 2090.],
            #       [1298., 3818., 6338.]]


            # When axes is a list containing two 1-d int list, the first will be applied to x and the second to y.
            x = paddle.arange(60, dtype=data_type).reshape([3, 4, 5])
            y = paddle.arange(24, dtype=data_type).reshape([4, 3, 2])
            z = paddle.tensordot(x, y, axes=([1, 0], [0, 1]))
            # z =  [[4400., 4730.],
            #       [4532., 4874.],
            #       [4664., 5018.],
            #       [4796., 5162.],
            #       [4928., 5306.]]


            # Thanks to the support of axes expansion, axes=[[0, 1, 3, 4], [1, 0, 3, 4]] can be abbreviated as axes= [[0, 1, 3, 4], [1, 0]].
            x = paddle.arange(720, dtype=data_type).reshape([2, 3, 4, 5, 6])
            y = paddle.arange(720, dtype=data_type).reshape([3, 2, 4, 5, 6])
            z = paddle.tensordot(x, y, axes=[[0, 1, 3, 4], [1, 0]])
            # z = [[23217330., 24915630., 26613930., 28312230.],
            #      [24915630., 26775930., 28636230., 30496530.],
            #      [26613930., 28636230., 30658530., 32680830.],
L
Ligoml 已提交
4111
            #      [28312230., 30496530., 32680830., 34865130.]]
F
From00 已提交
4112 4113 4114 4115 4116 4117 4118 4119 4120
    """
    op_type = 'tensordot'
    input_dtype = ['float32', 'float64']

    check_variable_and_dtype(x, 'x', input_dtype, op_type)
    check_variable_and_dtype(y, 'y', input_dtype, op_type)
    check_type(axes, 'axes', (int, tuple, list, Variable), op_type)

    def _var_to_list(var):
Z
zhiboniu 已提交
4121
        if paddle.in_dynamic_mode():
F
From00 已提交
4122 4123
            return tolist(var)
        raise TypeError(
L
Ligoml 已提交
4124 4125 4126
            "The 'axes' with type 'Tensor' in "
            + op_type
            + " is not available in static graph mode, "
F
From00 已提交
4127 4128 4129 4130 4131 4132 4133
            "please convert its type to int|Tuple|List, or use dynamic graph mode."
        )

    axes_x = []
    axes_y = []
    if np.issubdtype(type(axes), np.integer):
        assert axes >= 0, (
L
Ligoml 已提交
4134 4135 4136 4137
            "The 'axes' in "
            + op_type
            + f" should not be negative, but received axes={axes}."
        )
F
From00 已提交
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
        axes_x = range(x.ndim - axes, x.ndim)
        axes_y = range(axes)
    else:
        if isinstance(axes, Variable):
            axes = _var_to_list(axes)

        if not axes or np.issubdtype(type(axes[0]), np.integer):
            axes_x = axes
        else:
            axes_x = axes[0]
            if len(axes) > 1:
                axes_y = axes[1]

            if isinstance(axes_x, Variable):
                axes_x = _var_to_list(axes_x)
            if isinstance(axes_y, Variable):
                axes_y = _var_to_list(axes_y)

    axes_x, axes_y = list(axes_x), list(axes_y)
    len_axes_x, len_axes_y = len(axes_x), len(axes_y)
    if len_axes_x < len_axes_y:
        axes_x.extend(axes_y[len_axes_x:])
    elif len_axes_y < len_axes_x:
        axes_y.extend(axes_x[len_axes_y:])

