manipulation.py 170.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
Wilber 已提交
15
from __future__ import print_function
16
from collections import Counter
W
Wilber 已提交
17

Z
zhiboniu 已提交
18
from ..static import Variable, device_guard
19
from ..framework import core, in_dygraph_mode
L
Ligoml 已提交
20 21 22 23 24
from ..fluid.framework import (
    _in_legacy_dygraph,
    _in_eager_without_dygraph_check,
    _non_static_mode,
)
25
from ..framework import LayerHelper
Z
zhiboniu 已提交
26
from ..framework import OpProtoHolder, convert_np_dtype_to_dtype_, dygraph_only
L
Ligoml 已提交
27 28 29 30 31 32
from ..fluid.data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
33
from ..fluid.layers import utils
myq406450149's avatar
myq406450149 已提交
34
import numpy as np
L
Ligoml 已提交
35

36
# TODO: define functions to manipulate a tensor
37
from ..fluid.layers.nn import _elementwise_op_in_dygraph
38
from ..fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
39
import paddle
40
from paddle import _C_ops, _legacy_C_ops
41 42 43 44 45
from ..common_ops_import import dygraph_utils, fill_constant, _varbase_creator
import warnings
from .creation import zeros
from .creation import _complex_to_real_dtype
from .creation import _real_to_complex_dtype
46

47 48
__all__ = []

W
Wilber 已提交
49

50 51 52 53 54 55 56 57
def cast(x, dtype):
    """

    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.

    Args:
58
        x (Tensor): An input N-D Tensor with data type bool, float16,
59
            float32, float64, int32, int64, uint8.
60
        dtype (np.dtype|str): Data type of the output:
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
            bool, float16, float32, float64, int8, int32, int64, uint8.

    Returns:
        Tensor: A Tensor with the same shape as input's.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
    """
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
77
        return _C_ops.cast(x, dtype)
78 79 80 81

    if _non_static_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
82
        out = _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
83 84
        return out

L
Ligoml 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    check_variable_and_dtype(
        x,
        'x',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'cast',
    )
    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'cast',
    )
118 119 120

    helper = LayerHelper('cast', **locals())
    out = helper.create_variable_for_type_inference(
L
Ligoml 已提交
121 122 123 124 125 126 127 128
        dtype=dtype, stop_gradient=x.stop_gradient
    )
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype, 'out_dtype': out.dtype},
    )
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    return out


def slice(input, axes, starts, ends):
    """
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` (here 0 is the initial position).
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` and ``ends``.
    Following examples will explain how slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]       # -1 denotes the reverse 0th position of dimension 0.
            Then:
                result = [ [2, 3, 4], ] # result = data[0:1, 1:4]
L
Ligoml 已提交
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    Args:
        input (Tensor): A ``Tensor`` . The data type is ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to .
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.

    Returns:
        Tensor:  A ``Tensor``. The data type is same as ``input``.

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand(shape=[4, 5, 6], dtype='float32')
            # example 1:
            # attr starts is a list which doesn't contain tensor.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = paddle.slice(input, axes=axes, starts=starts, ends=ends)
            # sliced_1 is input[0:3, 0:2, 2:4].

            # example 2:
            # attr starts is a list which contain tensor.
            minus_3 = paddle.full([1], -3, "int32")
            sliced_2 = paddle.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
            # sliced_2 is input[0:3, 0:2, 2:4].
    """
    if in_dygraph_mode():
        attrs = ()
        starts_tensor = None
        ends_tensor = None

        if isinstance(axes, (list, tuple)):
            axes = list(axes)
            if len(axes) == 0:
                raise ValueError(
L
Ligoml 已提交
209 210
                    "Input axes should not be an empty list/tuple."
                )
211 212 213 214 215 216 217 218
            for i in range(len(axes)):
                if axes[i] < 0:
                    axes[i] = max(0, axes[i] + len(input.shape))
                else:
                    axes[i] = min(len(input.shape) - 1, axes[i])

        else:
            raise ValueError(
L
Ligoml 已提交
219 220 221 222
                "Input axes must be a python list or tuple, but reveived {}".format(
                    type(axes)
                )
            )
223 224 225 226 227 228 229 230

        infer_flags = list(1 for i in range(len(axes)))

        tmp_tensor_type = core.eager.Tensor

        if isinstance(starts, (list, tuple)):
            starts = [
                item.numpy().item(0)
L
Ligoml 已提交
231 232
                if isinstance(item, tmp_tensor_type)
                else item
233 234 235
                for item in starts
            ]
        elif isinstance(starts, tmp_tensor_type):
236 237
            tensor_t = starts.numpy()
            starts = [ele for ele in tensor_t]
238 239 240 241 242
            infer_flags = list(-1 for i in range(len(axes)))

        if isinstance(ends, (list, tuple)):
            ends = [
                item.numpy().item(0)
L
Ligoml 已提交
243 244 245
                if isinstance(item, tmp_tensor_type)
                else item
                for item in ends
246 247
            ]
        elif isinstance(ends, tmp_tensor_type):
248
            tensor_t = ends.numpy()
249
            ends = [ele for ele in tensor_t]
250
            infer_flags = list(-1 for i in range(len(axes)))
251

252
        return _C_ops.slice(input, axes, starts, ends, infer_flags, [])
253 254 255 256 257 258 259 260 261 262
    else:
        if _in_legacy_dygraph():
            attrs = ()
            starts_tensor = None
            ends_tensor = None

            if isinstance(axes, (list, tuple)):
                axes = list(axes)
                if len(axes) == 0:
                    raise ValueError(
L
Ligoml 已提交
263 264
                        "Input axes should not be an empty list/tuple."
                    )
265 266 267 268 269 270 271 272
                for i in range(len(axes)):
                    if axes[i] < 0:
                        axes[i] = max(0, axes[i] + len(input.shape))
                    else:
                        axes[i] = min(len(input.shape) - 1, axes[i])

            else:
                raise ValueError(
L
Ligoml 已提交
273 274 275 276
                    "Input axes must be a python list or tuple, but reveived {}".format(
                        type(axes)
                    )
                )
277 278 279 280 281 282 283 284

            infer_flags = list(1 for i in range(len(axes)))

            tmp_tensor_type = Variable

            if isinstance(starts, (list, tuple)):
                starts = [
                    item.numpy().item(0)
L
Ligoml 已提交
285 286
                    if isinstance(item, tmp_tensor_type)
                    else item
287 288 289 290 291 292 293 294 295 296 297
                    for item in starts
                ]
                attrs += ('starts', starts)
            elif isinstance(starts, tmp_tensor_type):
                starts_tensor = starts
                starts.stop_gradient = True
                infer_flags = list(-1 for i in range(len(axes)))

            if isinstance(ends, (list, tuple)):
                ends = [
                    item.numpy().item(0)
L
Ligoml 已提交
298 299
                    if isinstance(item, tmp_tensor_type)
                    else item
300 301 302 303 304 305 306 307
                    for item in ends
                ]
                attrs += ('ends', ends)
            elif isinstance(ends, tmp_tensor_type):
                ends_tensor = ends
                ends_tensor.stop_gradient = True
                infer_flags = list(-1 for i in range(len(axes)))

L
Ligoml 已提交
308 309 310 311 312 313 314 315 316 317 318 319
            return _legacy_C_ops.slice(
                input,
                starts_tensor,
                ends_tensor,
                None,
                None,
                'axes',
                axes,
                'infer_flags',
                infer_flags,
                *attrs,
            )
320 321 322

    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
L
Ligoml 已提交
323 324
            "Input starts must be an Variable, python list or tuple."
        )
325 326
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
L
Ligoml 已提交
327 328
            "Input ends must be an Variable, python list or tuple."
        )
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374

    helper = LayerHelper('slice', **locals())

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

    # starts
    if isinstance(starts, Variable):
        starts.stop_gradient = True
        inputs['StartsTensor'] = starts
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(starts, (list, tuple)):
        attrs['starts'] = []
        if utils._contain_var(starts):
            inputs['StartsTensorList'] = utils._convert_to_tensor_list(starts)
            for i, dim in enumerate(starts):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
        else:
            attrs['starts'] = starts

    # ends
    if isinstance(ends, Variable):
        ends.stop_gradient = True
        inputs['EndsTensor'] = ends
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(ends, (list, tuple)):
        attrs['ends'] = []
        if utils._contain_var(ends):
            inputs['EndsTensorList'] = utils._convert_to_tensor_list(ends)
            for i, dim in enumerate(ends):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
        else:
            attrs['ends'] = ends

    # infer_flags
    attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
L
Ligoml 已提交
375 376 377 378 379
        dtype=helper.input_dtype('input')
    )
    helper.append_op(
        type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out}
    )
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434

    return out


def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
        Tensor: A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
435
        return _C_ops.transpose(x, perm)
436 437
    else:
        if _in_legacy_dygraph():
438
            out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
439 440
            return out

L
Ligoml 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
    check_variable_and_dtype(
        x,
        'x',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'transpose',
    )
456 457 458 459 460 461 462 463
    check_type(perm, 'perm', (list, tuple), 'transpose')
    if isinstance(perm, tuple):
        perm = list(perm)
    if len(perm) != len(x.shape):
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
L
Ligoml 已提交
464 465
            "the length of Input(perm) is %s." % (len(x.shape), len(perm))
        )
466 467 468 469 470
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
L
Ligoml 已提交
471 472
                "dimension %d." % (idx, perm[idx], len(x.shape))
            )
473 474 475 476

    helper = LayerHelper('transpose', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
L
Ligoml 已提交
477 478 479 480 481 482
    helper.append_op(
        type='transpose2',
        inputs={'X': [x]},
        outputs={'Out': [out], 'XShape': [x_shape]},
        attrs={'axis': perm},
    )
483 484 485 486 487 488
    return out


def unstack(x, axis=0, num=None):
    """
    :alias_main: paddle.unstack
L
Ligoml 已提交
489 490
        :alias: paddle.unstack,paddle.tensor.unstack,paddle.tensor.manipulation.unstack
        :old_api: paddle.fluid.layers.unstack
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516

    **UnStack Layer**

    This layer unstacks input Tensor :code:`x` into several Tensors along :code:`axis`.

    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised.

    Args:
        x (Tensor): Input Tensor. It is a N-D Tensors of data types float32, float64, int32, int64.
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.

    Returns:
        list(Tensor): The unstacked Tensors list. The list elements are N-D Tensors of data types float32, float64, int32, int64.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.ones(name='x', shape=[2, 3, 5], dtype='float32')  # create a tensor with shape=[2, 3, 5]
            y = paddle.unstack(x, axis=1)  # unstack with second axis, which results 3 tensors with shape=[2, 5]

    """
517 518 519 520 521
    if in_dygraph_mode():
        if num == None:
            num = x.shape[axis]
        if num == 0:
            return []
522
        return _C_ops.unstack(x, axis, num)
523

524 525 526 527 528
    if _non_static_mode():
        if num == None:
            num = x.shape[axis]
        if num == 0:
            return []
529
        return _legacy_C_ops.unstack(x, num, 'axis', int(axis), 'num', num)
530 531 532 533 534 535 536 537 538 539 540 541

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in range(num):
        outs.append(helper.create_variable_for_type_inference(x.dtype))

L
Ligoml 已提交
542 543 544 545 546 547
    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis, 'num': num},
    )
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
    return outs


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
    Reset the values of `input` according to the shard it beloning to.
    Every value in `input` must be a non-negative integer, and
    the parameter `index_num` represents the integer above the maximum
    value of `input`. Thus, all values in `input` must be in the range
    [0, index_num) and each value can be regarded as the offset to the beginning
    of the range. The range is further split into multiple shards. Specifically,
    we first compute the `shard_size` according to the following formula,
    which represents the number of integers each shard can hold. So for the
    i'th shard, it can hold values in the range [i*shard_size, (i+1)*shard_size).
    ::

        shard_size = (index_num + nshards - 1) // nshards

    For each value `v` in `input`, we reset it to a new value according to the
    following formula:
    ::
L
Ligoml 已提交
569

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
        v = v - shard_id * shard_size if shard_id * shard_size <= v < (shard_id+1) * shard_size else ignore_value

    That is, the value `v` is set to the new offset within the range represented by the shard `shard_id`
    if it in the range. Otherwise, we reset it to be `ignore_value`.

    Args:
        input (Tensor): Input tensor with data type int64 or int32. It's last dimension must be 1.
        index_num (int): An integer represents the integer above the maximum value of `input`.
        nshards (int): The number of shards.
        shard_id (int): The index of the current shard.
        ignore_value (int): An integer value out of sharded index range.

    Returns:
        Tensor.

    Examples:
        .. code-block:: python

            import paddle
            label = paddle.to_tensor([[16], [1]], "int64")
            shard_label = paddle.shard_index(input=label,
                                             index_num=20,
                                             nshards=2,
                                             shard_id=0)
            print(shard_label)
            # [[-1], [1]]
    """
    if in_dygraph_mode():
L
Ligoml 已提交
598 599 600
        return _C_ops.shard_index(
            input, index_num, nshards, shard_id, ignore_value
        )
601 602 603 604 605

    check_variable_and_dtype(input, 'input', ['int64', 'int32'], 'shard_index')
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
L
Ligoml 已提交
606 607 608
        raise ValueError(
            'The shard_id(%d) should be in [0, %d)' % (shard_id, nshards)
        )
609 610

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
L
Ligoml 已提交
611 612 613 614 615 616 617 618 619 620 621 622
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value,
        },
        stop_gradient=True,
    )
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
    return out


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1 (input is a 2-D Tensor):
            Input:
                X.shape = [3, 5]
                X.data = [[0, 1, 2, 0, 0],
                          [0, 3, 4, 0, 0],
                          [0, 0, 0, 0, 0]]
            Parameters:
                shape = [2, 2]
                offsets = [0, 1]
            Output:
                Out.shape = [2, 2]
                Out.data = [[1, 2],
                            [3, 4]]
        * Case 2 (input is a 3-D Tensor):
            Input:
                X.shape = [2, 3, 4]
                X.data =  [[[0, 1, 2, 3],
                            [0, 5, 6, 7],
                            [0, 0, 0, 0]],
                           [[0, 3, 4, 5],
                            [0, 6, 7, 8],
                            [0, 0, 0, 0]]]
            Parameters:
                shape = [2, 2, -1]
                offsets = [0, 0, 1]
            Output:
                Out.shape = [2, 2, 3]
                Out.data  = [[[1, 2, 3],
                              [5, 6, 7]],
                             [[3, 4, 5],
                              [6, 7, 8]]]

    Parameters:
        x (Tensor): 1-D to 6-D Tensor, the data type is float32, float64, int32 or int64.
666
        shape (list|tuple|Tensor, optional): The output shape is specified
667 668 669 670 671 672 673 674 675 676 677
            by `shape`. Its data type is int32. If a list/tuple, it's length must be
            the same as the dimension size of `x`. If a Tensor, it should be a 1-D Tensor.
            When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the shape may
            be changed each iteration.
        offsets (list|tuple|Variable, optional): Specifies the cropping
            offsets at each dimension. Its data type is int32. If a list/tuple, it's length
            must be the same as the dimension size of `x`. If a Tensor, it should be a 1-D
            Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the offsets may be changed
            each iteration. Default: None, the offsets are 0 at each dimension.
678
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711

    Returns:
        Tensor: The cropped Tensor has same data type with `x`.

    Examples:

        .. code-block:: python

            import paddle
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
            # x.shape = [3, 3]
            # x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

            # shape can be a 1-D Tensor or list or tuple.
            shape = paddle.to_tensor([2, 2], dtype='int32')
            # shape = [2, 2]
            # shape = (2, 2)
            out = paddle.crop(x, shape)
            # out.shape = [2, 2]
            # out = [[1,2], [4,5]]

            # offsets can be a 1-D Tensor or list or tuple.
            offsets = paddle.to_tensor([0, 1], dtype='int32')
            # offsets = [1, 0]
            # offsets = (1, 1)
            out = paddle.crop(x, shape, offsets)
            # out.shape = [2, 2]
            # if offsets = [0, 0], out = [[1,2], [4,5]]
            # if offsets = [0, 1], out = [[2,3], [5,6]]
            # if offsets = [1, 0], out = [[4,5], [7,8]]
            # if offsets = [1, 1], out = [[5,6], [8,9]]

    """
712

713
    helper = LayerHelper('crop_tensor', **locals())
L
Ligoml 已提交
714 715 716
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'crop_tensor'
    )
717
    check_type(shape, 'shape', (list, tuple, Variable), 'crop_tensor')
L
Ligoml 已提交
718 719 720
    check_type(
        offsets, 'offsets', (list, tuple, Variable, type(None)), 'crop_tensor'
    )
721 722 723 724

    if offsets is None:
        offsets = [0] * len(x.shape)

725
    if in_dygraph_mode():
726
        return _C_ops.crop_tensor(x, shape, offsets)
727

728 729 730 731 732 733 734 735
    out = helper.create_variable_for_type_inference(x.dtype)
    ipts = {'X': x}
    attrs = {}

    def _attr_shape_check(shape_val):
        if not isinstance(shape_val, int):
            raise TypeError(
                "Attr(shape)'s dtype of Op(crop_tensor) should be int32, but received: %s."
L
Ligoml 已提交
736 737
                % type(shape_val)
            )
738 739 740
        if shape_val == 0:
            raise ValueError(
                "Attr(shape) of Op(crop_tensor) should not be zero, but received: %s."
L
Ligoml 已提交
741 742
                % str(shape_val)
            )
743 744 745
        if shape_val < -1:
            raise ValueError(
                "When the element in Attr(shape) of Op(crop_tensor) is negative, only -1 is supported, but received: %s."
L
Ligoml 已提交
746 747
                % str(shape_val)
            )
748 749 750 751 752

    def _attr_offsets_check(offset_val):
        if not isinstance(offset_val, int):
            raise TypeError(
                "Attr(offsets)'s dtype of Op(crop_tensor) should be int32, but received: %s."
L
Ligoml 已提交
753 754
                % type(offset_val)
            )
755 756 757
        if offset_val < 0:
            raise ValueError(
                "Attr(offsets) of Op(crop_tensor) should be greater or equal to zero, but received: %s."
L
Ligoml 已提交
758 759
                % str(offset_val)
            )
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799

    if isinstance(offsets, Variable):
        offsets.stop_gradient = True
        ipts['Offsets'] = offsets
        attrs['offsets'] = [-1] * len(x.shape)
    elif utils._contain_var(offsets):
        new_offsets_tensor = []
        offsets_attr = []
        for dim in offsets:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_offsets_tensor.append(dim)
                offsets_attr.append(-1)
            else:
                _attr_offsets_check(dim)
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_offsets_tensor.append(temp_out)
                offsets_attr.append(dim)
        ipts['OffsetsTensor'] = new_offsets_tensor
        attrs['offsets'] = offsets_attr
    else:
        for offset in offsets:
            _attr_offsets_check(offset)
        attrs['offsets'] = offsets

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        ipts['Shape'] = shape
    elif utils._contain_var(shape):
        new_shape_tensor = []
        shape_attr = []
        for dim_size in shape:
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                new_shape_tensor.append(dim_size)
                shape_attr.append(0)
            else:
                _attr_shape_check(dim_size)
                temp_out = helper.create_variable_for_type_inference('int32')
L
Ligoml 已提交
800 801 802
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out
                )
803 804 805 806 807 808 809 810 811
                new_shape_tensor.append(temp_out)
                shape_attr.append(dim_size)
        ipts['ShapeTensor'] = new_shape_tensor
        attrs['shape'] = shape_attr
    else:
        for dim_size in shape:
            _attr_shape_check(dim_size)
        attrs['shape'] = shape

L
Ligoml 已提交
812 813 814 815 816 817
    helper.append_op(
        type='crop_tensor',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs,
    )
818 819 820
    return out


821 822 823 824 825 826 827 828 829
@dygraph_only
def fill_(x, value):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with value inplace.