    shape_x, shape_y = list(x.shape), list(y.shape)
    need_contracted_dim_x = np.zeros((x.ndim), dtype=bool)
    need_contracted_dim_y = np.zeros((y.ndim), dtype=bool)
    contraction_size = 1
    for i in range(len(axes_x)):
        dim_x, dim_y = axes_x[i], axes_y[i]
        sx, sy = shape_x[dim_x], shape_y[dim_y]
        if sx == 1:
            shape_y[dim_y] = 1
            y = y.sum(dim_y).reshape(shape_y)
        elif sy == 1:
            shape_x[dim_x] = 1
            x = x.sum(dim_x).reshape(shape_x)
        else:
L
Ligoml 已提交
4177 4178 4179 4180 4181
            assert sx == sy, (
                "The dimensional size for 'x' and 'y' in "
                + op_type
                + f" should match each other, but 'x' has size {sx} in dim {dim_x} while 'y' has size {sy} in dim {dim_y}."
            )
F
From00 已提交
4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208

        need_contracted_dim_x[dim_x] = True
        need_contracted_dim_y[dim_y] = True
        contraction_size *= shape_x[dim_x]

    perm_x = []
    perm_y = []
    shape_out = []
    not_contraction_size_x = 1
    not_contraction_size_y = 1
    for i in range(x.ndim):
        if not need_contracted_dim_x[i]:
            perm_x.append(i)
            shape_out.append(shape_x[i])
            not_contraction_size_x *= shape_x[i]
    perm_x.extend(axes_x)
    perm_y.extend(axes_y)
    for i in range(y.ndim):
        if not need_contracted_dim_y[i]:
            perm_y.append(i)
            shape_out.append(shape_y[i])
            not_contraction_size_y *= shape_y[i]

    if not shape_out:
        shape_out = [1]

    x = x.transpose(perm=perm_x).reshape(
L
Ligoml 已提交
4209 4210
        [not_contraction_size_x, contraction_size]
    )
F
From00 已提交
4211
    y = y.transpose(perm=perm_y).reshape(
L
Ligoml 已提交
4212 4213
        [contraction_size, not_contraction_size_y]
    )
F
From00 已提交
4214 4215
    out = x.matmul(y).reshape(shape_out)
    return out
4216 4217 4218


def as_complex(x, name=None):
L
Ligoml 已提交
4219 4220
    """Transform a real tensor to a complex tensor.

4221 4222 4223
    The data type of the input tensor is 'float32' or 'float64', and the data
    type of the returned tensor is 'complex64' or 'complex128', respectively.

L
Ligoml 已提交
4224
    The shape of the input tensor is ``(* ,2)``, (``*`` means arbitary shape), i.e.
4225 4226 4227 4228 4229 4230 4231 4232 4233
    the size of the last axis shoule be 2, which represent the real and imag part
    of a complex number. The shape of the returned tensor is ``(*,)``.

    Args:
        x (Tensor): The input tensor. Data type is 'float32' or 'float64'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The output. Data type is 'complex64' or 'complex128', with the same precision as the input.
L
Ligoml 已提交
4234

4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
            print(y.numpy())

            # [[ 0. +1.j  2. +3.j  4. +5.j]
            #  [ 6. +7.j  8. +9.j 10.+11.j]]
    """
4246 4247
    if in_dygraph_mode():
        return _C_ops.as_complex(x)
4248 4249
    if _in_legacy_dygraph():
        return _legacy_C_ops.as_complex(x)
4250 4251 4252 4253 4254 4255

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'as_complex')
    op_type = "as_complex"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
L
Ligoml 已提交
4256 4257
        dtype=_real_to_complex_dtype(x.dtype)
    )
4258 4259 4260 4261 4262 4263 4264
    outputs = {"Out": out}
    attrs = {}
    helper.append_op(type=op_type, inputs=inputs, attrs=attrs, outputs=outputs)
    return out


def as_real(x, name=None):
L
Ligoml 已提交
4265 4266 4267
    """Transform a complex tensor to a real tensor.

    The data type of the input tensor is 'complex64' or 'complex128', and the data
4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
    type of the returned tensor is 'float32' or 'float64', respectively.

    When the shape of the input tensor is ``(*, )``, (``*`` means arbitary shape),
    the shape of the output tensor is ``(*, 2)``, i.e. the shape of the output is
    the shape of the input appended by an extra ``2``.