    Args:
830 831
        x (Tensor): ``x`` is the Tensor we want to filled data inplace
        value (Scale): ``value`` is the value to be filled in x
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848

    Returns:
        x(Tensor): Tensor x filled with value inplace

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.fill_(0)
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
    if not isinstance(value, (float, int)):
        raise TypeError(
L
Ligoml 已提交
849 850 851
            "The type of 'value'  must be int or float, but received %s."
            % (type(value))
        )
852
    if in_dygraph_mode():
853
        return _C_ops.fill_(x, value)
854
    else:
L
Ligoml 已提交
855 856 857
        return _legacy_C_ops.fill_any_(
            x, "value_float", float(value), "value_int", int(value)
        )
858 859 860 861 862 863 864 865 866 867 868


@dygraph_only
def zero_(x):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with zero inplace.

    Args:
869
        x (Tensor): ``x`` is the Tensor we want to filled with zero inplace
870 871

    Returns:
872
        x (Tensor): Tensor x filled with zero inplace
873 874 875 876 877 878 879 880 881 882 883 884

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.zero_()
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
885
    if in_dygraph_mode():
L
Ligoml 已提交
886
        return _C_ops.fill_(x, 0.0)
887
    else:
L
Ligoml 已提交
888 889 890
        return _legacy_C_ops.fill_any_(
            x, "value_float", 0.0, "value_int", int(0)
        )
891 892


893 894 895
@dygraph_only
def fill_diagonal_(x, value, offset=0, wrap=False, name=None):
    """
896 897
    Note:
        This API is ONLY available in Dygraph mode.
L
Ligoml 已提交
898

899
    This function fill the value into the x Tensor's diagonal inplace.
L
Ligoml 已提交
900

901 902 903 904 905 906
    Args:
        x(Tensor): ``x`` is the original Tensor
        value(Scale): ``value`` is the value to filled in x
        offset(int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        wrap(bool,optional): the diagonal 'wrapped' after N columns for tall matrices.
        name(str,optional): Name for the operation (optional, default is None)
L
Ligoml 已提交
907

908 909
    Returns:
        Tensor: Tensor with diagonal filled with value.
910

911 912 913 914 915 916 917
    Examples:
        .. code-block:: python
            import paddle
            x = paddle.ones((4, 3)) * 2
            x.fill_diagonal_(1.0)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]
    """
Z
zhiboniu 已提交
918

919 920 921
    helper = LayerHelper("fill_diagonal_", **locals())
    check_type(x, 'X', (Variable), 'fill_diagonal_')
    dtype = helper.input_dtype('x')
L
Ligoml 已提交
922 923 924 925 926 927
    check_dtype(
        dtype,
        'X',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'fill_diagonal_',
    )
928 929 930 931 932
    check_type(value, 'value', (bool, int, float), 'fill_diagonal_')
    check_type(wrap, 'wrap', (bool), 'fill_diagonal_')

    inshape = x.shape
    inshapeset = set(inshape)
L
Ligoml 已提交
933
    assert len(inshape) >= 2, 'Tensor dims should >= 2 in fill_diagonal_ API'
934
    if len(inshape) > 2:
L
Ligoml 已提交
935 936 937
        assert (
            len(inshapeset) == 1
        ), 'Tensor dims should be equal while input dims > 2 in fill_diagonal_ API'
Z
zhiboniu 已提交
938 939
    if in_dygraph_mode():
        if len(inshape) == 2:
940 941
            return _C_ops.fill_diagonal_(x, value, offset, wrap)
        return _C_ops.fill_diagonal_(x, value, offset, True)
Z
zhiboniu 已提交
942

943
    if len(inshape) == 2:
L
Ligoml 已提交
944 945 946 947 948 949
        return _legacy_C_ops.fill_diagonal_(
            x, 'value', value, 'offset', offset, 'wrap', wrap
        )
    return _legacy_C_ops.fill_diagonal_(
        x, 'value', value, 'offset', offset, 'wrap', True
    )
950 951


952 953
def _fill_diagonal_tensor_impl(x, y, offset=0, dim1=0, dim2=1, inplace=False):
    inshape = x.shape
L
Ligoml 已提交
954 955 956 957 958 959 960
    assert dim1 < len(inshape) and dim1 >= -len(
        inshape
    ), 'dim1 should between [-rank,rank) in fill_diagonal_tensor_'
    assert dim2 < len(inshape) and dim2 >= -len(
        inshape
    ), 'dim2 should between [-rank,rank) in fill_diagonal_tensor_'
    assert len(inshape) >= 2, 'Tensor dims should >= 2 in fill_diagonal_tensor_'
961 962 963 964 965 966 967
    dim1 %= len(inshape)
    dim2 %= len(inshape)

    predshape = []
    for i in range(len(inshape)):
        if i != dim1 and i != dim2:
            predshape.append(inshape[i])
L
Ligoml 已提交
968 969 970 971
    diaglen = min(
        min(inshape[dim1], inshape[dim1] + offset),
        min(inshape[dim2], inshape[dim2] - offset),
    )
972
    predshape.append(diaglen)
973
    assert tuple(predshape) == tuple(
L
Ligoml 已提交
974 975
        y.shape
    ), "the y shape should be {}".format(predshape)
976 977 978 979
    if len(y.shape) == 1:
        y = y.reshape([1, -1])

    if inplace:
Z
zhiboniu 已提交
980
        if in_dygraph_mode():
981
            return _C_ops.fill_diagonal_tensor_(x, y, offset, dim1, dim2)
Z
zhiboniu 已提交
982
        else:
L
Ligoml 已提交
983 984 985
            return _legacy_C_ops.fill_diagonal_tensor_(
                x, y, 'offset', offset, 'dim1', dim1, 'dim2', dim2
            )
Z
zhiboniu 已提交
986
    if in_dygraph_mode():
987
        return _C_ops.fill_diagonal_tensor(x, y, offset, dim1, dim2)
Z
zhiboniu 已提交
988
    else:
L
Ligoml 已提交
989 990 991
        return _legacy_C_ops.fill_diagonal_tensor(
            x, y, 'offset', offset, 'dim1', dim1, 'dim2', dim2
        )
992 993 994 995


def fill_diagonal_tensor_(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
996 997
    Note:
        This API is ONLY available in Dygraph mode.
998 999 1000 1001

    This function fill the source Tensor y into the x Tensor's diagonal inplace.

    Args:
1002 1003 1004 1005 1006 1007
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022

    Returns:
        Tensor: Tensor with diagonal filled with y.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            x.fill_diagonal_tensor_(y)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
L
Ligoml 已提交
1023 1024 1025
    return _fill_diagonal_tensor_impl(
        x, y, offset=offset, dim1=dim1, dim2=dim2, inplace=True
    )
1026 1027 1028 1029 1030 1031 1032


def fill_diagonal_tensor(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
    This function fill the source Tensor y into the x Tensor's diagonal.

    Args:
1033 1034 1035 1036 1037 1038
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053

    Returns:
        Tensor: Tensor with diagonal filled with y.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            nx = x.fill_diagonal_tensor(y)
            print(nx.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
L
Ligoml 已提交
1054 1055 1056
    return _fill_diagonal_tensor_impl(
        x, y, offset=offset, dim1=dim1, dim2=dim2, inplace=False
    )
1057 1058


Z
zhiboniu 已提交
1059 1060 1061
@dygraph_only
def tolist(x):
    """
1062 1063
    Note:
        This API is ONLY available in Dygraph mode.
Z
zhiboniu 已提交
1064 1065 1066 1067

    This function translate the paddle.Tensor to python list.

    Args:
1068
        x (Tensor): ``x`` is the Tensor we want to translate to list.
Z
zhiboniu 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089

    Returns:
        list: A list that contain the same value of current Tensor.


    Examples:
        .. code-block:: python

            import paddle

            t = paddle.to_tensor([0,1,2,3,4])
            expectlist = t.tolist()
            print(expectlist)   #[0, 1, 2, 3, 4]

            expectlist = paddle.tolist(t)
            print(expectlist)   #[0, 1, 2, 3, 4]

    """
    return x.numpy().tolist()


1090 1091 1092
def concat(x, axis=0, name=None):
    """

1093
    Concatenates the input along the axis.
1094 1095

    Args:
1096
        x (list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16,
1097
            float32, float64, int32, int64, int8, uint8. All the Tensors in ``x`` must have same data type.
1098
        axis (int|Tensor, optional): Specify the axis to operate on the input Tensors.
L
Ligoml 已提交
1099
            It's a scalar with data type int or a Tensor with shape [1] and data type int32
1100 1101
            or int64. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``,
            it works the same way as ``axis+R``. Default is 0.
1102
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1103 1104

    Returns:
1105
        Tensor: A Tensor with the same data type as ``x``.
1106 1107 1108

    Examples:
        .. code-block:: python
L
Ligoml 已提交
1109

1110
            import paddle
L
Ligoml 已提交
1111

1112 1113 1114 1115 1116 1117
            x1 = paddle.to_tensor([[1, 2, 3],
                                   [4, 5, 6]])
            x2 = paddle.to_tensor([[11, 12, 13],
                                   [14, 15, 16]])
            x3 = paddle.to_tensor([[21, 22],
                                   [23, 24]])
1118 1119 1120
            zero = paddle.full(shape=[1], dtype='int32', fill_value=0)
            # When the axis is negative, the real axis is (axis + Rank(x))
            # As follow, axis is -1, Rank(x) is 2, the real axis is 1
1121 1122 1123
            out1 = paddle.concat(x=[x1, x2, x3], axis=-1)
            out2 = paddle.concat(x=[x1, x2], axis=0)
            out3 = paddle.concat(x=[x1, x2], axis=zero)
1124 1125 1126 1127 1128 1129 1130 1131 1132
            # out1
            # [[ 1  2  3 11 12 13 21 22]
            #  [ 4  5  6 14 15 16 23 24]]
            # out2 out3
            # [[ 1  2  3]
            #  [ 4  5  6]
            #  [11 12 13]
            #  [14 15 16]]
    """
1133 1134 1135 1136 1137 1138 1139
    input = x
    if in_dygraph_mode():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
1140
        return _C_ops.concat(input, axis)
1141 1142 1143 1144 1145 1146 1147 1148

    if _in_legacy_dygraph():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
        out = _varbase_creator()
1149
        _legacy_C_ops.concat(input, out, 'axis', axis)
1150 1151 1152 1153 1154
        return out

    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
L
Ligoml 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
            check_variable_and_dtype(
                x,
                'input[' + str(id) + ']',
                [
                    'bool',
                    'float16',
                    'float32',
                    'float64',
                    'int32',
                    'int64',
                    'int8',
                    'unit8',
                ],
                'concat',
            )
1170 1171
            if x.dtype != input[0].dtype:
                raise TypeError(
1172 1173
                    "All the Tensors in the input must have the same data type."
                )
1174 1175 1176 1177 1178 1179
    else:
        input = [input]
    check_type(axis, 'axis', (int, Variable), 'concat')

    if isinstance(axis, Variable):
        check_dtype(
L
Ligoml 已提交
1180 1181 1182 1183 1184
            axis.dtype,
            'axis',
            ['int32', 'int64'],
            'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor",
1185
        )
1186 1187 1188 1189 1190 1191 1192 1193 1194

    helper = LayerHelper('concat', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

L
Ligoml 已提交
1195 1196 1197 1198
        assert len(input) == 1, (
            "If the elements of 'input' in concat are Variable(LoDTensorArray), "
            "number of the elements must be 1, but received %s." % len(input)
        )
1199
        out_index = helper.create_variable_for_type_inference(dtype="int32")
L
Ligoml 已提交
1200 1201 1202 1203 1204 1205
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out], 'OutIndex': [out_index]},
            attrs={'axis': axis, 'use_stack': False},
        )
1206 1207 1208 1209 1210
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
1211 1212 1213
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis
1214

L
Ligoml 已提交
1215 1216 1217
        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs
        )
1218
    return out
1219 1220


1221 1222 1223 1224
def broadcast_tensors(input, name=None):
    """
    This OP broadcast a list of tensors following broadcast semantics

L
Ligoml 已提交
1225 1226 1227 1228
    Note:
        If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

    .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1229 1230

    Args:
1231
        input (list|tuple): ``input`` is a Tensor list or Tensor tuple which is with data type bool,
1232 1233
            float16, float32, float64, int32, int64. All the Tensors in ``input`` must have same data type.
            Currently we only support tensors with rank no greater than 5.
1234
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250

    Returns:
        list(Tensor): The list of broadcasted tensors following the same order as ``input``.

    Examples:
        .. code-block:: python

            import paddle
            x1 = paddle.rand([1, 2, 3, 4]).astype('float32')
            x2 = paddle.rand([1, 2, 1, 4]).astype('float32')
            x3 = paddle.rand([1, 1, 3, 1]).astype('float32')
            out1, out2, out3 = paddle.broadcast_tensors(input=[x1, x2, x3])
            # out1, out2, out3: tensors broadcasted from x1, x2, x3 with shape [1,2,3,4]
    """

    num_inputs = len(input)
1251
    if paddle.framework.in_dygraph_mode():
1252
        return _C_ops.broadcast_tensors(input)
1253
    if paddle.framework._non_static_mode():
1254
        return _legacy_C_ops.broadcast_tensors(input, num_inputs)
1255 1256 1257 1258

    check_type(input, 'input', (list, tuple), 'broadcast_tensors')
    if num_inputs < 1:
        raise TypeError(
L
Ligoml 已提交
1259 1260
            "At least 1 tensor is needed to perform broadcast_tensors"
        )
1261 1262 1263 1264

    # Check input types
    for id, x in enumerate(input):
        check_variable_and_dtype(
L
Ligoml 已提交
1265 1266
            x,
            'input[' + str(id) + ']',
1267
            ['bool', 'float32', 'float64', 'int32', 'int64'],
L
Ligoml 已提交
1268 1269
            'broadcast_tensors',
        )
1270 1271
        if x.dtype != input[0].dtype:
            raise TypeError(
L
Ligoml 已提交
1272 1273
                "All the Tensors in the input must have the same data type."
            )
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290

    # Check bcast semantics
    output_shape_r_last_tensor_index = []
    output_shape_r = []

    # Use while loop due to weird behaviour of "range()"
    j = 0
    while j < len(input):
        tensor = input[j]
        shape = list(reversed(tensor.shape))

        i = 0
        while i < len(shape):
            if len(output_shape_r) <= i:
                output_shape_r.append(shape[i])
                output_shape_r_last_tensor_index.append(j)
            else:
L
Ligoml 已提交
1291 1292 1293 1294 1295
                invalid = (
                    output_shape_r[i] != shape[i]
                    and output_shape_r[i] != 1
                    and shape[i] != 1
                )
1296 1297 1298 1299
                if invalid:
                    last_index = output_shape_r_last_tensor_index[i]
                    raise TypeError(
                        "Input tensors to broadcast_tensors does not follow bcast semantics"
1300
                        "Tensor {last_index} conflicts with Tensor {j} in reversed dimension {i}"
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
                    )
                if output_shape_r[i] <= shape[i]:
                    output_shape_r[i] = shape[i]
                    output_shape_r_last_tensor_index[i] = j
            i += 1  # while i < len(shape)
        j += 1  # while j < len(input)

    helper = LayerHelper('broadcast_tensors', **locals())
    i = 0
    out = []
    while i < num_inputs:
        out.append(
1313
            helper.create_variable_for_type_inference(
L
Ligoml 已提交
1314 1315 1316
                dtype=helper.input_dtype()
            )
        )
1317 1318 1319
        i += 1

    inputs = {'X': input}
L
Ligoml 已提交
1320 1321 1322
    helper.append_op(
        type='broadcast_tensors', inputs=inputs, outputs={'Out': out}, attrs={}
    )
1323 1324 1325 1326

    return out


Y
yaoxuefeng 已提交
1327
def flip(x, axis, name=None):
W
Wilber 已提交
1328
    """
Y
yaoxuefeng 已提交
1329
    Reverse the order of a n-D tensor along given axis in axis.
W
Wilber 已提交
1330 1331

    Args:
Y
yaoxuefeng 已提交
1332
        x (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor x
W
Wilber 已提交
1333
            should be float32, float64, int32, int64, bool.
R
Roc 已提交
1334
        axis (list|tuple|int): The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
1335
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
Wilber 已提交
1336 1337

    Returns:
Y
yaoxuefeng 已提交
1338
        Tensor: Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
W
Wilber 已提交
1339 1340 1341 1342 1343

    Examples:
        .. code-block:: python

          import paddle
Y
yaoxuefeng 已提交
1344 1345

          image_shape=(3, 2, 2)
1346
          img = paddle.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape)
R
Roc 已提交
1347 1348
          tmp = paddle.flip(img, [0,1])
          print(tmp) # [[[10,11],[8, 9]], [[6, 7],[4, 5]], [[2, 3],[0, 1]]]
Y
yaoxuefeng 已提交
1349

R
Roc 已提交
1350 1351
          out = paddle.flip(tmp,-1)
          print(out) # [[[11,10],[9, 8]], [[7, 6],[5, 4]], [[3, 2],[1, 0]]]
W
Wilber 已提交
1352
    """
R
Roc 已提交
1353 1354
    if isinstance(axis, int):
        axis = [axis]
H
hong 已提交
1355 1356

    if in_dygraph_mode():
1357
        return _C_ops.flip(x, axis)
H
hong 已提交
1358

Z
zhiboniu 已提交
1359
    if paddle.in_dynamic_mode():
1360
        return _legacy_C_ops.flip(x, "axis", axis)
R
Roc 已提交
1361

W
Wilber 已提交
1362
    helper = LayerHelper("flip", **locals())
Y
yaoxuefeng 已提交
1363 1364
    check_type(x, 'X', (Variable), 'flip')
    dtype = helper.input_dtype('x')
L
Ligoml 已提交
1365 1366 1367 1368 1369 1370
    check_dtype(
        dtype,
        'X',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        'flip',
    )
Y
yaoxuefeng 已提交
1371
    check_type(axis, 'axis', (list, tuple), 'flip')
W
Wilber 已提交
1372 1373 1374 1375 1376
    if name is None:
        out = helper.create_variable_for_type_inference(dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

L
Ligoml 已提交
1377 1378 1379
    helper.append_op(
        type="flip", inputs={"X": x}, outputs={"Out": out}, attrs={"axis": axis}
    )
W
Wilber 已提交
1380
    return out
1381 1382


Z
zmxdream 已提交
1383 1384
def rot90(x, k=1, axes=[0, 1], name=None):
    """
1385
    Rotate a n-D tensor by 90 degrees. The rotation direction and times are specified by axes and the absolute value of k. Rotation direction is from axes[0] towards axes[1] if k > 0, and from axes[1] towards axes[0] for k < 0.
Z
zmxdream 已提交
1386 1387 1388

    Args:
        x (Tensor): The input Tensor(or LoDTensor). The data type of the input Tensor x
Z
zmxdream 已提交
1389
            should be float16, float32, float64, int32, int64, bool. float16 is only supported on gpu.
Z
zmxdream 已提交
1390 1391
        k (int, optional): Direction and number of times to rotate, default value: 1.
        axes (list|tuple, optional): Axes to rotate, dimension must be 2. default value: [0, 1].
Z
zmxdream 已提交
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: Tensor or LoDTensor calculated by rot90 layer. The data type is same with input x.