    Args:
        x (Tensor): The input tensor. Data type is 'complex64' or 'complex128'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The output. Data type is 'float32' or 'float64', with the same precision as the input.
L
Ligoml 已提交
4280

4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
            z = paddle.as_real(y)
            print(z.numpy())

            # [[[ 0.  1.]
            #   [ 2.  3.]
            #   [ 4.  5.]]

            #  [[ 6.  7.]
            #   [ 8.  9.]
            #   [10. 11.]]]
    """
4298 4299
    if in_dygraph_mode():
        return _C_ops.as_real(x)
4300 4301
    if _in_legacy_dygraph():
        return _legacy_C_ops.as_real(x)
4302 4303 4304 4305 4306 4307

    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'as_real')
    op_type = "as_real"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
L
Ligoml 已提交
4308 4309
        dtype=_complex_to_real_dtype(x.dtype)
    )
4310 4311 4312
    outputs = {"Out": out}
    helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out
4313 4314


K
kuizhiqing 已提交
4315 4316 4317 4318 4319 4320 4321 4322 4323
def repeat_interleave(x, repeats, axis=None, name=None):
    """

    Returns a new tensor which repeats the ``x`` tensor along dimension ``axis`` using
    the entries in ``repeats`` which is a int or a Tensor.

    Args:
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        repeats (Tensor or int): The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis.
4324
        axis (int, optional): The dimension in which we manipulate. Default: None, the output tensor is flatten.
K
kuizhiqing 已提交
4325 4326 4327 4328 4329 4330 4331
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor with same data type as ``x``.

4332 4333 4334 4335 4336
    Examples:
        .. code-block:: python

            import paddle

K
kuizhiqing 已提交
4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            repeats  = paddle.to_tensor([3, 2, 1], dtype='int32')

            paddle.repeat_interleave(x, repeats, 1)
            # [[1, 1, 1, 2, 2, 3],
            #  [4, 4, 4, 5, 5, 6]]

            paddle.repeat_interleave(x, 2, 0)
            # [[1, 2, 3], [1, 2, 3], [4, 5, 6], [4, 5, 6]]

            paddle.repeat_interleave(x, 2, None)
            # [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6]
    """

    if axis is None:
        x = paddle.flatten(x)
        axis = 0

S
seemingwang 已提交
4355 4356
    if in_dygraph_mode():
        if isinstance(repeats, Variable):
4357 4358
            return _C_ops.repeat_interleave_with_tensor_index(x, repeats, axis)
        return _C_ops.repeat_interleave(x, repeats, axis)
K
kuizhiqing 已提交
4359 4360

    helper = LayerHelper("repeat_interleave", **locals())
L
Ligoml 已提交
4361 4362 4363 4364 4365 4366
    check_variable_and_dtype(
        x,
        'x',
        ['float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.repeat_interleave',
    )
K
kuizhiqing 已提交
4367 4368 4369

    out = helper.create_variable_for_type_inference(x.dtype)

L
Ligoml 已提交
4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
    helper.append_op(
        type='repeat_interleave',
        inputs={
            'X': x,
            'RepeatsTensor': repeats if isinstance(repeats, Variable) else None,
        },
        outputs={'Out': out},
        attrs={
            'dim': axis,
            'Repeats': repeats if isinstance(repeats, int) else 0,
        },
    )
K
kuizhiqing 已提交
4382 4383 4384
    return out


4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402
def moveaxis(x, source, destination, name=None):
    """
    Move the axis of tensor from ``source`` position to ``destination`` position.

    Other axis that have not been moved remain their original order.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, int32, int64, float32, float64, complex64, complex128.
        source(int|tuple|list): ``source`` position of axis that will be moved. Each element must be unique and integer.
        destination(int|tuple|list(int)): ``destination`` position of axis that has been moved. Each element must be unique and integer.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A new tensor whose axis have been moved.