    Examples:
        .. code-block:: python

          import paddle

          data = paddle.arange(4)
          data = paddle.reshape(data, (2, 2))
L
Ligoml 已提交
1405
          print(data)
Z
zmxdream 已提交
1406 1407 1408
          #[[0, 1],
          # [2, 3]]

Z
zmxdream 已提交
1409
          y = paddle.rot90(data, 1, [0, 1])
L
Ligoml 已提交
1410
          print(y)
Z
zmxdream 已提交
1411 1412 1413
          #[[1, 3],
          # [0, 2]]

Z
zmxdream 已提交
1414
          y= paddle.rot90(data, -1, [0, 1])
L
Ligoml 已提交
1415
          print(y)
Z
zmxdream 已提交
1416 1417 1418
          #[[2, 0],
          # [3, 1]]

Z
zmxdream 已提交
1419 1420
          data2 = paddle.arange(8)
          data2 = paddle.reshape(data2, (2,2,2))
L
Ligoml 已提交
1421
          print(data2)
Z
zmxdream 已提交
1422 1423 1424 1425 1426
          #[[[0, 1],
          #  [2, 3]],
          # [[4, 5],
          #  [6, 7]]]

Z
zmxdream 已提交
1427
          y = paddle.rot90(data2, 1, [1, 2])
Z
zmxdream 已提交
1428 1429 1430 1431 1432
          print(y)
          #[[[1, 3],
          #  [0, 2]],
          # [[5, 7],
          #  [4, 6]]]
Z
zmxdream 已提交
1433 1434 1435 1436 1437
    """

    helper = LayerHelper("rot90", **locals())
    check_type(x, 'X', (Variable), 'rot90')
    dtype = helper.input_dtype('x')
L
Ligoml 已提交
1438 1439 1440 1441 1442 1443
    check_dtype(
        dtype,
        'X',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        'rot90',
    )
Z
zmxdream 已提交
1444 1445 1446 1447 1448
    check_type(axes, 'axes', (list, tuple), 'rot90')

    input_total_dims = len(x.shape)
    total_rot_dims = len(axes)
    if total_rot_dims != 2:
1449 1450
        raise ValueError(
            "expected total rotation axes == 2, but got axes = {}".format(
L
Ligoml 已提交
1451 1452 1453
                total_rot_dims
            )
        )
Z
zmxdream 已提交
1454
    if input_total_dims < 2:
1455 1456
        raise ValueError(
            "expected total dims >= 2, but got total dims = {}".format(
L
Ligoml 已提交
1457 1458 1459
                input_total_dims
            )
        )
Z
zmxdream 已提交
1460 1461 1462

    if not (axes[0] != axes[1] and abs(axes[0] - axes[1]) != input_total_dims):
        raise ValueError(
L
Ligoml 已提交
1463 1464 1465 1466
            "expected rotation axes to be different, but got axis0 = {}, and axis1 = {}".format(
                axes[0], axes[1]
            )
        )
Z
zmxdream 已提交
1467 1468

    if not (axes[0] < input_total_dims and axes[0] >= -input_total_dims):
L
Ligoml 已提交
1469 1470 1471
        raise ValueError(
            "Rotation axis0 out of range, axis0 = {}".format(axes[0])
        )
Z
zmxdream 已提交
1472
    if not (axes[1] < input_total_dims and axes[1] >= -input_total_dims):
L
Ligoml 已提交
1473 1474 1475
        raise ValueError(
            "Rotation axis1 out of range, axis1 = {}".format(axes[1])
        )
Z
zmxdream 已提交
1476

Z
zmxdream 已提交
1477
    k %= 4
Z
zmxdream 已提交
1478 1479 1480 1481 1482 1483
    if k == 0:
        return x
    if k == 2:
        return flip(flip(x, axes[0]), axes[1])

    axes_list = list(range(0, input_total_dims))
L
Ligoml 已提交
1484 1485 1486 1487
    (axes_list[axes[0]], axes_list[axes[1]]) = (
        axes_list[axes[1]],
        axes_list[axes[0]],
    )
Z
zmxdream 已提交
1488 1489 1490 1491 1492 1493 1494
    if k == 1:
        return transpose(flip(x, axes[1]), axes_list)
    else:
        # k == 3
        return flip(transpose(x, axes_list), axes[1])


1495
def flatten(x, start_axis=0, stop_axis=-1, name=None):
1496
    r"""
1497 1498
    Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis.

1499 1500 1501
    Note:
        The output Tensor will share data with origin Tensor and doesn't have a Tensor copy in ``dygraph`` mode. 
        If you want to use the Tensor copy version, please use `Tensor.clone` like ``flatten_clone_x = x.flatten().clone()``.
1502

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
    For Example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 1
            end_axis = 2

          We get:
            Out.shape = (3, 1000 * 100, 2)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 0
            stop_axis = -1

          We get:
            Out.shape = (3 * 100 * 100 * 4)

    Args:
Y
yaoxuefeng 已提交
1532
        x (Tensor): A tensor of number of dimentions >= axis. A tensor with data type float32,
1533
                      float64, int8, int32, int64, uint8.
1534 1535
        start_axis (int): the start axis to flatten
        stop_axis (int): the stop axis to flatten
1536
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1537 1538

    Returns:
Y
yaoxuefeng 已提交
1539
        Tensor: A tensor with the contents of the input tensor, with input \
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
                  axes flattened by indicated start axis and end axis. \
                  A Tensor with data type same as input x.

    Examples:

        .. code-block:: python

            import paddle

            image_shape=(2, 3, 4, 4)
1550

Y
yaoxuefeng 已提交
1551 1552
            x = paddle.arange(end=image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3])
            img = paddle.reshape(x, image_shape)
1553

1554 1555
            out = paddle.flatten(img, start_axis=1, stop_axis=2)
            # out shape is [2, 12, 4]
1556 1557 1558 1559

            # out shares data with img in dygraph mode
            img[0, 0, 0, 0] = -1
            print(out[0, 0, 0]) # [-1]
1560 1561
    """
    if not (isinstance(x, Variable)):
Y
yaoxuefeng 已提交
1562
        raise ValueError("The input x should be a Tensor")
1563

Z
zhiboniu 已提交
1564
    if not paddle.in_dynamic_mode():
1565
        check_variable_and_dtype(
L
Ligoml 已提交
1566 1567
            x,
            'x',
1568
            ['float32', 'float64', 'int8', 'int16', 'int32', 'int64', 'uint8'],
L
Ligoml 已提交
1569 1570
            'flatten',
        )
1571 1572

    x_dim = len(x.shape)
L
Ligoml 已提交
1573 1574 1575 1576 1577
    if (
        not (isinstance(start_axis, int))
        or (start_axis > x_dim - 1)
        or start_axis < -x_dim
    ):
1578
        raise ValueError(
L
Ligoml 已提交
1579 1580 1581 1582 1583 1584 1585
            "The start_axis should be a int, and in range [-rank(x), rank(x))"
        )
    if (
        not (isinstance(stop_axis, int))
        or (stop_axis > x_dim - 1)
        or stop_axis < -x_dim
    ):
1586
        raise ValueError(
L
Ligoml 已提交
1587 1588
            "The stop_axis should be a int, and in range [-rank(x), rank(x))"
        )
1589 1590 1591 1592 1593 1594 1595
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

1596
    if in_dygraph_mode():
1597
        return _C_ops.flatten(x, start_axis, stop_axis)
1598 1599

    if _in_legacy_dygraph():
1600
        dy_out, _ = _legacy_C_ops.flatten_contiguous_range(
L
Ligoml 已提交
1601 1602
            x, 'start_axis', start_axis, 'stop_axis', stop_axis
        )
1603 1604
        return dy_out

1605
    helper = LayerHelper('flatten', **locals())
1606 1607
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
L
Ligoml 已提交
1608 1609 1610 1611 1612 1613
    helper.append_op(
        type='flatten_contiguous_range',
        inputs={"X": x},
        outputs={'Out': out, 'XShape': x_shape},
        attrs={"start_axis": start_axis, "stop_axis": stop_axis},
    )
1614 1615 1616
    return out


1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
@inplace_apis_in_dygraph_only
def flatten_(x, start_axis=0, stop_axis=-1, name=None):
    """
    Inplace version of ``flatten`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_flatten`.
    """
    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Tensor")

    x_dim = len(x.shape)
L
Ligoml 已提交
1627 1628 1629 1630 1631
    if (
        not (isinstance(start_axis, int))
        or (start_axis > x_dim - 1)
        or start_axis < -x_dim
    ):
1632
        raise ValueError(
L
Ligoml 已提交
1633 1634 1635 1636 1637 1638 1639
            "The start_axis should be a int, and in range [-rank(x), rank(x))"
        )
    if (
        not (isinstance(stop_axis, int))
        or (stop_axis > x_dim - 1)
        or stop_axis < -x_dim
    ):
1640
        raise ValueError(
L
Ligoml 已提交
1641 1642
            "The stop_axis should be a int, and in range [-rank(x), rank(x))"
        )
1643 1644 1645 1646 1647 1648 1649
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

1650
    if in_dygraph_mode():
1651
        return _C_ops.flatten_(x, start_axis, stop_axis)
1652 1653

    if _in_legacy_dygraph():
1654
        dy_out, _ = _legacy_C_ops.flatten_contiguous_range_(
L
Ligoml 已提交
1655 1656
            x, 'start_axis', start_axis, 'stop_axis', stop_axis
        )
1657
        return dy_out
1658 1659


Y
yaoxuefeng 已提交
1660
def roll(x, shifts, axis=None, name=None):
1661
    """
L
Ligoml 已提交
1662 1663 1664
    Roll the `x` tensor along the given axis(axes). With specific 'shifts', Elements that
    roll beyond the last position are re-introduced at the first according to 'shifts'.
    If a axis is not specified,
1665 1666 1667
    the tensor will be flattened before rolling and then restored to the original shape.

    Args:
Y
yaoxuefeng 已提交
1668
        x (Tensor): The x tensor as input.
1669
        shifts (int|list|tuple): The number of places by which the elements
Y
yaoxuefeng 已提交
1670
                           of the `x` tensor are shifted.
Y
Yuang Liu 已提交
1671
        axis (int|list|tuple, optional): axis(axes) along which to roll. Default: None
C
Chen Long 已提交
1672 1673 1674
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                For more information, please refer to :ref:`api_guide_Name` .

1675 1676

    Returns:
Y
yaoxuefeng 已提交
1677
        Tensor: A Tensor with same data type as `x`.
1678 1679 1680

    Examples:
        .. code-block:: python
L
Ligoml 已提交
1681

1682 1683
            import paddle

1684 1685 1686
            x = paddle.to_tensor([[1.0, 2.0, 3.0],
                                  [4.0, 5.0, 6.0],
                                  [7.0, 8.0, 9.0]])
Y
yaoxuefeng 已提交
1687
            out_z1 = paddle.roll(x, shifts=1)
Y
yaoxuefeng 已提交
1688
            print(out_z1)
Y
yaoxuefeng 已提交
1689 1690 1691 1692
            #[[9. 1. 2.]
            # [3. 4. 5.]
            # [6. 7. 8.]]
            out_z2 = paddle.roll(x, shifts=1, axis=0)
Y
yaoxuefeng 已提交
1693
            print(out_z2)
Y
yaoxuefeng 已提交
1694 1695 1696
            #[[7. 8. 9.]
            # [1. 2. 3.]
            # [4. 5. 6.]]
Y
Yuang Liu 已提交
1697 1698 1699 1700 1701
            out_z3 = paddle.roll(x, shifts=1, axis=1)
            print(out_z3)
            #[[3. 1. 2.]
            # [6. 4. 5.]
            # [9. 7. 8.]]
1702
    """
Y
yaoxuefeng 已提交
1703
    origin_shape = x.shape
1704 1705
    if type(shifts) == int:
        shifts = [shifts]
Y
yaoxuefeng 已提交
1706 1707 1708 1709
    if type(axis) == int:
        axis = [axis]

    len_origin_shape = len(origin_shape)
1710
    if axis is not None:
Y
yaoxuefeng 已提交
1711 1712 1713
        for i in range(len(axis)):
            if axis[i] >= len_origin_shape or axis[i] < -len_origin_shape:
                raise ValueError(
L
Ligoml 已提交
1714 1715 1716 1717
                    "axis is out of range, it should be in range [{}, {}), but received {}".format(
                        -len_origin_shape, len_origin_shape, axis
                    )
                )
S
sunli 已提交
1718 1719 1720
    else:
        axis = []

F
From00 已提交
1721
    if in_dygraph_mode():
1722
        return _C_ops.roll(x, shifts, axis)
F
From00 已提交
1723 1724

    if _in_legacy_dygraph():
1725
        return _legacy_C_ops.roll(x, 'axis', axis, 'shifts', shifts)
1726

1727 1728
    helper = LayerHelper("roll", **locals())
    check_type(axis, 'axis', (list, tuple), 'roll')
1729

Y
yaoxuefeng 已提交
1730
    out = helper.create_variable_for_type_inference(x.dtype)
1731

1732
    if isinstance(shifts, Variable):
L
Ligoml 已提交
1733 1734 1735 1736 1737 1738
        helper.append_op(
            type='roll',
            inputs={'X': x, "ShiftsTensor": shifts},
            outputs={'Out': out},
            attrs={'axis': axis},
        )
1739 1740
    else:
        check_type(shifts, 'shifts', (list, tuple), 'roll')
L
Ligoml 已提交
1741 1742 1743 1744 1745 1746
        helper.append_op(
            type='roll',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'axis': axis, 'shifts': shifts},
        )
1747
    return out
1748 1749


L
Leo Chen 已提交
1750
def stack(x, axis=0, name=None):
1751
    """
L
Ligoml 已提交
1752
    Stacks all the input tensors ``x`` along ``axis`` dimemsion.
L
Leo Chen 已提交
1753
    All tensors must be of the same shape and same dtype.
L
Ligoml 已提交
1754 1755 1756

    For example, given N tensors of shape [A, B], if ``axis == 0``, the shape of stacked
    tensor is [N, A, B]; if ``axis == 1``, the shape of stacked
L
Leo Chen 已提交
1757
    tensor is [A, N, B], etc.
L
Ligoml 已提交
1758

1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793

    .. code-block:: text

        Case 1:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
            Out.dims = [3, 1, 2]
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]


        Case 2:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]


          Attrs:
L
Leo Chen 已提交
1794
            axis = 1 or axis = -2  # If axis = -2, axis = axis+ndim(x[0])+1 = -2+2+1 = 1.
1795 1796 1797 1798 1799 1800 1801 1802

          Output:
            Out.shape = [1, 3, 2]
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]

    Args:
L
Leo Chen 已提交
1803
        x (list[Tensor]|tuple[Tensor]): Input ``x`` can be a ``list`` or ``tuple`` of tensors, the Tensors in ``x``
1804
                                     must be of the same shape and dtype. Supported data types: float32, float64, int32, int64.
L
Leo Chen 已提交
1805
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``,
L
Ligoml 已提交
1806
                              where ``R`` is the number of dimensions of the first input tensor ``x[0]``.
L
Leo Chen 已提交
1807
                              If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0.
1808
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
L
Ligoml 已提交
1809

1810
    Returns:
L
Leo Chen 已提交
1811
        Tensor: The stacked tensor with same data type as input.
1812

L
Ligoml 已提交
1813
    Example:
1814
        .. code-block:: python
L
Leo Chen 已提交
1815

1816
            import paddle
L
Ligoml 已提交
1817

L
Leo Chen 已提交
1818 1819 1820
            x1 = paddle.to_tensor([[1.0, 2.0]])
            x2 = paddle.to_tensor([[3.0, 4.0]])
            x3 = paddle.to_tensor([[5.0, 6.0]])
L
Ligoml 已提交
1821

L
Leo Chen 已提交
1822 1823
            out = paddle.stack([x1, x2, x3], axis=0)
            print(out.shape)  # [3, 1, 2]
L
Leo Chen 已提交
1824
            print(out)
L
Leo Chen 已提交
1825 1826 1827
            # [[[1., 2.]],
            #  [[3., 4.]],
            #  [[5., 6.]]]
L
Ligoml 已提交
1828 1829 1830 1831 1832 1833 1834

            out = paddle.stack([x1, x2, x3], axis=-2)
            print(out.shape)  # [1, 3, 2]
            print(out)
            # [[[1., 2.],
            #   [3., 4.],
            #   [5., 6.]]]
L
Leo Chen 已提交
1835
    """
1836 1837 1838
    axis = 0 if axis is None else axis

    if in_dygraph_mode():
1839
        return _C_ops.stack(x, axis)
1840 1841

    if _in_legacy_dygraph():
1842
        return _legacy_C_ops.stack(x, 'axis', axis)
1843 1844 1845 1846

    if not isinstance(x, list) and not isinstance(x, tuple):
        # NOTE:(zhiqiu) Only support Variable as input if the Variable is a LOD_TENSOR_ARRAY create by create_array, array_write, array_read, etc.
        # In that case, Variable is array of tensors indeed.
L
Ligoml 已提交
1847 1848 1849 1850
        if (
            isinstance(x, Variable)
            and x.desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY
        ):
1851 1852
            x = [x]
        else:
1853
            raise TypeError(
L
Ligoml 已提交
1854 1855 1856 1857 1858 1859 1860 1861
                "The type of '%s' in %s must be %s, but received %s"
                % (
                    'x',
                    'stack',
                    'list[Tensor], tuple[Tensor] or TensorArray',
                    type(x),
                )
            )
1862 1863 1864 1865 1866

    helper = LayerHelper('stack', **locals())

    out = helper.create_variable_for_type_inference(x[0].dtype)
    if x[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
L
Ligoml 已提交
1867 1868 1869 1870
        assert len(x) == 1, (
            "If the elements of 'x' in stack are Variable(LoDTensorArray), "
            "number of the elements must be 1, but received %s." % len(x)
        )
1871 1872 1873
        out_index = helper.create_variable_for_type_inference(dtype="int32")

        for i in x:
L
Ligoml 已提交
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
            check_variable_and_dtype(
                i,
                'x',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'stack',
            )

        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': x[0]},
            outputs={'Out': [out], 'OutIndex': [out_index]},
            attrs={'axis': axis, 'use_stack': True},
        )
1887
    else:
L
Ligoml 已提交
1888 1889 1890 1891 1892 1893
        helper.append_op(
            type='stack',
            inputs={'X': x},
            outputs={'Y': out},
            attrs={'axis': axis},
        )
1894 1895

    return out
1896 1897


1898
def split(x, num_or_sections, axis=0, name=None):
1899 1900
    """
    Split the input tensor into multiple sub-Tensors.
L
Ligoml 已提交
1901

1902
    Args:
1903
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, uint8, int8, int32 or int64.
L
Ligoml 已提交
1904
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections``
1905 1906 1907 1908
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of specified ``axis``.
L
Ligoml 已提交
1909
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type
1910 1911 1912 1913
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
1914
    Returns:
1915
        list(Tensor): The list of segmented Tensors.
L
Ligoml 已提交
1916

1917 1918
    Example:
        .. code-block:: python
L
Ligoml 已提交
1919

1920
            import paddle
L
Ligoml 已提交
1921

L
Leo Chen 已提交
1922 1923
            # x is a Tensor of shape [3, 9, 5]
            x = paddle.rand([3, 9, 5])
1924

L
Leo Chen 已提交
1925 1926 1927 1928
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=1)
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1929 1930

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1)
L
Leo Chen 已提交
1931 1932 1933
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
1934 1935

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1)
L
Leo Chen 已提交
1936 1937 1938
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
L
Ligoml 已提交
1939

L
Leo Chen 已提交
1940
            # axis is negative, the real axis is (rank(x) + axis)=1
1941
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2)
L
Leo Chen 已提交
1942 1943 1944
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1945
    """
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
    input = x
    dim = axis
    if _non_static_mode():
        num = None
        attrs = ()

        if isinstance(dim, Variable):
            dim = dim.numpy()
            dim = dim.item(0)
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
        dim = (len(input.shape) + dim) if dim < 0 else dim
        attrs += ('axis', dim)

        if isinstance(num_or_sections, int):
            num = num_or_sections
            attrs += ('num', num_or_sections)
        elif isinstance(num_or_sections, (list, tuple)):
            num = len(num_or_sections)
            if utils._contain_var(num_or_sections):
                for index, item in enumerate(num_or_sections):
                    if isinstance(item, Variable):
L
Ligoml 已提交
1967 1968 1969
                        num_or_sections[index] = num_or_sections[index].numpy()[
                            0
                        ]
1970 1971 1972 1973 1974 1975
                attrs += ('sections', list(num_or_sections))
            else:
                attrs += ('sections', list(num_or_sections))
        else:
            raise TypeError(
                "The type of 'num_or_sections' in split must be int, list or tuple in imperative mode, but "
L
Ligoml 已提交
1976 1977
                "received %s." % (type(num_or_sections))
            )
1978
        if in_dygraph_mode():
C
Charles-hit 已提交
1979 1980 1981 1982
            if isinstance(num_or_sections, int):
                return _C_ops.split_with_num(input, num_or_sections, dim)
            else:
                return _C_ops.split(input, num_or_sections, dim)
1983 1984
        elif _in_legacy_dygraph():
            out = [_varbase_creator() for n in range(num)]
1985
            _legacy_C_ops.split(input, out, *attrs)
1986
            return out
1987

L
Ligoml 已提交
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
    check_variable_and_dtype(
        input,
        'input',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'uint8',
            'int8',
        ],
        'split',
    )
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
    check_type(num_or_sections, 'num_or_sections', (list, int, tuple), 'split')
    check_type(dim, 'dim', (int, Variable), 'split')
    if isinstance(dim, Variable):
        check_dtype(dim.dtype, 'dim', ['int32', 'int64'], 'split')

    helper = LayerHelper('split', **locals())

    input_shape = input.shape
    inputs = {'X': input}
    attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}

    def _get_SectionsTensorList(one_list):
        tensor_list = []
        unk_dim_idx = -1
        for idx, dim_size in enumerate(one_list):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                tensor_list.append(dim_size)
            else:
L
Ligoml 已提交
2022
                assert isinstance(dim_size, int)
2023 2024 2025
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one value of 'num_or_section' in split can "
L
Ligoml 已提交
2026 2027 2028
                        "be -1. But received num_or_section[%d] is also -1."
                        % idx
                    )
2029 2030
                    unk_dim_idx = idx
                temp_out = helper.create_variable_for_type_inference('int32')
L
Ligoml 已提交
2031 2032 2033
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out
                )
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
                tensor_list.append(temp_out)
        return tensor_list

    if isinstance(dim, Variable):
        dim.stop_gradient = True
        inputs['AxisTensor'] = dim
    else:
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
        dim = (len(input_shape) + dim) if dim < 0 else dim
        attrs['axis'] = dim

    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        if isinstance(dim, int) and input_shape[dim] > 0:
L
Ligoml 已提交
2048 2049 2050 2051 2052 2053
            assert input_shape[dim] % num_or_sections == 0, (
                "The input's size along the split dimension "
                "must be evenly divisible by Attr(num_or_sections). "
                "But %d is not evenly divisible by %d. "
                % (num_or_sections, input_shape[dim])
            )
2054 2055 2056
        num = num_or_sections
    else:
        if isinstance(dim, int) and input_shape[dim] > 0:
L
Ligoml 已提交
2057 2058 2059
            assert (
                len(num_or_sections) <= input_shape[dim]
            ), 'len(num_or_sections) must not be more than input.shape[dim].'
2060 2061
        num = len(num_or_sections)
        attrs['sections'] = list(
L
Ligoml 已提交
2062 2063 2064 2065 2066
            map(
                lambda ele: -1 if isinstance(ele, Variable) else ele,
                num_or_sections,
            )
        )
2067 2068
        if utils._contain_var(num_or_sections):
            inputs['SectionsTensorList'] = _get_SectionsTensorList(
L
Ligoml 已提交
2069 2070
                num_or_sections
            )
2071 2072 2073 2074 2075

    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]
L
Ligoml 已提交
2076 2077 2078
    helper.append_op(
        type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs
    )
2079
    return outs
2080 2081


L
Leo Chen 已提交
2082
def squeeze(x, axis=None, name=None):
2083
    """
L
Ligoml 已提交
2084 2085 2086 2087
    Squeeze the dimension(s) of size 1 of input tensor x's shape.

    Note that the output Tensor will share data with origin Tensor and doesn't have a
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version,
2088
    please use `Tensor.clone` like ``squeeze_clone_x = x.squeeze().clone()``.
2089

L
Ligoml 已提交
2090 2091
    If axis is provided, it will remove the dimension(s) by given axis that of size 1.
    If the dimension of given axis is not of size 1, the dimension remain unchanged.
L
Leo Chen 已提交
2092
    If axis is not provided, all dims equal of size 1 will be removed.
2093 2094 2095 2096 2097 2098

    .. code-block:: text

        Case1:

          Input:
L
Leo Chen 已提交
2099 2100
            x.shape = [1, 3, 1, 5]  # If axis is not provided, all dims equal of size 1 will be removed.
            axis = None
2101
          Output:
L
Leo Chen 已提交
2102
            out.shape = [3, 5]
2103 2104 2105 2106

        Case2:

          Input:
L
Leo Chen 已提交
2107 2108 2109 2110
            x.shape = [1, 3, 1, 5]  # If axis is provided, it will remove the dimension(s) by given axis that of size 1.
            axis = 0
          Output:
            out.shape = [3, 1, 5]
L
Ligoml 已提交
2111

L
Leo Chen 已提交
2112 2113 2114
        Case4:

          Input:
L
Ligoml 已提交
2115
            x.shape = [1, 3, 1, 5]  # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged.
L
Leo Chen 已提交
2116
            axis = [0, 2, 3]
2117
          Output:
L
Leo Chen 已提交
2118
            out.shape = [3, 5]
2119

L
Leo Chen 已提交
2120
        Case4:
2121 2122

          Input:
L
Ligoml 已提交
2123
            x.shape = [1, 3, 1, 5]  # If axis is negative, axis = axis + ndim (number of dimensions in x).
L
Leo Chen 已提交
2124
            axis = [-2]
2125
          Output:
L
Leo Chen 已提交
2126
            out.shape = [1, 3, 5]
2127 2128

    Args:
2129
        x (Tensor): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
2130
        axis (int|list|tuple, optional): An integer or list/tuple of integers, indicating the dimensions to be squeezed. Default is None.
2131 2132 2133
                          The range of axis is :math:`[-ndim(x), ndim(x))`.
                          If axis is negative, :math:`axis = axis + ndim(x)`.
                          If axis is None, all the dimensions of x of size 1 will be removed.
2134 2135 2136
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.

    Returns:
2137
        Tensor: Squeezed Tensor with the same data type as input Tensor.
2138 2139 2140

    Examples:
        .. code-block:: python
2141

2142
            import paddle
L
Ligoml 已提交
2143

L
Leo Chen 已提交
2144 2145
            x = paddle.rand([5, 1, 10])
            output = paddle.squeeze(x, axis=1)
2146 2147

            print(x.shape)  # [5, 1, 10]
L
Leo Chen 已提交
2148
            print(output.shape)  # [5, 10]
2149

2150 2151 2152 2153
            # output shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(output[0, 0]) # [10.]

2154
    """
L
Leo Chen 已提交
2155 2156 2157 2158 2159 2160
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)
2161

2162 2163 2164
    input = x
    axes = axis
    if in_dygraph_mode():
2165
        return _C_ops.squeeze(input, axes)
2166
    if _in_legacy_dygraph():
2167
        out, _ = _legacy_C_ops.squeeze2(input, 'axes', axes)
2168 2169 2170
        return out

    helper = LayerHelper("squeeze", **locals())
L
Ligoml 已提交
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
    check_variable_and_dtype(
        input,
        'input',
        [
            'float16',
            'float32',
            'float64',
            'bool',
            'int8',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'squeeze',
    )
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'squeeze')
    attrs = {}
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        attrs["axes"] = axes
    elif isinstance(axes, (list, tuple)):
        if utils._contain_var(axes):
            attrs["axes"] = utils._convert_to_tensor_list(axes)
        else:
            attrs["axes"] = axes

2199 2200
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
L
Ligoml 已提交
2201 2202 2203 2204 2205 2206
    helper.append_op(
        type="squeeze2",
        inputs={"X": input},
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
2207 2208

    return out
2209 2210


2211
@inplace_apis_in_dygraph_only
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
def squeeze_(x, axis=None, name=None):
    """
    Inplace version of ``squeeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_squeeze`.
    """
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)

2224 2225 2226
    input = x
    axes = axis
    if in_dygraph_mode():
2227
        return _C_ops.squeeze_(input, axes)
2228
    if _in_legacy_dygraph():
2229
        out, _ = _legacy_C_ops.squeeze2_(input, 'axes', axes)
2230
        return out
2231 2232


L
Ligoml 已提交
2233 2234 2235 2236 2237 2238 2239 2240
def unique_consecutive(
    x,
    return_inverse=False,
    return_counts=False,
    axis=None,
    dtype="int64",
    name=None,
):
D
duanboqiang 已提交
2241 2242 2243
    r"""
    Eliminates all but the first element from every consecutive group of equivalent elements.

L
Ligoml 已提交
2244 2245
    Note:
        This function is different from :func:`paddle.unique` in the sense that this function
D
duanboqiang 已提交
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
        only eliminates consecutive duplicate values. This semantics is similar to `std::unique` in C++.

    Args:
        x(Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique consecutive tensor. Default is False.
        return_counts(bool, optional): If True, also return the counts for each unique consecutive element.
            Default is False.
        axis(int, optional): The axis to apply unique consecutive. If None, the input will be flattened.
            Default is None.
        dtype(np.dtype|str, optional): The data type `inverse` tensor: int32 or int64.
            Default: int64.
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default is None.

    Returns:
        tuple: (out, inverse, counts). `out` is the unique consecutive tensor for `x`. `inverse` is provided only if `return_inverse` is True. `counts` is provided only if `return_counts` is True.

    Example:
        .. code-block:: python

L
Ligoml 已提交
2267
            import paddle
D
duanboqiang 已提交
2268 2269

            x = paddle.to_tensor([1, 1, 2, 2, 3, 1, 1, 2])
L
Ligoml 已提交
2270
            output = paddle.unique_consecutive(x) #
2271 2272 2273 2274
            print(output)
            # Tensor(shape=[5], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 2, 3, 1, 2])

D
duanboqiang 已提交
2275
            _, inverse, counts = paddle.unique_consecutive(x, return_inverse=True, return_counts=True)
2276 2277 2278 2279 2280 2281
            print(inverse)
            # Tensor(shape=[8], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [0, 0, 1, 1, 2, 3, 3, 4])
            print(counts)
            # Tensor(shape=[5], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [2, 2, 1, 2, 1])
D
duanboqiang 已提交
2282 2283

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
L
Ligoml 已提交
2284
            output = paddle.unique_consecutive(x, axis=0) #
2285 2286 2287 2288 2289
            print(output)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1],
            #         [2, 1, 3]])
D
duanboqiang 已提交
2290 2291

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
L
Ligoml 已提交
2292
            output = paddle.unique_consecutive(x, axis=0) #
2293 2294 2295 2296 2297
            print(output)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1],
            #         [2, 1, 3]])
D
duanboqiang 已提交
2298 2299 2300 2301 2302 2303 2304
    """

    if axis is None:
        axis = []
    else:
        axis = [axis]
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2305
    if in_dygraph_mode():
2306
        out, inverse, counts = _C_ops.unique_consecutive(
L
Ligoml 已提交
2307 2308
            x, return_inverse, return_counts, axis, attr_dtype
        )
2309 2310 2311 2312 2313 2314 2315 2316 2317
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)
    elif paddle.in_dynamic_mode():
2318
        out, inverse, counts = _legacy_C_ops.unique_consecutive(
L
Ligoml 已提交
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
            x,
            'dtype',
            attr_dtype,
            'return_inverse',
            return_inverse,
            'return_counts',
            return_counts,
            'axis',
            axis,
        )
D
duanboqiang 已提交
2329 2330 2331 2332 2333 2334 2335 2336
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)
L
Ligoml 已提交
2337 2338 2339 2340 2341 2342
    check_variable_and_dtype(
        x,
        "input",
        ['float32', 'float64', 'int32', 'int64'],
        'unique_consecutive',
    )
D
duanboqiang 已提交
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
    check_type(return_inverse, 'return_inverse', bool, 'unique_consecutive')
    check_type(return_counts, 'return_counts', bool, 'unique_consecutive')
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique_consecutive')
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique_consecutive')
    helper = LayerHelper('unique_consecutive', **locals())
    attrs = {
        'dtype': attr_dtype,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
    }
L
Ligoml 已提交
2355 2356 2357 2358 2359 2360 2361 2362 2363
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True
    )
    inverse = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
    counts = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
D
duanboqiang 已提交
2364 2365 2366 2367 2368 2369
    outputs = {"Out": out, "Index": inverse, "Counts": counts}
    outs = [out]
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        outs.append(counts)
L
Ligoml 已提交
2370 2371 2372
    helper.append_op(
        type="unique_consecutive", inputs={"X": x}, attrs=attrs, outputs=outputs
    )
D
duanboqiang 已提交
2373 2374 2375 2376 2377
    if len(outs) == 1:
        return outs[0]
    return tuple(outs)


L
Ligoml 已提交
2378 2379 2380 2381 2382 2383 2384 2385 2386
def unique(
    x,
    return_index=False,
    return_inverse=False,
    return_counts=False,
    axis=None,
    dtype="int64",
    name=None,
):
2387
    r"""
Z
Zhang Ting 已提交
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
    Returns the unique elements of `x` in ascending order.

    Args:
        x(Tensor): The input tensor, it's data type should be float32, float64, int32, int64.
        return_index(bool, optional): If True, also return the indices of the input tensor that
            result in the unique Tensor.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique tensor.
        return_counts(bool, optional): If True, also return the counts for each unique element.
        axis(int, optional): The axis to apply unique. If None, the input will be flattened.
            Default: None.
Z
Zhang Ting 已提交
2399 2400
        dtype(np.dtype|str, optional): The date type of `indices` or `inverse` tensor: int32 or int64.
            Default: int64.
Z
Zhang Ting 已提交
2401 2402 2403 2404
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default: None.

    Returns: 
2405
        tuple (out, indices, inverse, counts). `out` is the unique tensor for `x`. `indices` is \
Z
Zhang Ting 已提交
2406 2407 2408 2409 2410
            provided only if `return_index` is True. `inverse` is provided only if `return_inverse` \
            is True. `counts` is provided only if `return_counts` is True.

    Examples:
        .. code-block:: python
2411

Z
Zhang Ting 已提交
2412 2413
            import paddle

2414
            x = paddle.to_tensor([2, 3, 3, 1, 5, 3])
Z
Zhang Ting 已提交
2415 2416 2417
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [1 2 3 5]
            _, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
2418 2419 2420 2421 2422 2423 2424 2425 2426
            print(indices)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [3, 0, 1, 4])
            print(inverse)
            # Tensor(shape=[6], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 2, 2, 0, 3, 2])
            print(counts)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 1, 3, 1])
Z
Zhang Ting 已提交
2427

2428
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
Z
Zhang Ting 已提交
2429
            unique = paddle.unique(x)
2430 2431 2432
            print(unique)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [0, 1, 2, 3])
Z
Zhang Ting 已提交
2433 2434

            unique = paddle.unique(x, axis=0)
2435 2436 2437 2438
            print(unique)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1]])
Z
Zhang Ting 已提交
2439 2440 2441 2442 2443
    """
    if axis is None:
        axis = []
    else:
        axis = [axis]
Z
Zhang Ting 已提交
2444
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2445 2446
    if _non_static_mode():
        if in_dygraph_mode():
2447
            out, indices, inverse, counts = _C_ops.unique(
L
Ligoml 已提交
2448 2449
                x, return_index, return_inverse, return_counts, axis, attr_dtype
            )
2450
        if _in_legacy_dygraph():
2451
            out, inverse, indices, counts = _legacy_C_ops.unique(
L
Ligoml 已提交
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
                x,
                'dtype',
                attr_dtype,
                'return_index',
                return_index,
                'return_inverse',
                return_inverse,
                'return_counts',
                return_counts,
                'axis',
                axis,
                "is_sorted",
                True,
            )
Z
Zhang Ting 已提交
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
        outs = [out]
        if return_index:
            outs.append(indices)
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)

        if len(outs) == 1:
            return outs[0]

        return tuple(outs)

L
Ligoml 已提交
2479 2480 2481
    check_variable_and_dtype(
        x, "input", ['float32', 'float64', 'int32', 'int64'], 'unique'
    )
Z
Zhang Ting 已提交
2482 2483 2484
    check_type(return_index, 'return_index', bool, 'unique')
    check_type(return_inverse, 'return_inverse', bool, 'unique')
    check_type(return_counts, 'return_counts', bool, 'unique')
Z
Zhang Ting 已提交
2485
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique')
Z
Zhang Ting 已提交
2486 2487 2488 2489 2490
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique')

    helper = LayerHelper('unique', **locals())
    attrs = {
Z
Zhang Ting 已提交
2491
        'dtype': attr_dtype,
Z
Zhang Ting 已提交
2492 2493 2494 2495
        "return_index": return_index,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
L
Ligoml 已提交
2496
        "is_sorted": True,
Z
Zhang Ting 已提交
2497
    }
L
Ligoml 已提交
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True
    )
    indices = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
    inverse = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
    counts = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
2510 2511 2512 2513
    outputs = {
        "Out": out,
        "Indices": indices,
        "Index": inverse,
L
Ligoml 已提交
2514
        "Counts": counts,
2515
    }
Z
Zhang Ting 已提交
2516 2517 2518 2519 2520 2521 2522 2523
    outs = [out]
    if return_index:
        outs.append(indices)
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        outs.append(counts)

L
Ligoml 已提交
2524 2525 2526
    helper.append_op(
        type="unique", inputs={"X": x}, attrs=attrs, outputs=outputs
    )
Z
Zhang Ting 已提交
2527 2528 2529 2530 2531 2532 2533

    if len(outs) == 1:
        return outs[0]

    return tuple(outs)


2534
def unsqueeze(x, axis, name=None):
2535
    """
2536 2537 2538
    Insert single-dimensional entries to the shape of input Tensor ``x``. Takes one
    required argument axis, a dimension or list of dimensions that will be inserted.
    Dimension indices in axis are as seen in the output tensor.
2539

L
Ligoml 已提交
2540 2541
    Note that the output Tensor will share data with origin Tensor and doesn't have a
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version,
2542 2543
    please use `Tensor.clone` like ``unsqueeze_clone_x = x.unsqueeze(-1).clone()``.