    Examples:
        .. code-block:: python
L
Ligoml 已提交
4403

4404 4405 4406 4407 4408 4409 4410
            import paddle

            x = paddle.ones([3, 2, 4])
            paddle.moveaxis(x, [0, 1], [1, 2]).shape
            # [4, 3, 2]

            x = paddle.ones([2, 3])
4411
            paddle.moveaxis(x, 0, 1).shape # equivalent to paddle.t(x)
L
Ligoml 已提交
4412
            # [3, 2]
4413 4414 4415 4416 4417
    """
    src = [source] if isinstance(source, int) else source
    dst = [destination] if isinstance(destination, int) else destination

    assert len(src) == len(
L
Ligoml 已提交
4418 4419
        dst
    ), "'source' must have the same number with 'destination'"
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435

    count = Counter(src).most_common(1)
    if count[0][1] > 1:
        raise ValueError("Each elemment of 'source' must be unique!")
    count = Counter(dst).most_common(1)
    if count[0][1] > 1:
        raise ValueError("Each elemment of 'destination' must be unique!")

    ndim = len(x.shape)

    # perm is the new order after move axis
    perm = list(range(ndim))
    src_dims = list(range(ndim))
    dst_dims = list(range(ndim))

    for i, axis in enumerate(zip(src, dst)):
L
Ligoml 已提交
4436 4437 4438
        assert isinstance(
            axis[0], int
        ), "Each elemment of 'source' must be integer."
4439
        if axis[0] < 0:
L
Ligoml 已提交
4440 4441 4442
            assert (
                axis[0] >= -ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4443 4444
            src[i] += ndim
        else:
L
Ligoml 已提交
4445 4446 4447
            assert (
                axis[0] < ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4448

L
Ligoml 已提交
4449 4450 4451
        assert isinstance(
            axis[1], int
        ), "Each elemment of 'source' must be integer."
4452
        if axis[1] < 0:
L
Ligoml 已提交
4453 4454 4455
            assert (
                axis[1] >= -ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4456 4457
            dst[i] += ndim
        else:
L
Ligoml 已提交
4458 4459 4460
            assert (
                axis[1] < ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4461 4462 4463 4464 4465 4466 4467
        perm[dst[i]] = src[i]
        src_dims.remove(src[i])
        dst_dims.remove(dst[i])

    for i in range(len(src_dims)):
        perm[dst_dims[i]] = src_dims[i]

4468
    if in_dygraph_mode():
4469
        out = _C_ops.transpose(x, perm)
4470 4471 4472
        return out

    if _in_legacy_dygraph():
4473
        out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
4474 4475
        return out

L
Ligoml 已提交
4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
    check_variable_and_dtype(
        x,
        'x',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'moveaxis',
    )
4491 4492 4493 4494

    helper = LayerHelper('moveaxis', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
L
Ligoml 已提交
4495 4496 4497 4498 4499 4500
    helper.append_op(
        type='transpose2',
        inputs={'X': [x]},
        outputs={'Out': [out], 'XShape': [x_shape]},
        attrs={'axis': perm},
    )
4501
    return out
4502 4503


4504 4505 4506
def non_negative_axis(arr, axis):
    ndim = len(arr.shape)
    if axis >= 0:
L
Ligoml 已提交
4507 4508 4509
        assert (
            axis < ndim
        ), "'axis'  must be in the range of [-{0}, {0})".format(ndim)
4510
    else:
L
Ligoml 已提交
4511 4512 4513
        assert (
            axis >= -ndim
        ), "'axis'  must be in the range of [-{0}, {0})".format(ndim)
4514 4515 4516 4517 4518 4519
        axis += ndim

    return axis


def infer_broadcast_shape(arr, indices, axis):
4520
    # This function is used in take/put_along_axis
4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
    broadcast_shape_list = list(arr.shape)
    broadcast_shape_list[axis] = list(indices.shape)[axis]
    broadcast_shape = tuple(broadcast_shape_list)
    for i in range(len(arr.shape)):
        if arr.shape[i] < indices.shape[i]:
            # if indices matrix has larger size than arr matrix, do not broadcast.
            return None
    return broadcast_shape


4531 4532 4533 4534 4535
def take_along_axis(arr, indices, axis):
    """
    Take values from the input array by given indices matrix along the designated axis.