2544
    Args:
2545
        x (Tensor): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
L
Ligoml 已提交
2546 2547
        axis (int|list|tuple|Tensor): Indicates the dimensions to be inserted. The data type is ``int32`` .
                                    If ``axis`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
2548 2549 2550
                                    If ``axis`` is a Tensor, it should be an 1-D Tensor .
                                    If ``axis`` is negative, ``axis = axis + ndim(x) + 1``.
        name (str|None): Name for this layer. Please refer to :ref:`api_guide_Name`, Default None.
2551 2552

    Returns:
2553
        Tensor: Unsqueezed Tensor with the same data type as input Tensor.
2554 2555 2556

    Examples:
        .. code-block:: python
2557

2558 2559
            import paddle

2560 2561
            x = paddle.rand([5, 10])
            print(x.shape)  # [5, 10]
L
Ligoml 已提交
2562

2563 2564
            out1 = paddle.unsqueeze(x, axis=0)
            print(out1.shape)  # [1, 5, 10]
L
Ligoml 已提交
2565 2566

            out2 = paddle.unsqueeze(x, axis=[0, 2])
2567
            print(out2.shape)  # [1, 5, 1, 10]
2568

L
Leo Chen 已提交
2569
            axis = paddle.to_tensor([0, 1, 2])
L
Ligoml 已提交
2570
            out3 = paddle.unsqueeze(x, axis=axis)
2571
            print(out3.shape)  # [1, 1, 1, 5, 10]
2572 2573 2574 2575 2576 2577

            # out1, out2, out3 share data with x in dygraph mode
            x[0, 0] = 10.
            print(out1[0, 0, 0]) # [10.]
            print(out2[0, 0, 0, 0]) # [10.]
            print(out3[0, 0, 0, 0, 0]) # [10.]
L
Ligoml 已提交
2578

2579
    """
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
    input = x
    axes = axis
    if _non_static_mode():
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
            axes = axes.numpy().tolist()
        elif isinstance(axes, (list, tuple)):
            axes = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in axes
            ]
        if _in_legacy_dygraph():
2593
            out, _ = _legacy_C_ops.unsqueeze2(input, 'axes', axes)
2594
            return out
2595
        return _C_ops.unsqueeze(input, axes)
2596 2597

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
L
Ligoml 已提交
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
    check_variable_and_dtype(
        input,
        'input',
        [
            'float16',
            'float32',
            'float64',
            'bool',
            'int8',
            'int16',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'unsqueeze',
    )
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
        if utils._contain_var(axes):
            inputs["AxesTensorList"] = utils._convert_to_tensor_list(axes)
        else:
            attrs["axes"] = axes

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
L
Ligoml 已提交
2632 2633 2634 2635 2636 2637
    helper.append_op(
        type="unsqueeze2",
        inputs=inputs,
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
2638

2639
    return out
2640 2641


2642
@inplace_apis_in_dygraph_only
2643 2644 2645 2646 2647
def unsqueeze_(x, axis, name=None):
    """
    Inplace version of ``unsqueeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_unsqueeze`.
    """
2648 2649 2650 2651 2652 2653 2654 2655
    input = x
    axes = axis
    if isinstance(axes, int):
        axes = [axes]
    elif isinstance(axes, Variable):
        axes = axes.numpy().tolist()
    elif isinstance(axes, (list, tuple)):
        axes = [
2656
            item.numpy().item(0) if isinstance(item, Variable) else item
2657
            for item in axes
2658
        ]
2659
    if in_dygraph_mode():
2660 2661
        return _C_ops.unsqueeze_(input, axes)
    out, _ = _legacy_C_ops.unsqueeze2_(input, 'axes', axes)
2662
    return out
2663 2664


2665
def gather(x, index, axis=None, name=None):
2666
    """
2667 2668
    Output is obtained by gathering entries of ``axis``
    of ``x`` indexed by ``index`` and concatenate them together.
2669 2670 2671 2672 2673 2674

    .. code-block:: text


                Given:

2675
                x = [[1, 2],
2676 2677 2678
                     [3, 4],
                     [5, 6]]

2679 2680
                index = [1, 2]
                axis=[0]
2681 2682 2683

                Then:

2684
                out = [[3, 4],
L
Ligoml 已提交
2685
                       [5, 6]]
2686

2687
    Args:
2688
        x (Tensor): The source input tensor with rank>=1. Supported data type is
2689 2690
            int32, int64, float32, float64 and uint8 (only for CPU),
            float16 (only for GPU).
2691
        index (Tensor): The index input tensor with rank=1. Data type is int32 or int64.
2692
        axis (Tensor|int, optional): The axis of input to be gathered, it's can be int or a Tensor with data type is int32 or int64. The default value is None, if None, the ``axis`` is 0.
2693 2694
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
2695 2696

    Returns:
2697
        output (Tensor): The output is a tensor with the same rank as ``x``.
L
Ligoml 已提交
2698

2699 2700 2701 2702 2703 2704
    Examples:

        .. code-block:: python

            import paddle

2705 2706
            input = paddle.to_tensor([[1,2],[3,4],[5,6]])
            index = paddle.to_tensor([0,1])
2707 2708
            output = paddle.gather(input, index, axis=0)
            # expected output: [[1,2],[3,4]]
2709
    """
2710 2711
    if axis is None:
        axis = 0
2712

2713
    if in_dygraph_mode():
2714
        return _C_ops.gather(x, index, axis)
2715
    if _in_legacy_dygraph():
2716
        axis = axis.item() if isinstance(axis, paddle.Tensor) else axis
L
Ligoml 已提交
2717 2718 2719
        return _legacy_C_ops.gather(
            x, index, None, "axis", axis, "overwrite", False
        )
2720 2721

    check_variable_and_dtype(
L
Ligoml 已提交
2722 2723
        x,
        'x',
2724
        ['float16', 'float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
L
Ligoml 已提交
2725 2726
        'gather',
    )
2727
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather')
2728

2729 2730 2731
    if isinstance(axis, Variable):
        check_variable_and_dtype(axis, 'axis', ['int32', 'int64'], 'gather')

2732
    helper = LayerHelper('gather', **locals())
2733
    dtype = helper.input_dtype('x')
2734
    out = helper.create_variable_for_type_inference(dtype)
2735
    if not isinstance(axis, Variable):
L
Ligoml 已提交
2736 2737 2738 2739 2740 2741
        helper.append_op(
            type="gather",
            inputs={"X": x, "Index": index},
            attrs={'axis': axis, 'overwrite': False},
            outputs={"Out": out},
        )
2742
    else:
L
Ligoml 已提交
2743 2744 2745 2746 2747 2748
        helper.append_op(
            type="gather",
            inputs={"X": x, "Index": index, "Axis": axis},
            attrs={"overwrite": False},
            outputs={"Out": out},
        )
2749

2750
    return out
myq406450149's avatar
myq406450149 已提交
2751 2752 2753 2754


def unbind(input, axis=0):
    """
S
swtkiwi 已提交
2755

myq406450149's avatar
myq406450149 已提交
2756
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
2757

myq406450149's avatar
myq406450149 已提交
2758
    Args:
2759
        input (Tensor): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
L
Ligoml 已提交
2760
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind.
2761
            If :math:`axis < 0`, the dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
myq406450149's avatar
myq406450149 已提交
2762
    Returns:
2763
        list(Tensor): The list of segmented Tensor variables.
myq406450149's avatar
myq406450149 已提交
2764 2765 2766

    Example:
        .. code-block:: python
2767

myq406450149's avatar
myq406450149 已提交
2768
            import paddle
2769

C
Chen Long 已提交
2770 2771
            # input is a Tensor which shape is [3, 4, 5]
            input = paddle.rand([3, 4, 5])
L
Ligoml 已提交
2772

2773
            [x0, x1, x2] = paddle.unbind(input, axis=0)
myq406450149's avatar
myq406450149 已提交
2774 2775 2776
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
C
Chen Long 已提交
2777

2778
            [x0, x1, x2, x3] = paddle.unbind(input, axis=1)
myq406450149's avatar
myq406450149 已提交
2779 2780 2781 2782 2783
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]
    """
2784
    if in_dygraph_mode():
2785
        return _C_ops.unbind(input, axis)
2786

myq406450149's avatar
myq406450149 已提交
2787
    if not isinstance(axis, (int)):
L
Ligoml 已提交
2788 2789 2790
        raise TypeError(
            "The type of 'axis'  must be int, but received %s." % (type(axis))
        )
myq406450149's avatar
myq406450149 已提交
2791 2792 2793 2794 2795
    if isinstance(axis, np.generic):
        axis = np.asscalar(axis)
    input_shape = input.shape
    axis_ = axis if axis >= 0 else len(input_shape) + axis
    num = input_shape[axis_]
2796
    if _in_legacy_dygraph():
2797
        return _legacy_C_ops.unbind(input, num, 'axis', axis)
2798 2799 2800 2801

    helper = LayerHelper("unbind", **locals())
    check_type(input, 'input', (Variable), 'unbind')
    dtype = helper.input_dtype()
L
Ligoml 已提交
2802 2803 2804
    check_dtype(
        dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'], 'unbind'
    )
myq406450149's avatar
myq406450149 已提交
2805 2806 2807 2808
    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]
L
Ligoml 已提交
2809 2810 2811 2812 2813 2814
    helper.append_op(
        type="unbind",
        inputs={"X": input},
        outputs={"Out": outs},
        attrs={"axis": axis},
    )
myq406450149's avatar
myq406450149 已提交
2815
    return outs
L
lilong12 已提交
2816 2817


S
ShenLiang 已提交
2818 2819 2820 2821
def scatter(x, index, updates, overwrite=True, name=None):
    """
    **Scatter Layer**
    Output is obtained by updating the input on selected indices based on updates.
L
Ligoml 已提交
2822

S
ShenLiang 已提交
2823
    .. code-block:: python
L
Ligoml 已提交
2824

S
ShenLiang 已提交
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
        import numpy as np
        #input:
        x = np.array([[1, 1], [2, 2], [3, 3]])
        index = np.array([2, 1, 0, 1])
        # shape of updates should be the same as x
        # shape of updates with dim > 1 should be the same as input
        updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]])
        overwrite = False
        # calculation:
        if not overwrite:
            for i in range(len(index)):
                x[index[i]] = np.zeros((2))
        for i in range(len(index)):
            if (overwrite):
                x[index[i]] = updates[i]
            else:
                x[index[i]] += updates[i]
        # output:
        out = np.array([[3, 3], [6, 6], [1, 1]])
        out.shape # [3, 2]

L
Ligoml 已提交
2846
    **NOTICE**: The order in which updates are applied is nondeterministic,
S
ShenLiang 已提交
2847 2848 2849 2850 2851 2852
    so the output will be nondeterministic if index contains duplicates.

    Args:
        x (Tensor): The input N-D Tensor with ndim>=1. Data type can be float32, float64.
        index (Tensor): The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
        updates (Tensor): update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 should be the same as input.
L
Ligoml 已提交
2853 2854
        overwrite (bool): The mode that updating the output when there are same indices.

S
sunzhongkai588 已提交
2855
            If True, use the overwrite mode to update the output of the same index,
L
Ligoml 已提交
2856 2857
                if False, use the accumulate mode to update the output of the same index.Default value is True.

S
ShenLiang 已提交
2858
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
L
Ligoml 已提交
2859

S
ShenLiang 已提交
2860 2861 2862 2863 2864
    Returns:
        Tensor: The output is a Tensor with the same shape as x.

    Examples:
        .. code-block:: python
L
Ligoml 已提交
2865

S
ShenLiang 已提交
2866 2867
            import paddle

2868 2869 2870
            x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32')
            index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
            updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
L
Ligoml 已提交
2871

S
ShenLiang 已提交
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
            output1 = paddle.scatter(x, index, updates, overwrite=False)
            # [[3., 3.],
            #  [6., 6.],
            #  [1., 1.]]

            output2 = paddle.scatter(x, index, updates, overwrite=True)
            # CPU device:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # GPU device maybe have two results because of the repeated numbers in index
            # result 1:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # result 2:
            # [[3., 3.],
            #  [2., 2.],
            #  [1., 1.]]
    """
J
Jiabin Yang 已提交
2892
    if in_dygraph_mode():
2893
        return _C_ops.scatter(x, index, updates, overwrite)
J
Jiabin Yang 已提交
2894 2895
    else:
        if _in_legacy_dygraph():
L
Ligoml 已提交
2896 2897 2898
            return _legacy_C_ops.scatter(
                x, index, updates, 'overwrite', overwrite
            )
J
Jiabin Yang 已提交
2899 2900
        else:
            check_variable_and_dtype(
L
Ligoml 已提交
2901 2902 2903 2904 2905
                x,
                'dtype',
                ['float32', 'float64', 'float16', 'int32', 'int64'],
                'scatter',
            )
J
Jiabin Yang 已提交
2906 2907 2908
            check_type(overwrite, 'overwrite', bool, 'scatter')
            helper = LayerHelper('scatter', **locals())
            out = helper.create_variable_for_type_inference(x.dtype)
L
Ligoml 已提交
2909 2910 2911 2912 2913 2914
            helper.append_op(
                type="scatter",
                inputs={"X": x, "Ids": index, "Updates": updates},
                attrs={'overwrite': overwrite},
                outputs={"Out": out},
            )
J
Jiabin Yang 已提交
2915
            return out
S
ShenLiang 已提交
2916 2917


2918
@inplace_apis_in_dygraph_only
2919 2920 2921 2922 2923
def scatter_(x, index, updates, overwrite=True, name=None):
    """
    Inplace version of ``scatter`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_scatter`.
    """
2924
    if in_dygraph_mode():
2925 2926
        return _C_ops.scatter_(x, index, updates, overwrite)
    return _legacy_C_ops.scatter_(x, index, updates, 'overwrite', overwrite)
2927 2928


2929
def scatter_nd_add(x, index, updates, name=None):
2930
    r"""
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971

    Output is obtained by applying sparse addition to a single value
    or slice in a Tensor.

    :attr:`x` is a Tensor with ndim :math:`R`
    and :attr:`index` is a Tensor with ndim :math:`K` . Thus, :attr:`index`
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates`
    is a Tensor with ndim :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + x.shape[index.shape[-1]:]` .

    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`x` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text

        Given:

        * Case 1:
            x = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:

            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            x = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            x.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:

            output = [[67, 19], [-16, -27]]

    Args:
Z
Zeng Jinle 已提交
2972
        x (Tensor): The x input. Its dtype should be int32, int64, float32, float64.
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= x.ndim.
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd_add op, and it must have the same dtype
                            as x. It must have the shape index.shape[:-1] + x.shape[index.shape[-1]:].
        name (str|None): The output tensor name. If set None, the layer will be named automatically.

    Returns:
        output (Tensor): The output is a tensor with the same shape and dtype as x.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.rand(shape=[3, 5, 9, 10], dtype='float32')
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
C
Chen Long 已提交
2990 2991 2992
            index = paddle.to_tensor([[1, 1],
                                    [0, 1],
                                    [1, 3]], dtype='int64')
L
Ligoml 已提交
2993

2994
            output = paddle.scatter_nd_add(x, index, updates)
C
Chen Long 已提交
2995 2996
            print(output.shape)
            # [3, 5, 9, 10]
2997
    """
2998
    if in_dygraph_mode():
2999
        return _C_ops.scatter_nd_add(x, index, updates)
3000 3001
    else:
        if _in_legacy_dygraph():
3002
            op = getattr(_legacy_C_ops, 'scatter_nd_add')
3003 3004 3005 3006 3007 3008 3009 3010
            return op(x, index, updates)
        else:
            if x.dtype != updates.dtype:
                raise ValueError("x and updates must have same data type.")

            helper = LayerHelper('scatter_nd_add', **locals())
            dtype = helper.input_dtype(input_param_name='x')
            output = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
3011 3012 3013 3014 3015
            helper.append_op(
                type="scatter_nd_add",
                inputs={"X": x, "Index": index, "Updates": updates},
                outputs={"Out": output},
            )
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
            return output


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)`
    is equal to :code:`scatter_nd_add(paddle.zeros(shape, updates.dtype), index, updates)` .
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated.
    Because of the numerical approximation issues, the different order of repeated elements
    in :attr:`index` may cause different results. The specific calculation method can be
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= len(shape).
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd op. Its dtype should be float32, float64.
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
        name (str|None): The output Tensor name. If set None, the layer will be named automatically.

    Returns:
        output (Tensor): The output is a tensor with the same type as :attr:`updates` .

    Examples:

        .. code-block:: python

            import paddle

3049 3050 3051
            index = paddle.to_tensor([[1, 1],
                                    [0, 1],
                                    [1, 3]], dtype="int64")
3052 3053 3054 3055 3056 3057
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
            shape = [3, 5, 9, 10]

            output = paddle.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)
3058 3059


3060 3061 3062
def chunk(x, chunks, axis=0, name=None):
    """
    Split the input tensor into multiple sub-Tensors.
L
Ligoml 已提交
3063

3064 3065 3066
    Args:
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        chunks(int): The number of tensor to be split along the certain axis.
L
Ligoml 已提交
3067
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type
3068 3069 3070 3071 3072 3073
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list(Tensor): The list of segmented Tensors.
L
Ligoml 已提交
3074

3075
    Examples:
3076
        .. code-block:: python
L
Ligoml 已提交
3077

3078
            import paddle
L
Ligoml 已提交
3079

3080
            x = paddle.rand([3, 9, 5])
3081

3082
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=1)
3083 3084 3085 3086
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

L
Ligoml 已提交
3087

3088 3089 3090 3091 3092 3093 3094 3095
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
    """
    check_type(chunks, 'chunks', (int), 'chunk')
3096
    return split(x, num_or_sections=chunks, axis=axis, name=name)
3097 3098


L
lilong12 已提交
3099 3100
def tile(x, repeat_times, name=None):
    """
L
lilong12 已提交
3101 3102

    Construct a new Tensor by repeating ``x`` the number of times given by ``repeat_times``.
3103
    After tiling, the value of the i'th dimension of the output is equal to ``x.shape[i]*repeat_times[i]``.
L
lilong12 已提交
3104 3105 3106

    Both the number of dimensions of ``x`` and the number of elements in ``repeat_times`` should be less than or equal to 6.

L
lilong12 已提交
3107
    Args:
L
lilong12 已提交
3108
        x (Tensor): The input tensor, its data type should be bool, float32, float64, int32 or int64.
3109
        repeat_times (list|tuple|Tensor): The number of repeating times. If repeat_times is a list or tuple, all its elements
L
lilong12 已提交
3110 3111 3112
            should be integers or 1-D Tensors with the data type int32. If repeat_times is a Tensor, it should be an 1-D Tensor with the data type int32.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

L
lilong12 已提交
3113
    Returns:
3114
        N-D Tensor. The data type is the same as ``x``. The size of the i-th dimension is equal to ``x[i] * repeat_times[i]``.
L
lilong12 已提交
3115

L
lilong12 已提交
3116 3117
    Examples:
        .. code-block:: python
L
lilong12 已提交
3118

L
lilong12 已提交
3119
            import paddle
L
lilong12 已提交
3120

3121
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
3122
            out = paddle.tile(data, repeat_times=[2, 1])
3123 3124 3125 3126
            print(out)
            # Tensor(shape=[2, 3], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3],
            #         [1, 2, 3]])
L
lilong12 已提交
3127

3128
            out = paddle.tile(data, repeat_times=(2, 2))
3129 3130 3131 3132
            print(out)
            # Tensor(shape=[2, 6], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3, 1, 2, 3],
            #         [1, 2, 3, 1, 2, 3]])
L
lilong12 已提交
3133

3134
            repeat_times = paddle.to_tensor([1, 2], dtype='int32')
L
lilong12 已提交
3135
            out = paddle.tile(data, repeat_times=repeat_times)
3136 3137 3138
            print(out)
            # Tensor(shape=[1, 6], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3, 1, 2, 3]])
L
lilong12 已提交
3139
    """
H
hong 已提交
3140
    if in_dygraph_mode():
3141
        if isinstance(repeat_times, core.eager.Tensor):
L
Ligoml 已提交
3142 3143 3144
            assert (
                repeat_times.ndim == 1
            ), "Only support ndim == 1 while repeat_times is a Tensor."
3145 3146
            repeat_times = repeat_times.numpy().tolist()

3147
        return _C_ops.tile(x, repeat_times)
H
hong 已提交
3148 3149

    if _in_legacy_dygraph():
3150
        return _legacy_C_ops.tile(x, 'repeat_times', repeat_times)
H
hong 已提交
3151

3152 3153
    check_type(repeat_times, 'repeat_times', (list, tuple, Variable), 'tile')
    if isinstance(repeat_times, Variable):
L
Ligoml 已提交
3154 3155 3156
        assert (
            len(repeat_times.shape) == 1
        ), 'repeat_times must be an 1-D Tensor.'
3157 3158 3159
    else:
        for elem in repeat_times:
            if isinstance(elem, Variable):
L
Ligoml 已提交
3160 3161 3162
                assert (
                    len(elem.shape) == 1
                ), 'Elements in repeat_times must be 1-D Tensors or integers.'
3163
            else:
T
tianshuo78520a 已提交
3164
                type_tuple = (int, np.int32, np.int64)
L
Ligoml 已提交
3165 3166 3167
                assert isinstance(
                    elem, type_tuple
                ), 'Elements in repeat_times must be 1-D Tensors or integers.'
3168

L
Ligoml 已提交
3169 3170 3171
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'tile'
    )
L
lilong12 已提交
3172
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
L
lilong12 已提交
3173 3174
        raise ValueError(
            "When the date type is bool for the input 'x' of tile op, you "
L
lilong12 已提交
3175
            "must set its stop_gradient to be True by "
L
Ligoml 已提交
3176 3177
            "some_var.stop_gradient == True supporting some_var is the input."
        )
3178 3179

    helper = LayerHelper('tile', **locals())
L
lilong12 已提交
3180

L
lilong12 已提交
3181 3182 3183
    inputs = {"X": [x]}
    attrs = {}

L
lilong12 已提交
3184 3185 3186 3187 3188 3189 3190
    def get_attr_repeat_times(list_repeat_times):
        attrs_repeat_times = []
        for idx, times in enumerate(list_repeat_times):
            if isinstance(times, Variable):
                attrs_repeat_times.append(-1)
            else:
                attrs_repeat_times.append(times)
L
Ligoml 已提交
3191 3192 3193
                assert (
                    times > 0
                ), "All elements in repeat_times must be positive for tile."
L
lilong12 已提交
3194 3195 3196 3197
        return attrs_repeat_times

    if isinstance(repeat_times, Variable):
        repeat_times.stop_gradient = True
3198 3199
        inputs['RepeatTimes'] = repeat_times
        attrs['repeat_times'] = [-1]
L
lilong12 已提交
3200 3201 3202
    elif isinstance(repeat_times, (list, tuple)):
        attrs['repeat_times'] = get_attr_repeat_times(repeat_times)
        if utils._contain_var(repeat_times):
3203
            inputs['repeat_times_tensor'] = utils._convert_to_tensor_list(
L
Ligoml 已提交
3204 3205
                repeat_times
            )
L
lilong12 已提交
3206 3207 3208

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
3209 3210 3211
    helper.append_op(
        type='tile', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
L
lilong12 已提交
3212
    return out
3213 3214


L
lilong12 已提交
3215 3216 3217 3218 3219 3220 3221 3222 3223
def expand_as(x, y, name=None):
    """

    Expand the input tensor ``x`` to the same shape as the input tensor ``y``.

    Both the number of dimensions of ``x`` and ``y`` must be less than or equal to 6, and the number of dimensions of ``y`` must be greather than or equal to that of ``x``. The dimension to expand must have a value of 1.

    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
3224
        y (Tensor): The input tensor that gives the shape to expand to.
L
lilong12 已提交
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor: A Tensor with the same shape as ``y``. The data type is the same as ``x``.

    Examples:
        .. code-block:: python

            import paddle

3235 3236
            data_x = paddle.to_tensor([1, 2, 3], 'int32')
            data_y = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], 'int32')
L
lilong12 已提交
3237
            out = paddle.expand_as(data_x, data_y)
3238 3239 3240 3241
            print(out)
            # Tensor(shape=[2, 3], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3],
            #         [1, 2, 3]])
L
lilong12 已提交
3242
    """
H
hong 已提交
3243
    if in_dygraph_mode():
3244
        return _C_ops.expand_as(x, None, y.shape)
H
hong 已提交
3245

H
hong 已提交
3246
    if _non_static_mode():
3247
        return _legacy_C_ops.expand_as_v2(x, 'target_shape', y.shape)
3248

L
Ligoml 已提交
3249 3250 3251
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand_as'
    )
L
lilong12 已提交
3252 3253 3254 3255 3256 3257 3258
    check_type(y, 'y', Variable, 'expand_as')

    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
        raise ValueError(
            "When the data type of input 'x' for expand_as is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
L
Ligoml 已提交
3259 3260
            "some_var as the input 'x'."
        )
3261
    inputs = {"X": [x], "Y": [y]}
L
lilong12 已提交
3262

3263
    helper = LayerHelper('expand_as', **locals())
L
lilong12 已提交
3264 3265
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
3266 3267 3268 3269 3270 3271
    helper.append_op(
        type='expand_as_v2',
        inputs=inputs,
        attrs={'target_shape': y.shape},
        outputs={'Out': out},
    )
L
lilong12 已提交
3272 3273 3274
    return out


3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
def broadcast_to(x, shape, name=None):
    """

    Broadcast the input tensor to a given shape.

    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to broadcast to must have a value 1.


    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
        shape (list|tuple|Tensor): The result shape after broadcasting. The data type is int32. If shape is a list or tuple, all its elements
L
Ligoml 已提交
3286
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32.
3287
            The value -1 in shape means keeping the corresponding dimension unchanged.
3288
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
    Returns:
        N-D Tensor: A Tensor with the given shape. The data type is the same as ``x``.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([1, 2, 3], dtype='int32')
            out = paddle.broadcast_to(data, shape=[2, 3])
            print(out)
            # [[1, 2, 3], [1, 2, 3]]
    """
3302
    if in_dygraph_mode():
3303
        return _C_ops.expand(x, shape)
3304
    if _in_legacy_dygraph():
3305
        return _legacy_C_ops.expand_v2(x, 'shape', shape)
3306 3307

    if isinstance(shape, Variable):
L
Ligoml 已提交
3308
        assert len(shape.shape) == 1, 'shape must be an 1-D Tensor.'
3309 3310 3311
    else:
        for elem in shape:
            if isinstance(elem, Variable):
L
Ligoml 已提交
3312 3313 3314
                assert (
                    len(elem.shape) == 1
                ), 'Elements in shape must be 1-D Tensors or integers.'
3315
            else:
T
tianshuo78520a 已提交
3316
                type_tuple = (int, np.int32, np.int64)
L
Ligoml 已提交
3317 3318 3319
                assert isinstance(
                    elem, type_tuple
                ), 'Elements in shape must be 1-D Tensors or integers.'
3320

L
Ligoml 已提交
3321 3322 3323
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'broadcast_to'
    )
3324 3325 3326 3327 3328 3329
    check_type(shape, 'shape', (list, tuple, Variable), 'broadcast_to')
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
        raise ValueError(
            "When the data type of input 'x' for broadcast_to is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
L
Ligoml 已提交
3330 3331
            "some_var as the input."
        )
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344

    inputs = {"X": [x]}
    attrs = {}

    helper = LayerHelper('expand', **locals())

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
                attrs_expand_shape.append(-1)
            else:
                attrs_expand_shape.append(shape)
L
Ligoml 已提交
3345 3346 3347
                assert (
                    shape > 0 or shape == -1
                ), "All elements in shape of broadcast_to must be positive or -1."
3348 3349 3350 3351 3352 3353 3354 3355 3356
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
L
Ligoml 已提交
3357 3358
                shape
            )
3359 3360 3361

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
3362 3363 3364
    helper.append_op(
        type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
3365 3366 3367
    return out


3368 3369 3370 3371 3372
def expand(x, shape, name=None):
    """

    Expand the input tensor to a given shape.

3373
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. And the number of dimensions of ``x`` should be less than the number of elements in ``shape``. The dimension to expand must have a value 1.
3374 3375 3376


    Args:
C
Chen Long 已提交
3377
        x (Tensor): The input Tensor, its data type is bool, float32, float64, int32 or int64.
L
lilong12 已提交
3378
        shape (list|tuple|Tensor): The result shape after expanding. The data type is int32. If shape is a list or tuple, all its elements
L
Ligoml 已提交
3379
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32.
L
lilong12 已提交
3380
            The value -1 in shape means keeping the corresponding dimension unchanged.
3381 3382 3383
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
lilong12 已提交
3384
        N-D Tensor: A Tensor with the given shape. The data type is the same as ``x``.
3385 3386 3387 3388 3389 3390

    Examples:
        .. code-block:: python

            import paddle

3391
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
3392
            out = paddle.expand(data, shape=[2, 3])
3393
            print(out)
3394 3395
            # [[1, 2, 3], [1, 2, 3]]
    """
H
hong 已提交
3396
    if in_dygraph_mode():
3397
        return _C_ops.expand(x, shape)
H
hong 已提交
3398

Z
zhiboniu 已提交
3399
    if paddle.in_dynamic_mode():
3400
        return _legacy_C_ops.expand_v2(x, 'shape', shape)
3401

3402
    if isinstance(shape, Variable):
L
Ligoml 已提交
3403
        assert len(shape.shape) == 1, 'shape must be an 1-D Tensor.'
3404 3405 3406
    else:
        for elem in shape:
            if isinstance(elem, Variable):
L
Ligoml 已提交
3407 3408 3409
                assert (
                    len(elem.shape) == 1
                ), 'Elements in shape must be 1-D Tensors or integers.'
3410
            else:
T
tianshuo78520a 已提交
3411
                type_tuple = (int, np.int32, np.int64)
L
Ligoml 已提交
3412 3413 3414
                assert isinstance(
                    elem, type_tuple
                ), 'Elements in shape must be 1-D Tensors or integers.'
3415

3416
    check_variable_and_dtype(
L
Ligoml 已提交
3417 3418 3419 3420 3421
        x,
        'x',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'expand',
    )
3422
    check_type(shape, 'shape', (list, tuple, Variable), 'expand')
L
lilong12 已提交
3423
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
L
Ligoml 已提交
3424 3425 3426 3427 3428 3429
        raise ValueError(
            "When the data type of input 'x' for expand is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
            "some_var as the input."
        )
3430

3431 3432 3433
    inputs = {"X": [x]}
    attrs = {}

3434
    helper = LayerHelper('expand', **locals())
3435 3436 3437 3438 3439

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
L
lilong12 已提交
3440
                attrs_expand_shape.append(-2)
3441 3442
            else:
                attrs_expand_shape.append(shape)
L
Ligoml 已提交
3443 3444 3445
                assert (
                    shape > 0 or shape == -1
                ), "All elements in shape of expand must be positive or -1."
3446 3447 3448 3449 3450 3451 3452 3453 3454
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
L
Ligoml 已提交
3455 3456
                shape
            )
3457 3458 3459

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
3460 3461 3462
    helper.append_op(
        type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
3463
    return out
L
lilong12 已提交
3464 3465


3466 3467
def reshape(x, shape, name=None):
    """
3468
    Changes the shape of ``x`` without changing its data.
3469

3470
    Note that the output Tensor will share data with origin Tensor and doesn't
L
Ligoml 已提交
3471 3472
    have a Tensor copy in ``dygraph`` mode.
    If you want to use the Tensor copy version, please use `Tensor.clone` like
3473 3474
    ``reshape_clone_x = x.reshape([-1]).clone()``.

3475 3476
    Some tricks exist when specifying the target shape.

3477
        - 1. -1 means the value of this dimension is inferred from the total element number of x and remaining dimensions. Thus one and only one dimension can be set -1.
3478

3479
        - 2. 0 means the actual dimension value is going to be copied from the corresponding dimension of x. The index of 0s in shape can not exceed the dimension of x.
3480 3481 3482

    Here are some examples to explain it.

3483
        - 1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [6, 8], the reshape operator will transform x into a 2-D tensor with shape [6, 8] and leaving x's data unchanged.
3484

3485
        - 2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape specified is [2, 3, -1, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this case, one dimension of the target shape is set to -1, the value of this dimension is inferred from the total element number of x and remaining dimensions.
3486

3487
        - 3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case, besides -1, 0 means the actual dimension value is going to be copied from the corresponding dimension of x.
3488 3489

    Args:
3490 3491
        x (Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
        shape (list|tuple|Tensor): Define the target shape. At most one dimension of the target shape can be -1.
3492 3493
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
                        If ``shape`` is an Tensor, it should be an 1-D Tensor .
3494
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3495 3496 3497 3498 3499 3500 3501 3502 3503

    Returns:
        Tensor: A reshaped Tensor with the same data type as ``x``.

    Examples:
        .. code-block:: python

            import paddle

3504 3505
            x = paddle.rand([2, 4, 6], dtype="float32")
            positive_four = paddle.full([1], 4, "int32")
3506

3507 3508 3509
            out = paddle.reshape(x, [-1, 0, 3, 2])
            print(out)
            # the shape is [2,4,3,2].
3510

3511 3512
            out = paddle.reshape(x, shape=[positive_four, 12])
            print(out)
3513
            # the shape of out_2 is [4, 12].
3514

3515
            shape_tensor = paddle.to_tensor([8, 6], dtype=paddle.int32)
3516
            out = paddle.reshape(x, shape=shape_tensor)
3517
            print(out.shape)
3518
            # the shape is [8, 6].
3519 3520 3521 3522 3523
            # out shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(out[0, 0])
            # the value is [10.]

3524
    """
3525 3526 3527 3528 3529 3530
    actual_shape = None
    act = None
    inplace = False

    if in_dygraph_mode():
        tmp_tensor_type = core.eager.Tensor
L
Ligoml 已提交
3531
        # TODO(zhiqiu): enable inplace in dygraph mode.
3532 3533 3534 3535 3536 3537
        if inplace:
            warnings.warn(
                "Inplace on reshape is not allowed and will be discarded in dygraph mode currently."
            )
        if isinstance(shape, (list, tuple)):
            shape = [
3538
                item.numpy().item(0)
L
Ligoml 已提交
3539 3540 3541
                if isinstance(item, tmp_tensor_type)
                else item
                for item in shape
3542
            ]
3543
            out = _C_ops.reshape(x, shape)
3544 3545
        elif isinstance(shape, tmp_tensor_type):
            shape.stop_gradient = True
3546
            out = _C_ops.reshape(x, shape)
3547 3548 3549
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
L
Ligoml 已提交
3550 3551
                " got '{}.'".format(type(shape))
            )
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565

        return dygraph_utils._append_activation_in_dygraph(out, act)
    else:
        if _in_legacy_dygraph():
            tmp_tensor_type = Variable
            if inplace:
                warnings.warn(
                    "Inplace on reshape is not allowed and will be discarded in dygraph mode currently."
                )
            if isinstance(shape, (list, tuple)):
                shape = [
                    item.numpy().item(0) if isinstance(item, Variable) else item
                    for item in shape
                ]
3566
                out, _ = _legacy_C_ops.reshape2(x, None, 'shape', shape)
3567 3568
            elif isinstance(shape, tmp_tensor_type):
                shape.stop_gradient = True
3569
                out, _ = _legacy_C_ops.reshape2(x, shape)
3570 3571 3572
            else:
                raise ValueError(
                    "shape must be an instance of `list`, `tuple` or `Variable`,"
L
Ligoml 已提交
3573 3574
                    " got '{}.'".format(type(shape))
                )
3575 3576 3577

            return dygraph_utils._append_activation_in_dygraph(out, act)

L
Ligoml 已提交
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
    check_variable_and_dtype(
        x,
        'x',
        [
            'float16',
            'float32',
            'float64',
            'int16',
            'int32',
            'int64',
            'bool',
            'uint16',
        ],
        'reshape',
    )
3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
    check_type(shape, 'shape', (list, tuple, Variable), 'reshape')
    check_type(actual_shape, 'actual_shape', (Variable, type(None)), 'reshape')

    helper = LayerHelper("reshape2", **locals())

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one dimension value of 'shape' in reshape can "
                        "be -1. But received shape[%d] is also -1.\n"
                        "\n\t# N = x.shape()[2]\t\t# N is an int. "
                        "(NOT recommend under @to_static)\n\tN = paddle.shape(x)[2]\t\t"
                        "# N is a Tensor. (Recommend)\n\tz = paddle.reshape([N, -1, 4])"
                        "\t# z.shape is [-1, -1, 4]\n\n"
                        "    If your target shape in Reshape represents dynamic shape, "
                        "please turn it into a Tensor under @to_static. See above example for details."
L
Ligoml 已提交
3616 3617
                        % dim_idx
                    )
3618 3619 3620 3621 3622
                    unk_dim_idx = dim_idx
                elif dim_size == 0:
                    assert dim_idx < len(x.shape), (
                        "The index of 0 in `shape` must be less than "
                        "the input tensor X's dimensions. "
L
Ligoml 已提交
3623 3624 3625
                        "But received shape[%d] = 0, X's dimensions = %d."
                        % (dim_idx, len(x.shape))
                    )
3626 3627 3628 3629
                else:
                    assert dim_size > 0, (
                        "Each dimension value of 'shape' in reshape must not "
                        "be negative except one unknown dimension. "
L
Ligoml 已提交
3630 3631 3632
                        "But received shape[%d] = %s."
                        % (dim_idx, str(dim_size))
                    )
3633 3634 3635 3636 3637 3638 3639 3640
        return attrs_shape

    inputs = {"X": x}
    attrs = {}
    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs["Shape"] = shape
    elif isinstance(shape, (list, tuple)):
L
Ligoml 已提交
3641 3642 3643 3644
        assert len(shape) > 0, (
            "The size of 'shape' in reshape can't be zero, "
            "but received %s." % len(shape)
        )
3645 3646 3647 3648 3649 3650 3651
        attrs["shape"] = get_attr_shape(shape)
        if utils._contain_var(shape):
            inputs['ShapeTensor'] = utils._convert_to_tensor_list(shape)
        elif isinstance(actual_shape, Variable):
            actual_shape.stop_gradient = True
            inputs["Shape"] = actual_shape

L
Ligoml 已提交
3652 3653 3654 3655 3656
    out = (
        x
        if inplace
        else helper.create_variable_for_type_inference(dtype=x.dtype)
    )
3657
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Ligoml 已提交
3658 3659 3660 3661 3662 3663
    helper.append_op(
        type="reshape2",
        inputs=inputs,
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
3664 3665

    return helper.append_activation(out)
3666 3667


3668
@inplace_apis_in_dygraph_only
3669 3670 3671 3672 3673
def reshape_(x, shape, name=None):
    """
    Inplace version of ``reshape`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_reshape`.
    """
3674 3675 3676 3677 3678
    if in_dygraph_mode():
        tmp_tensor_type = core.eager.Tensor
        if isinstance(shape, (list, tuple)):
            shape = [
                item.numpy().item(0)
L
Ligoml 已提交
3679 3680 3681
                if isinstance(item, tmp_tensor_type)
                else item
                for item in shape
3682
            ]
3683
            out = _C_ops.reshape_(x, shape)
3684 3685
        elif isinstance(shape, tmp_tensor_type):
            shape.stop_gradient = True
3686
            out = _C_ops.reshape_(x, shape)
3687 3688 3689
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
L
Ligoml 已提交
3690 3691
                " got '{}.'".format(type(shape))
            )
3692

3693
        return out
3694 3695 3696 3697 3698 3699
    else:
        if isinstance(shape, (list, tuple)):
            shape = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in shape
            ]
3700
            out, _ = _legacy_C_ops.reshape2_(x, None, 'shape', shape)
3701 3702 3703 3704 3705 3706 3707 3708 3709
            return out
        elif isinstance(shape, Variable):
            shape.stop_gradient = True
            # NOTE(pangyoki): Cannot support the case where the shape Tensor
            # is negative. In the infer_shape stage, the input's dim will
            # be changed to a negative number.
            # Thus, convert Shape Tensor to list firstly and then call
            # reshape inplace op.
            shape_list = shape.numpy().tolist()
3710
            out, _ = _legacy_C_ops.reshape2_(x, None, 'shape', shape_list)
3711
            return out
3712 3713


3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
def gather_nd(x, index, name=None):
    """