    Args:
4536
        arr (Tensor) : The input Tensor. Supported data types are float32 and float64.
4537
        indices (Tensor) : Indices to take along each 1d slice of arr. This must match the dimension of arr,
4538
            and need to broadcast against arr. Supported data type are int and int64.
L
Ligoml 已提交
4539
        axis (int) : The axis to take 1d slices along.
4540

L
Ligoml 已提交
4541
    Returns:
4542
        Tensor: The indexed element, same dtype with arr
L
Ligoml 已提交
4543

4544 4545 4546 4547 4548
    Examples:
        .. code-block:: python

            import paddle

4549 4550
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7,8,9]])
            index = paddle.to_tensor([[0]])
4551 4552 4553 4554 4555
            axis = 0
            result = paddle.take_along_axis(x, index, axis)
            print(result)
            # [[1, 2, 3]]
    """
L
Ligoml 已提交
4556
    if len(arr.shape) != len(indices.shape):
4557
        raise ValueError(
L
Ligoml 已提交
4558 4559
            "`indices` and `arr` must have the same number of dimensions!"
        )
4560 4561 4562 4563 4564
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
    if not broadcast_shape:
        # if indices matrix have larger size than arr, arr should broadcast into indices shape.
        broadcast_shape = indices.shape
H
hong 已提交
4565
    if _non_static_mode():
4566
        indices = paddle.broadcast_to(indices, broadcast_shape)
4567 4568 4569 4570
        broadcast_shape_list = list(broadcast_shape)
        broadcast_shape_list[axis] = list(arr.shape)[axis]
        broadcast_shape = tuple(broadcast_shape_list)
        arr = paddle.broadcast_to(arr, broadcast_shape)
H
hong 已提交
4571
        if not _in_legacy_dygraph():
4572 4573
            return _C_ops.take_along_axis(arr, indices, axis)
        return _legacy_C_ops.take_along_axis(arr, indices, 'Axis', axis)
4574
    check_variable_and_dtype(
L
Ligoml 已提交
4575 4576 4577 4578 4579 4580 4581 4582
        arr,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'take_along_axis',
    )
    check_variable_and_dtype(
        indices, 'index', ['int32', 'int64'], 'take_along_axis'
    )
4583
    indices = paddle.broadcast_to(indices, broadcast_shape)
4584 4585 4586 4587
    broadcast_shape_list = list(broadcast_shape)
    broadcast_shape_list[axis] = list(arr.shape)[axis]
    broadcast_shape = tuple(broadcast_shape_list)
    arr = paddle.broadcast_to(arr, broadcast_shape)
4588 4589 4590
    helper = LayerHelper('take_along_axis', **locals())
    dtype = helper.input_dtype()
    result = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
4591 4592 4593 4594 4595 4596
    helper.append_op(
        type="take_along_axis",
        inputs={"Input": arr, "Index": indices},
        attrs={"Axis": axis},
        outputs={"Result": result},
    )
4597
    return result
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607


def put_along_axis(arr, indices, values, axis, reduce='assign'):
    """
    Put values into the destination array by given indices matrix along the designated axis.