    This function is actually a high-dimensional extension of :code:`gather`
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional
    tensor of :attr:`index` into :attr:`input`, where each element defines
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
3733 3734 3735 3736 3737 3738 3739
                x =  [[[ 0,  1,  2,  3],
                       [ 4,  5,  6,  7],
                       [ 8,  9, 10, 11]],
                      [[12, 13, 14, 15],
                       [16, 17, 18, 19],
                       [20, 21, 22, 23]]]
                x.shape = (2, 3, 4)
3740 3741 3742 3743

            * Case 1:
                index = [[1]]

3744 3745
                gather_nd(x, index)
                         = [x[1, :, :]]
3746 3747 3748 3749 3750 3751 3752
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

3753 3754
                gather_nd(x, index)
                         = [x[0, 2, :]]
3755 3756 3757 3758 3759
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

3760 3761
                gather_nd(x, index)
                         = [x[1, 2, 3]]
3762 3763 3764 3765 3766 3767
                         = [23]

    Args:
        x (Tensor): The input Tensor which it's data type should be bool, float32, float64, int32, int64.
        index (Tensor): The index input with rank > 1, index.shape[-1] <= input.rank.
                        Its dtype should be int32, int64.
3768
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3769 3770 3771

    Returns:
        output (Tensor): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
L
Ligoml 已提交
3772

3773 3774 3775
    Examples:

        .. code-block:: python
L
Ligoml 已提交
3776

3777
            import paddle
L
Ligoml 已提交
3778

3779 3780 3781
            x = paddle.to_tensor([[[1, 2], [3, 4], [5, 6]],
                                  [[7, 8], [9, 10], [11, 12]]])
            index = paddle.to_tensor([[0, 1]])
L
Ligoml 已提交
3782

3783 3784 3785
            output = paddle.gather_nd(x, index) #[[3, 4]]

    """
3786
    if in_dygraph_mode():
3787
        return _C_ops.gather_nd(x, index)
3788 3789
    else:
        if _in_legacy_dygraph():
3790
            return _legacy_C_ops.gather_nd(x, index)
3791
    check_variable_and_dtype(
L
Ligoml 已提交
3792 3793 3794 3795 3796
        x,
        'x',
        ['bool', 'float32', 'float64', 'int16', 'int32', 'int64'],
        'gather_np',
    )
3797 3798 3799 3800
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather_np')
    helper = LayerHelper('gather_nd', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
3801 3802 3803 3804 3805
    helper.append_op(
        type="gather_nd",
        inputs={"X": x, "Index": index},
        outputs={"Out": output},
    )
3806
    return output
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854


def strided_slice(x, axes, starts, ends, strides, name=None):
    """
    This operator produces a slice of ``x`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of
    slicing and if the ``strides`` is negative, slice operation is in the opposite direction.
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``.
    Following examples will explain how strided_slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
                strides = [1, 1]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [2, 0]
                strides = [1, -1]
            Then:
                result = [ [8, 7, 6], ]
        Case3:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
                strides = [1, 3]
            Then:
                result = [ [2], ]
3855

3856
    Args:
3857
        x (Tensor): An N-D ``Tensor``. The data type is ``bool``, ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of                                                                                          it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.                                                                                    It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .                                                                                     It represents ending indices of corresponding axis in ``axes``.
        strides (list|tuple|Tensor): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``strides`` is an Tensor, it should be an 1-D Tensor .                                                                                  It represents slice step of corresponding axis in ``axes``.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor:  A ``Tensor`` with the same dimension as ``x``. The data type is same as ``x``.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.zeros(shape=[3,4,5,6], dtype="float32")
            # example 1:
            # attr starts is a list which doesn't contain Tensor.
            axes = [1, 2, 3]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            strides_1 = [1, 1, 1]
            strides_2 = [1, 1, 2]
            sliced_1 = paddle.strided_slice(x, axes=axes, starts=starts, ends=ends, strides=strides_1)
L
Ligoml 已提交
3884
            # sliced_1 is x[:, 1:3:1, 0:2:1, 2:4:1].
3885 3886
            # example 2:
            # attr starts is a list which contain tensor Tensor.
3887
            minus_3 = paddle.full(shape=[1], fill_value=-3, dtype='int32')
3888 3889 3890
            sliced_2 = paddle.strided_slice(x, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2)
            # sliced_2 is x[:, 1:3:1, 0:2:1, 2:4:2].
    """
3891
    if in_dygraph_mode():
3892
        return _C_ops.strided_slice(x, axes, starts, ends, strides)
3893

3894 3895
    helper = LayerHelper('strided_slice', **locals())

3896
    check_variable_and_dtype(
L
Ligoml 已提交
3897 3898 3899 3900 3901
        x,
        'x',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'strided_slice',
    )
3902 3903 3904 3905 3906 3907 3908
    check_type(axes, 'axes', (list, tuple), 'strided_slice')
    check_type(starts, 'starts', (list, tuple, Variable), 'strided_slice')
    check_type(ends, 'ends', (list, tuple, Variable), 'strided_slice')
    check_type(strides, 'strides', (list, tuple, Variable), 'strided_slice')

    def check_list_elements_dtype(list_input, input_name):
        if isinstance(list_input, Variable):
L
Ligoml 已提交
3909 3910 3911
            check_dtype(
                list_input.dtype, input_name, ['int32'], 'strided_slice'
            )
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
        else:
            for i, var in enumerate(list_input):
                var_name = input_name + '[' + str(i) + ']'
                if isinstance(var, Variable):
                    check_dtype(var.dtype, var_name, ['int32'], 'strided_slice')

    check_list_elements_dtype(axes, 'axes')
    check_list_elements_dtype(starts, 'starts')
    check_list_elements_dtype(ends, 'ends')
    check_list_elements_dtype(strides, 'strides')

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
L
Ligoml 已提交
3930
                assert isinstance(dim, int)
3931 3932 3933 3934 3935 3936 3937 3938 3939
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': x}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

3940
    if _in_legacy_dygraph():
3941 3942 3943 3944 3945 3946
        inputs = {'Input': x}
        attrs = {
            'axes': axes,
            'starts': starts,
            'ends': ends,
            'strides': strides,
L
Ligoml 已提交
3947
            'infer_flags': infer_flags,
3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
        }
    else:
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
            if utils._contain_var(starts):
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)
            else:
                attrs['starts'] = starts

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
            if utils._contain_var(ends):
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
            else:
                attrs['ends'] = ends

        # strides
        if isinstance(strides, Variable):
            strides.stop_gradient = True
            inputs['StridesTensor'] = strides
        elif isinstance(strides, (list, tuple)):
            attrs['strides'] = []
            if utils._contain_var(strides):
                inputs['StridesTensorList'] = get_new_list_tensor(strides)
                for i, dim in enumerate(strides):
                    if isinstance(dim, Variable):
                        attrs['strides'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['strides'].append(dim)
            else:
                attrs['strides'] = strides
        attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
L
Ligoml 已提交
4002 4003 4004 4005 4006
        dtype=helper.input_dtype('x')
    )
    helper.append_op(
        type='strided_slice', inputs=inputs, attrs=attrs, outputs={'Out': out}
    )
4007 4008

    return out
F
From00 已提交
4009 4010 4011 4012


def tensordot(x, y, axes=2, name=None):
    r"""
L
Ligoml 已提交
4013
    This function computes a contraction, which sum the product of elements from two tensors along the given axes.
F
From00 已提交
4014 4015 4016 4017 4018 4019

    Args:
        x (Tensor): The left tensor for contraction with data type ``float32`` or ``float64``.
        y (Tensor): The right tensor for contraction with the same data type as ``x``.
        axes (int|tuple|list|Tensor, optional):  The axes to contract for ``x`` and ``y``, defaulted to integer ``2``.

L
Ligoml 已提交
4020
            1. It could be a non-negative integer ``n``,
F
From00 已提交
4021
               in which the function will sum over the last ``n`` axes of ``x`` and the first ``n`` axes of ``y`` in order.
L
Ligoml 已提交
4022 4023

            2. It could be a 1-d tuple or list with data type ``int``, in which ``x`` and ``y`` will be contracted along the same given axes.
F
From00 已提交
4024
               For example, ``axes`` =[0, 1] applies contraction along the first two axes for ``x`` and the first two axes for ``y``.
L
Ligoml 已提交
4025 4026 4027 4028

            3. It could be a tuple or list containing one or two 1-d tuple|list|Tensor with data type ``int``.
               When containing one tuple|list|Tensor, the data in tuple|list|Tensor specified the same axes for ``x`` and ``y`` to contract.
               When containing two tuple|list|Tensor, the first will be applied to ``x`` and the second to ``y``.
F
From00 已提交
4029
               When containing more than two tuple|list|Tensor, only the first two axis sequences will be used while the others will be ignored.
L
Ligoml 已提交
4030 4031 4032

            4. It could be a tensor, in which the ``axes`` tensor will be translated to a python list
               and applied the same rules described above to determine the contraction axes.
F
From00 已提交
4033
               Note that the ``axes`` with Tensor type is ONLY available in Dygraph mode.
L
Ligoml 已提交
4034
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
F
From00 已提交
4035 4036
                             For more information, please refer to :ref:`api_guide_Name` .

L
Ligoml 已提交
4037 4038
    Return:
        Output (Tensor): The contraction result with the same data type as ``x`` and ``y``.
F
From00 已提交
4039
        In general, :math:`output.ndim = x.ndim + y.ndim - 2 \times n_{axes}`, where :math:`n_{axes}` denotes the number of axes to be contracted.
L
Ligoml 已提交
4040

F
From00 已提交
4041
    NOTES:
L
Ligoml 已提交
4042
        1. This function supports tensor broadcast,
F
From00 已提交
4043
           the size in the corresponding dimensions of ``x`` and ``y`` should be equal, or applies to the broadcast rules.
L
Ligoml 已提交
4044 4045 4046 4047 4048
        2. This function also supports axes expansion,
           when the two given axis sequences for ``x`` and ``y`` are of different lengths,
           the shorter sequence will expand the same axes as the longer one at the end.
           For example, if ``axes`` =[[0, 1, 2, 3], [1, 0]],
           the axis sequence for ``x`` is [0, 1, 2, 3],
F
From00 已提交
4049
           while the corresponding axis sequences for ``y`` will be expanded from [1, 0] to [1, 0, 2, 3].
L
Ligoml 已提交
4050

F
From00 已提交
4051 4052 4053 4054 4055 4056 4057 4058
    Examples:
        .. code-block:: python

            import paddle

            data_type = 'float64'

            # For two 2-d tensor x and y, the case axes=0 is equivalent to outer product.
L
Ligoml 已提交
4059
            # Note that tensordot supports empty axis sequence, so all the axes=0, axes=[], axes=[[]], and axes=[[],[]] are equivalent cases.
F
From00 已提交
4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120
            x = paddle.arange(4, dtype=data_type).reshape([2, 2])
            y = paddle.arange(4, dtype=data_type).reshape([2, 2])
            z = paddle.tensordot(x, y, axes=0)
            # z = [[[[0., 0.],
            #        [0., 0.]],
            #
            #       [[0., 1.],
            #        [2., 3.]]],
            #
            #
            #      [[[0., 2.],
            #        [4., 6.]],
            #
            #       [[0., 3.],
            #        [6., 9.]]]]


            # For two 1-d tensor x and y, the case axes=1 is equivalent to inner product.
            x = paddle.arange(10, dtype=data_type)
            y = paddle.arange(10, dtype=data_type)
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.dot(x, y)
            # z1 = z2 = [285.]


            # For two 2-d tensor x and y, the case axes=1 is equivalent to matrix multiplication.
            x = paddle.arange(6, dtype=data_type).reshape([2, 3])
            y = paddle.arange(12, dtype=data_type).reshape([3, 4])
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.matmul(x, y)
            # z1 = z2 =  [[20., 23., 26., 29.],
            #             [56., 68., 80., 92.]]


            # When axes is a 1-d int list, x and y will be contracted along the same given axes.
            # Note that axes=[1, 2] is equivalent to axes=[[1, 2]], axes=[[1, 2], []], axes=[[1, 2], [1]], and axes=[[1, 2], [1, 2]].
            x = paddle.arange(24, dtype=data_type).reshape([2, 3, 4])
            y = paddle.arange(36, dtype=data_type).reshape([3, 3, 4])
            z = paddle.tensordot(x, y, axes=[1, 2])
            # z =  [[506. , 1298., 2090.],
            #       [1298., 3818., 6338.]]


            # When axes is a list containing two 1-d int list, the first will be applied to x and the second to y.
            x = paddle.arange(60, dtype=data_type).reshape([3, 4, 5])
            y = paddle.arange(24, dtype=data_type).reshape([4, 3, 2])
            z = paddle.tensordot(x, y, axes=([1, 0], [0, 1]))
            # z =  [[4400., 4730.],
            #       [4532., 4874.],
            #       [4664., 5018.],
            #       [4796., 5162.],
            #       [4928., 5306.]]


            # Thanks to the support of axes expansion, axes=[[0, 1, 3, 4], [1, 0, 3, 4]] can be abbreviated as axes= [[0, 1, 3, 4], [1, 0]].
            x = paddle.arange(720, dtype=data_type).reshape([2, 3, 4, 5, 6])
            y = paddle.arange(720, dtype=data_type).reshape([3, 2, 4, 5, 6])
            z = paddle.tensordot(x, y, axes=[[0, 1, 3, 4], [1, 0]])
            # z = [[23217330., 24915630., 26613930., 28312230.],
            #      [24915630., 26775930., 28636230., 30496530.],
            #      [26613930., 28636230., 30658530., 32680830.],
L
Ligoml 已提交
4121
            #      [28312230., 30496530., 32680830., 34865130.]]
F
From00 已提交
4122 4123 4124 4125 4126 4127 4128 4129 4130
    """
    op_type = 'tensordot'
    input_dtype = ['float32', 'float64']

    check_variable_and_dtype(x, 'x', input_dtype, op_type)
    check_variable_and_dtype(y, 'y', input_dtype, op_type)
    check_type(axes, 'axes', (int, tuple, list, Variable), op_type)

    def _var_to_list(var):
Z
zhiboniu 已提交
4131
        if paddle.in_dynamic_mode():
F
From00 已提交
4132 4133
            return tolist(var)
        raise TypeError(
L
Ligoml 已提交
4134 4135 4136
            "The 'axes' with type 'Tensor' in "
            + op_type
            + " is not available in static graph mode, "
F
From00 已提交
4137 4138 4139 4140 4141 4142 4143
            "please convert its type to int|Tuple|List, or use dynamic graph mode."
        )

    axes_x = []
    axes_y = []
    if np.issubdtype(type(axes), np.integer):
        assert axes >= 0, (
L
Ligoml 已提交
4144 4145 4146 4147
            "The 'axes' in "
            + op_type
            + f" should not be negative, but received axes={axes}."
        )
F
From00 已提交
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
        axes_x = range(x.ndim - axes, x.ndim)
        axes_y = range(axes)
    else:
        if isinstance(axes, Variable):
            axes = _var_to_list(axes)

        if not axes or np.issubdtype(type(axes[0]), np.integer):
            axes_x = axes
        else:
            axes_x = axes[0]
            if len(axes) > 1:
                axes_y = axes[1]

            if isinstance(axes_x, Variable):
                axes_x = _var_to_list(axes_x)
            if isinstance(axes_y, Variable):
                axes_y = _var_to_list(axes_y)

    axes_x, axes_y = list(axes_x), list(axes_y)
    len_axes_x, len_axes_y = len(axes_x), len(axes_y)
    if len_axes_x < len_axes_y:
        axes_x.extend(axes_y[len_axes_x:])
    elif len_axes_y < len_axes_x:
        axes_y.extend(axes_x[len_axes_y:])

    shape_x, shape_y = list(x.shape), list(y.shape)
    need_contracted_dim_x = np.zeros((x.ndim), dtype=bool)
    need_contracted_dim_y = np.zeros((y.ndim), dtype=bool)
    contraction_size = 1
    for i in range(len(axes_x)):
        dim_x, dim_y = axes_x[i], axes_y[i]
        sx, sy = shape_x[dim_x], shape_y[dim_y]
        if sx == 1:
            shape_y[dim_y] = 1
            y = y.sum(dim_y).reshape(shape_y)
        elif sy == 1:
            shape_x[dim_x] = 1
            x = x.sum(dim_x).reshape(shape_x)
        else:
L
Ligoml 已提交
4187 4188 4189 4190 4191
            assert sx == sy, (
                "The dimensional size for 'x' and 'y' in "
                + op_type
                + f" should match each other, but 'x' has size {sx} in dim {dim_x} while 'y' has size {sy} in dim {dim_y}."
            )
F
From00 已提交
4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218

        need_contracted_dim_x[dim_x] = True
        need_contracted_dim_y[dim_y] = True
        contraction_size *= shape_x[dim_x]

    perm_x = []
    perm_y = []
    shape_out = []
    not_contraction_size_x = 1
    not_contraction_size_y = 1
    for i in range(x.ndim):
        if not need_contracted_dim_x[i]:
            perm_x.append(i)
            shape_out.append(shape_x[i])
            not_contraction_size_x *= shape_x[i]
    perm_x.extend(axes_x)
    perm_y.extend(axes_y)
    for i in range(y.ndim):
        if not need_contracted_dim_y[i]:
            perm_y.append(i)
            shape_out.append(shape_y[i])
            not_contraction_size_y *= shape_y[i]

    if not shape_out:
        shape_out = [1]

    x = x.transpose(perm=perm_x).reshape(
L
Ligoml 已提交
4219 4220
        [not_contraction_size_x, contraction_size]
    )
F
From00 已提交
4221
    y = y.transpose(perm=perm_y).reshape(
L
Ligoml 已提交
4222 4223
        [contraction_size, not_contraction_size_y]
    )
F
From00 已提交
4224 4225
    out = x.matmul(y).reshape(shape_out)
    return out
4226 4227 4228


def as_complex(x, name=None):
L
Ligoml 已提交
4229 4230
    """Transform a real tensor to a complex tensor.

4231 4232 4233
    The data type of the input tensor is 'float32' or 'float64', and the data
    type of the returned tensor is 'complex64' or 'complex128', respectively.

L
Ligoml 已提交
4234
    The shape of the input tensor is ``(* ,2)``, (``*`` means arbitary shape), i.e.
4235 4236 4237 4238 4239 4240 4241 4242 4243
    the size of the last axis shoule be 2, which represent the real and imag part
    of a complex number. The shape of the returned tensor is ``(*,)``.

    Args:
        x (Tensor): The input tensor. Data type is 'float32' or 'float64'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The output. Data type is 'complex64' or 'complex128', with the same precision as the input.
L
Ligoml 已提交
4244

4245 4246 4247 4248 4249 4250
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
4251
            print(y)
4252

4253 4254 4255
            # Tensor(shape=[2, 3], dtype=complex64, place=Place(gpu:0), stop_gradient=True,
            #        [[1j      , (2+3j)  , (4+5j)  ],
            #         [(6+7j)  , (8+9j)  , (10+11j)]])
4256
    """
4257 4258
    if in_dygraph_mode():
        return _C_ops.as_complex(x)
4259 4260
    if _in_legacy_dygraph():
        return _legacy_C_ops.as_complex(x)
4261 4262 4263 4264 4265 4266

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'as_complex')
    op_type = "as_complex"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
L
Ligoml 已提交
4267 4268
        dtype=_real_to_complex_dtype(x.dtype)
    )
4269 4270 4271 4272 4273 4274 4275
    outputs = {"Out": out}
    attrs = {}
    helper.append_op(type=op_type, inputs=inputs, attrs=attrs, outputs=outputs)
    return out


def as_real(x, name=None):
L
Ligoml 已提交
4276 4277 4278
    """Transform a complex tensor to a real tensor.

    The data type of the input tensor is 'complex64' or 'complex128', and the data
4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290
    type of the returned tensor is 'float32' or 'float64', respectively.

    When the shape of the input tensor is ``(*, )``, (``*`` means arbitary shape),
    the shape of the output tensor is ``(*, 2)``, i.e. the shape of the output is
    the shape of the input appended by an extra ``2``.

    Args:
        x (Tensor): The input tensor. Data type is 'complex64' or 'complex128'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The output. Data type is 'float32' or 'float64', with the same precision as the input.
L
Ligoml 已提交
4291

4292 4293 4294 4295 4296 4297 4298
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
            z = paddle.as_real(y)
4299
            print(z)
4300

4301 4302 4303 4304
            # Tensor(shape=[2, 3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[0. , 1. ],
            #          [2. , 3. ],
            #          [4. , 5. ]],
4305

4306 4307 4308
            #         [[6. , 7. ],
            #          [8. , 9. ],
            #          [10., 11.]]])
4309
    """
4310 4311
    if in_dygraph_mode():
        return _C_ops.as_real(x)
4312 4313
    if _in_legacy_dygraph():
        return _legacy_C_ops.as_real(x)
4314 4315 4316 4317 4318 4319

    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'as_real')
    op_type = "as_real"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
L
Ligoml 已提交
4320 4321
        dtype=_complex_to_real_dtype(x.dtype)
    )
4322 4323 4324
    outputs = {"Out": out}
    helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out
4325 4326


K
kuizhiqing 已提交
4327 4328 4329 4330 4331 4332 4333 4334 4335
def repeat_interleave(x, repeats, axis=None, name=None):
    """

    Returns a new tensor which repeats the ``x`` tensor along dimension ``axis`` using
    the entries in ``repeats`` which is a int or a Tensor.

    Args:
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        repeats (Tensor or int): The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis.
4336
        axis (int, optional): The dimension in which we manipulate. Default: None, the output tensor is flatten.
K
kuizhiqing 已提交
4337 4338 4339 4340 4341 4342 4343
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor with same data type as ``x``.

4344 4345 4346 4347 4348
    Examples:
        .. code-block:: python

            import paddle

K
kuizhiqing 已提交
4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            repeats  = paddle.to_tensor([3, 2, 1], dtype='int32')

            paddle.repeat_interleave(x, repeats, 1)
            # [[1, 1, 1, 2, 2, 3],
            #  [4, 4, 4, 5, 5, 6]]

            paddle.repeat_interleave(x, 2, 0)
            # [[1, 2, 3], [1, 2, 3], [4, 5, 6], [4, 5, 6]]

            paddle.repeat_interleave(x, 2, None)
            # [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6]
    """

    if axis is None:
        x = paddle.flatten(x)
        axis = 0

S
seemingwang 已提交
4367 4368
    if in_dygraph_mode():
        if isinstance(repeats, Variable):
4369 4370
            return _C_ops.repeat_interleave_with_tensor_index(x, repeats, axis)
        return _C_ops.repeat_interleave(x, repeats, axis)
K
kuizhiqing 已提交
4371 4372

    helper = LayerHelper("repeat_interleave", **locals())
L
Ligoml 已提交
4373 4374 4375 4376 4377 4378
    check_variable_and_dtype(
        x,
        'x',
        ['float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.repeat_interleave',
    )
K
kuizhiqing 已提交
4379 4380 4381

    out = helper.create_variable_for_type_inference(x.dtype)

L
Ligoml 已提交
4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393
    helper.append_op(
        type='repeat_interleave',
        inputs={
            'X': x,
            'RepeatsTensor': repeats if isinstance(repeats, Variable) else None,
        },
        outputs={'Out': out},
        attrs={
            'dim': axis,
            'Repeats': repeats if isinstance(repeats, int) else 0,
        },
    )
K
kuizhiqing 已提交
4394 4395 4396
    return out


4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414
def moveaxis(x, source, destination, name=None):
    """
    Move the axis of tensor from ``source`` position to ``destination`` position.

    Other axis that have not been moved remain their original order.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, int32, int64, float32, float64, complex64, complex128.
        source(int|tuple|list): ``source`` position of axis that will be moved. Each element must be unique and integer.
        destination(int|tuple|list(int)): ``destination`` position of axis that has been moved. Each element must be unique and integer.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A new tensor whose axis have been moved.

    Examples:
        .. code-block:: python
L
Ligoml 已提交
4415

4416 4417 4418 4419 4420 4421 4422
            import paddle

            x = paddle.ones([3, 2, 4])
            paddle.moveaxis(x, [0, 1], [1, 2]).shape
            # [4, 3, 2]

            x = paddle.ones([2, 3])
4423
            paddle.moveaxis(x, 0, 1).shape # equivalent to paddle.t(x)
L
Ligoml 已提交
4424
            # [3, 2]
4425 4426 4427 4428 4429
    """
    src = [source] if isinstance(source, int) else source
    dst = [destination] if isinstance(destination, int) else destination

    assert len(src) == len(
L
Ligoml 已提交
4430 4431
        dst
    ), "'source' must have the same number with 'destination'"
4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447

    count = Counter(src).most_common(1)
    if count[0][1] > 1:
        raise ValueError("Each elemment of 'source' must be unique!")
    count = Counter(dst).most_common(1)
    if count[0][1] > 1:
        raise ValueError("Each elemment of 'destination' must be unique!")

    ndim = len(x.shape)

    # perm is the new order after move axis
    perm = list(range(ndim))
    src_dims = list(range(ndim))
    dst_dims = list(range(ndim))

    for i, axis in enumerate(zip(src, dst)):
L
Ligoml 已提交
4448 4449 4450
        assert isinstance(
            axis[0], int
        ), "Each elemment of 'source' must be integer."
4451
        if axis[0] < 0:
L
Ligoml 已提交
4452 4453 4454
            assert (
                axis[0] >= -ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4455 4456
            src[i] += ndim
        else:
L
Ligoml 已提交
4457 4458 4459
            assert (
                axis[0] < ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4460

L
Ligoml 已提交
4461 4462 4463
        assert isinstance(
            axis[1], int
        ), "Each elemment of 'source' must be integer."
4464
        if axis[1] < 0:
L
Ligoml 已提交
4465 4466 4467
            assert (
                axis[1] >= -ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4468 4469
            dst[i] += ndim
        else:
L
Ligoml 已提交
4470 4471 4472
            assert (
                axis[1] < ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4473 4474 4475 4476 4477 4478 4479
        perm[dst[i]] = src[i]
        src_dims.remove(src[i])
        dst_dims.remove(dst[i])

    for i in range(len(src_dims)):
        perm[dst_dims[i]] = src_dims[i]

4480
    if in_dygraph_mode():
4481
        out = _C_ops.transpose(x, perm)
4482 4483 4484
        return out

    if _in_legacy_dygraph():
4485
        out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
4486 4487
        return out

L
Ligoml 已提交
4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
    check_variable_and_dtype(
        x,
        'x',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'moveaxis',
    )
4503 4504 4505 4506

    helper = LayerHelper('moveaxis', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
L
Ligoml 已提交
4507 4508 4509 4510 4511 4512
    helper.append_op(
        type='transpose2',
        inputs={'X': [x]},
        outputs={'Out': [out], 'XShape': [x_shape]},
        attrs={'axis': perm},
    )
4513
    return out
4514 4515


4516 4517 4518
def non_negative_axis(arr, axis):
    ndim = len(arr.shape)
    if axis >= 0:
L
Ligoml 已提交
4519 4520 4521
        assert (
            axis < ndim
        ), "'axis'  must be in the range of [-{0}, {0})".format(ndim)
4522
    else:
L
Ligoml 已提交
4523 4524 4525
        assert (
            axis >= -ndim
        ), "'axis'  must be in the range of [-{0}, {0})".format(ndim)
4526 4527 4528 4529 4530 4531
        axis += ndim

    return axis


def infer_broadcast_shape(arr, indices, axis):
4532
    # This function is used in take/put_along_axis
4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
    broadcast_shape_list = list(arr.shape)
    broadcast_shape_list[axis] = list(indices.shape)[axis]
    broadcast_shape = tuple(broadcast_shape_list)
    for i in range(len(arr.shape)):
        if arr.shape[i] < indices.shape[i]:
            # if indices matrix has larger size than arr matrix, do not broadcast.
            return None
    return broadcast_shape


4543 4544 4545 4546 4547
def take_along_axis(arr, indices, axis):
    """
    Take values from the input array by given indices matrix along the designated axis.

    Args:
4548
        arr (Tensor) : The input Tensor. Supported data types are float32 and float64.
4549
        indices (Tensor) : Indices to take along each 1d slice of arr. This must match the dimension of arr,
4550
            and need to broadcast against arr. Supported data type are int and int64.
L
Ligoml 已提交
4551
        axis (int) : The axis to take 1d slices along.
4552

L
Ligoml 已提交
4553
    Returns:
4554
        Tensor: The indexed element, same dtype with arr
L
Ligoml 已提交
4555

4556 4557 4558 4559 4560
    Examples:
        .. code-block:: python

            import paddle

4561 4562
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7,8,9]])
            index = paddle.to_tensor([[0]])
4563 4564 4565 4566 4567
            axis = 0
            result = paddle.take_along_axis(x, index, axis)
            print(result)
            # [[1, 2, 3]]
    """
L
Ligoml 已提交
4568
    if len(arr.shape) != len(indices.shape):
4569
        raise ValueError(
L
Ligoml 已提交
4570 4571
            "`indices` and `arr` must have the same number of dimensions!"
        )
4572 4573 4574 4575 4576
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
    if not broadcast_shape:
        # if indices matrix have larger size than arr, arr should broadcast into indices shape.
        broadcast_shape = indices.shape
H
hong 已提交
4577
    if _non_static_mode():
4578
        indices = paddle.broadcast_to(indices, broadcast_shape)
4579 4580 4581 4582
        broadcast_shape_list = list(broadcast_shape)
        broadcast_shape_list[axis] = list(arr.shape)[axis]
        broadcast_shape = tuple(broadcast_shape_list)
        arr = paddle.broadcast_to(arr, broadcast_shape)
H
hong 已提交
4583
        if not _in_legacy_dygraph():
4584 4585
            return _C_ops.take_along_axis(arr, indices, axis)
        return _legacy_C_ops.take_along_axis(arr, indices, 'Axis', axis)
4586
    check_variable_and_dtype(
L
Ligoml 已提交
4587 4588 4589 4590 4591 4592 4593 4594
        arr,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'take_along_axis',
    )
    check_variable_and_dtype(
        indices, 'index', ['int32', 'int64'], 'take_along_axis'
    )
4595
    indices = paddle.broadcast_to(indices, broadcast_shape)
4596 4597 4598 4599
    broadcast_shape_list = list(broadcast_shape)
    broadcast_shape_list[axis] = list(arr.shape)[axis]
    broadcast_shape = tuple(broadcast_shape_list)
    arr = paddle.broadcast_to(arr, broadcast_shape)
4600 4601 4602
    helper = LayerHelper('take_along_axis', **locals())
    dtype = helper.input_dtype()
    result = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
4603 4604 4605 4606 4607 4608
    helper.append_op(
        type="take_along_axis",
        inputs={"Input": arr, "Index": indices},
        attrs={"Axis": axis},
        outputs={"Result": result},
    )
4609
    return result
4610 4611 4612 4613 4614 4615 4616 4617 4618 4619


def put_along_axis(arr, indices, values, axis, reduce='assign'):
    """
    Put values into the destination array by given indices matrix along the designated axis.

    Args:
        arr (Tensor) : The Destination Tensor. Supported data types are float32 and float64.
        indices (Tensor) : Indices to put along each 1d slice of arr. This must match the dimension of arr,
            and need to broadcast against arr. Supported data type are int and int64.
L
Ligoml 已提交
4620
        axis (int) : The axis to put 1d slices along.
L
Ligoml 已提交
4621 4622 4623
        reduce (str, optional): The reduce operation, default is 'assign', support 'add', 'assign', 'mul' and 'multiply'.

    Returns:
4624
        Tensor: The indexed element, same dtype with arr
L
Ligoml 已提交
4625

4626 4627 4628 4629 4630
    Examples:
        .. code-block:: python

            import paddle

4631 4632
            x = paddle.to_tensor([[10, 30, 20], [60, 40, 50]])
            index = paddle.to_tensor([[0]])
4633 4634 4635 4636 4637 4638 4639 4640
            value = 99
            axis = 0
            result = paddle.put_along_axis(x, index, value, axis)
            print(result)
            # [[99, 99, 99],
            # [60, 40, 50]]

    """
L
Ligoml 已提交
4641
    if len(arr.shape) != len(indices.shape):
4642
        raise ValueError(
L
Ligoml 已提交
4643 4644
            "`indices` and `arr` must have the same number of dimensions!"
        )
4645 4646
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
H
hong 已提交
4647
    if _non_static_mode():
L
Ligoml 已提交
4648 4649 4650 4651 4652
        values = (
            paddle.to_tensor(values)
            if not isinstance(values, paddle.Tensor)
            else values
        )
4653 4654 4655
        if broadcast_shape:
            indices = paddle.broadcast_to(indices, broadcast_shape)
        values = paddle.broadcast_to(values, indices.shape)
H
hong 已提交
4656
        if in_dygraph_mode():
4657
            return _C_ops.put_along_axis(arr, indices, values, axis, reduce)
L
Ligoml 已提交
4658 4659 4660
        return _legacy_C_ops.put_along_axis(
            arr, indices, values, "Axis", axis, "Reduce", reduce
        )
4661 4662

    check_variable_and_dtype(
L
Ligoml 已提交
4663 4664 4665 4666 4667 4668 4669 4670
        arr,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'put_along_axis',
    )
    check_variable_and_dtype(
        indices, 'index', ['int32', 'int64'], 'put_along_axis'
    )
4671 4672 4673
    if broadcast_shape:
        indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.broadcast_to(values, indices.shape)
4674 4675 4676
    helper = LayerHelper('put_along_axis', **locals())
    dtype = helper.input_dtype()
    result = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
4677 4678 4679 4680 4681 4682
    helper.append_op(
        type="put_along_axis",
        inputs={"Input": arr, "Index": indices, "Value": values},
        attrs={"Axis": axis, "Reduce": reduce},
        outputs={"Result": result},
    )
4683 4684 4685 4686 4687 4688
    return result


@inplace_apis_in_dygraph_only
def put_along_axis_(arr, indices, values, axis, reduce='assign'):
    r"""
4689
    Inplace version of ``put_along_axis`` API, the output Tensor will be inplaced with input ``arr``.
4690 4691
    Please refer to :ref:`api_tensor_put_along_axis`.
    """
L
Ligoml 已提交
4692
    if len(arr.shape) != len(indices.shape):
4693
        raise ValueError(
L
Ligoml 已提交
4694 4695
            "`indices` and `arr` must have the same number of dimensions!"
        )
4696 4697
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
L
Ligoml 已提交
4698 4699 4700 4701 4702
    values = (
        paddle.to_tensor(values)
        if not isinstance(values, paddle.Tensor)
        else values
    )
4703 4704 4705
    if broadcast_shape:
        indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.broadcast_to(values, indices.shape)
4706
    if in_dygraph_mode():
4707
        return _C_ops.put_along_axis_(arr, indices, values, axis, reduce)
L
Ligoml 已提交
4708 4709 4710
    return _legacy_C_ops.put_along_axis_(
        arr, indices, values, "Axis", axis, "Reduce", reduce
    )
4711 4712


L
Li Min 已提交
4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
def _index_add_params_check(x, index, input_axis, add_value):
    dims = len(x.shape)
    add_value_dims = len(add_value.shape)

    if input_axis >= 0:
        axis = input_axis
    else:
        axis = input_axis + dims

    check_axis = axis
    if check_axis >= dims or check_axis < -dims:
        raise ValueError("Axis should be in range [-rank(x), rank(x)).")

    if isinstance(index, Variable):
        if index.dtype not in [paddle.int64, paddle.int32]:
            raise TypeError("The index dtype should be int32 or int64.")
        if len(index.shape) != 1:
            raise ValueError("The index should be a 1-D Tensor.")

    if dims != add_value_dims:
        raise ValueError(
            "The add_value does not support broadcast now. It must have the same dimension as x."
        )
    for i in range(dims):
        if i != axis and x.shape[i] != add_value.shape[i]:
            raise ValueError(
                "The add_value.shape[i] should be equal to x.shape[i] when i != axis."
            )


def index_add(x, index, axis, value, name=None):
    """
    Adds the elements of the input tensor with value tensor by selecting the indices in the order given in index.

    Args:
        x (Tensor) : The Destination Tensor. Supported data types are int32, int64, float16, float32, float64.
        index (Tensor): The 1-D Tensor containing the indices to index.
            The data type of ``index`` must be int32 or int64.
L
Ligoml 已提交
4751
        axis (int): The dimension in which we index.
L
Li Min 已提交
4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767
        value (Tensor): The tensor used to add the elements along the target axis.
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        Tensor: same dimention and dtype with x.

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1, 1], [1, 1, 1]], dtype="float32")
            outplace_res = paddle.index_add(input_tensor, index, 0, value)
4768 4769 4770 4771 4772
            print(outplace_res)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[2., 2., 2.],
            #         [1., 1., 1.],
            #         [2., 2., 2.]])
L
Li Min 已提交
4773 4774 4775 4776 4777 4778 4779 4780
    """
    _index_add_params_check(x, index, axis, value)

    if in_dygraph_mode():
        return _C_ops.index_add(x, index, value, axis)

    helper = LayerHelper("index_add", **locals())
    check_variable_and_dtype(
L
Ligoml 已提交
4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791
        x,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.index_add',
    )
    check_variable_and_dtype(
        index,
        'index',
        ['int32', 'int64'],
        'paddle.tensor.manipulation.index_add',
    )
L
Li Min 已提交
4792
    check_variable_and_dtype(
L
Ligoml 已提交
4793 4794 4795 4796 4797
        value,
        'add_value',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.index_add',
    )
L
Li Min 已提交
4798 4799 4800

    out = helper.create_variable_for_type_inference(x.dtype)

L
Ligoml 已提交
4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
    helper.append_op(
        type='index_add',
        inputs={
            'X': x,
            'Index': index,
            'AddValue': value,
        },
        outputs={'Out': out},
        attrs={'axis': axis},
    )
L
Li Min 已提交
4811 4812 4813 4814 4815 4816 4817 4818
    return out


@inplace_apis_in_dygraph_only
def index_add_(x, index, axis, value, name=None):
    """
    Inplace version of ``index_add`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_index_add`.
L
Ligoml 已提交
4819

L
Li Min 已提交
4820 4821 4822 4823 4824 4825 4826 4827 4828 4829
    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1], [1, 1], [1, 1]], dtype="float32")
            inplace_res = paddle.index_add_(input_tensor, index, 1, value)
4830 4831 4832 4833 4834
            print(inplace_res)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[2., 1., 2.],
            #         [2., 1., 2.],
            #         [2., 1., 2.]])
L
Li Min 已提交
4835 4836 4837 4838 4839 4840
    """

    _index_add_params_check(x, index, axis, value)
    return _C_ops.index_add_(x, index, value, axis)


4841 4842 4843 4844 4845 4846 4847
# TODO(dev): We need avoid implementing it by this way.
__METHODS = {
    'fill_': fill_,
    'zero_': zero_,
    'fill_diagonal_': fill_diagonal_,
    'fill_diagonal_tensor_': fill_diagonal_tensor_,
    "fill_diagonal_tensor": fill_diagonal_tensor,
L
Ligoml 已提交
4848
    'tolist': tolist,
4849 4850 4851 4852
}
for name, func in __METHODS.items():
    setattr(core.VarBase, name, func)
    setattr(core.eager.Tensor, name, func)