    Args:
        arr (Tensor) : The Destination Tensor. Supported data types are float32 and float64.
        indices (Tensor) : Indices to put along each 1d slice of arr. This must match the dimension of arr,
            and need to broadcast against arr. Supported data type are int and int64.
L
Ligoml 已提交
4608
        axis (int) : The axis to put 1d slices along.
4609
        reduce (string | optinal) : The reduce operation, default is 'assign', support 'add', 'assign', 'mul' and 'multiply'.
L
Ligoml 已提交
4610
    Returns :
4611
        Tensor: The indexed element, same dtype with arr
L
Ligoml 已提交
4612

4613 4614 4615 4616 4617
    Examples:
        .. code-block:: python

            import paddle

4618 4619
            x = paddle.to_tensor([[10, 30, 20], [60, 40, 50]])
            index = paddle.to_tensor([[0]])
4620 4621 4622 4623 4624 4625 4626 4627
            value = 99
            axis = 0
            result = paddle.put_along_axis(x, index, value, axis)
            print(result)
            # [[99, 99, 99],
            # [60, 40, 50]]

    """
L
Ligoml 已提交
4628
    if len(arr.shape) != len(indices.shape):
4629
        raise ValueError(
L
Ligoml 已提交
4630 4631
            "`indices` and `arr` must have the same number of dimensions!"
        )
4632 4633
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
H
hong 已提交
4634
    if _non_static_mode():
L
Ligoml 已提交
4635 4636 4637 4638 4639
        values = (
            paddle.to_tensor(values)
            if not isinstance(values, paddle.Tensor)
            else values
        )
4640 4641 4642
        if broadcast_shape:
            indices = paddle.broadcast_to(indices, broadcast_shape)
        values = paddle.broadcast_to(values, indices.shape)
H
hong 已提交
4643
        if in_dygraph_mode():
4644
            return _C_ops.put_along_axis(arr, indices, values, axis, reduce)
L
Ligoml 已提交
4645 4646 4647
        return _legacy_C_ops.put_along_axis(
            arr, indices, values, "Axis", axis, "Reduce", reduce
        )
4648 4649

    check_variable_and_dtype(
L
Ligoml 已提交
4650 4651 4652 4653 4654 4655 4656 4657
        arr,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'put_along_axis',
    )
    check_variable_and_dtype(
        indices, 'index', ['int32', 'int64'], 'put_along_axis'
    )
4658 4659 4660
    if broadcast_shape:
        indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.broadcast_to(values, indices.shape)
4661 4662 4663
    helper = LayerHelper('put_along_axis', **locals())
    dtype = helper.input_dtype()
    result = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
4664 4665 4666 4667 4668 4669
    helper.append_op(
        type="put_along_axis",
        inputs={"Input": arr, "Index": indices, "Value": values},
        attrs={"Axis": axis, "Reduce": reduce},
        outputs={"Result": result},
    )
4670 4671 4672 4673 4674 4675
    return result


@inplace_apis_in_dygraph_only
def put_along_axis_(arr, indices, values, axis, reduce='assign'):
    r"""
4676
    Inplace version of ``put_along_axis`` API, the output Tensor will be inplaced with input ``arr``.
4677 4678
    Please refer to :ref:`api_tensor_put_along_axis`.
    """
L
Ligoml 已提交
4679
    if len(arr.shape) != len(indices.shape):
4680
        raise ValueError(
L
Ligoml 已提交
4681 4682
            "`indices` and `arr` must have the same number of dimensions!"
        )
4683 4684
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
L
Ligoml 已提交
4685 4686 4687 4688 4689
    values = (
        paddle.to_tensor(values)
        if not isinstance(values, paddle.Tensor)
        else values
    )
4690 4691 4692
    if broadcast_shape:
        indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.broadcast_to(values, indices.shape)
4693
    if in_dygraph_mode():
4694
        return _C_ops.put_along_axis_(arr, indices, values, axis, reduce)
L
Ligoml 已提交
4695 4696 4697
    return _legacy_C_ops.put_along_axis_(
        arr, indices, values, "Axis", axis, "Reduce", reduce
    )
4698 4699


L
Li Min 已提交
4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
def _index_add_params_check(x, index, input_axis, add_value):
    dims = len(x.shape)
    add_value_dims = len(add_value.shape)

    if input_axis >= 0:
        axis = input_axis
    else:
        axis = input_axis + dims

    check_axis = axis
    if check_axis >= dims or check_axis < -dims:
        raise ValueError("Axis should be in range [-rank(x), rank(x)).")

    if isinstance(index, Variable):
        if index.dtype not in [paddle.int64, paddle.int32]:
            raise TypeError("The index dtype should be int32 or int64.")
        if len(index.shape) != 1:
            raise ValueError("The index should be a 1-D Tensor.")

    if dims != add_value_dims:
        raise ValueError(
            "The add_value does not support broadcast now. It must have the same dimension as x."
        )
    for i in range(dims):
        if i != axis and x.shape[i] != add_value.shape[i]:
            raise ValueError(
                "The add_value.shape[i] should be equal to x.shape[i] when i != axis."
            )


def index_add(x, index, axis, value, name=None):
    """
    Adds the elements of the input tensor with value tensor by selecting the indices in the order given in index.

    Args:
        x (Tensor) : The Destination Tensor. Supported data types are int32, int64, float16, float32, float64.
        index (Tensor): The 1-D Tensor containing the indices to index.
            The data type of ``index`` must be int32 or int64.
L
Ligoml 已提交
4738
        axis (int): The dimension in which we index.
L
Li Min 已提交
4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766
        value (Tensor): The tensor used to add the elements along the target axis.
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        Tensor: same dimention and dtype with x.

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1, 1], [1, 1, 1]], dtype="float32")
            outplace_res = paddle.index_add(input_tensor, index, 0, value)
            print(outplace_res.numpy())
            # [[2 2 2]
            #  [1 1 1]
            #  [2 2 2]]
    """
    _index_add_params_check(x, index, axis, value)

    if in_dygraph_mode():
        return _C_ops.index_add(x, index, value, axis)

    helper = LayerHelper("index_add", **locals())
    check_variable_and_dtype(
L
Ligoml 已提交
4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777
        x,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.index_add',
    )
    check_variable_and_dtype(
        index,
        'index',
        ['int32', 'int64'],
        'paddle.tensor.manipulation.index_add',
    )
L
Li Min 已提交
4778
    check_variable_and_dtype(
L
Ligoml 已提交
4779 4780 4781 4782 4783
        value,
        'add_value',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.index_add',
    )
L
Li Min 已提交
4784 4785 4786

    out = helper.create_variable_for_type_inference(x.dtype)

L
Ligoml 已提交
4787 4788 4789 4790 4791 4792 4793 4794 4795 4796
    helper.append_op(
        type='index_add',
        inputs={
            'X': x,
            'Index': index,
            'AddValue': value,
        },
        outputs={'Out': out},
        attrs={'axis': axis},
    )
L
Li Min 已提交
4797 4798 4799 4800 4801 4802 4803 4804
    return out


@inplace_apis_in_dygraph_only
def index_add_(x, index, axis, value, name=None):
    """
    Inplace version of ``index_add`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_index_add`.
L
Ligoml 已提交
4805

L
Li Min 已提交
4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825
    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1], [1, 1], [1, 1]], dtype="float32")
            inplace_res = paddle.index_add_(input_tensor, index, 1, value)
            print(inplace_res.numpy())
            # [[2, 1, 2]
            #  [2, 1, 2]
            #  [2, 1, 2]]
    """

    _index_add_params_check(x, index, axis, value)
    return _C_ops.index_add_(x, index, value, axis)


4826 4827 4828 4829 4830 4831 4832
# TODO(dev): We need avoid implementing it by this way.
__METHODS = {
    'fill_': fill_,
    'zero_': zero_,
    'fill_diagonal_': fill_diagonal_,
    'fill_diagonal_tensor_': fill_diagonal_tensor_,
    "fill_diagonal_tensor": fill_diagonal_tensor,
L
Ligoml 已提交
4833
    'tolist': tolist,
4834 4835 4836 4837
}
for name, func in __METHODS.items():
    setattr(core.VarBase, name, func)
    setattr(core.eager.Tensor, name, func)