engine.py 50.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
16
import time
17 18
import copy
import logging
19 20
import random
import numpy as np
21 22 23
from collections import defaultdict

import paddle
24
import paddle.utils as utils
25

26
from paddle import fluid, static
27
from paddle.jit import to_static
28
from paddle.metric import Metric
29
from paddle.static import InputSpec
30
from paddle.fluid import core
31
from paddle.fluid import Variable
32
from paddle.fluid.layers.utils import flatten
33
from paddle.fluid.executor import global_scope, _to_name_str
34
from paddle.fluid.framework import Operator, Parameter, _non_static_mode
35 36
from paddle.fluid.framework import _current_expected_place as _get_device
from paddle.fluid.dygraph.parallel import ParallelEnv
37
from paddle.distributed import fleet
38

39
from .converter import Converter
40
from .helper import ProgramHelper
41
from .cluster import Cluster, get_default_cluster
42 43
from .planner_v2 import Planner
from .parallelizer_v2 import Parallelizer
44 45 46 47
from .dist_op import DistributedOperator
from .dist_saver import DistributedSaver
from .dist_loader import NonIterableGeneratorLoader
from .utils import print_program_with_dist_attr, to_list
48 49
from .utils import get_logger, get_dist_attr
from .process_group import new_process_group, get_all_process_groups
50
from .dist_context import DistributedContext, get_default_distributed_context
51 52
from .strategy import Strategy
from .interface import _get_fetches
53 54 55


class Engine:
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    """
    An Engine object can provide the full power of auto parallel to users.
    With the help of it, users can easily obtain the abilities of the
    distributed training and inference. It also support the dynamic graph and
    static graph at the same time.

    Args:
        model (paddle.nn.Layer, optional): The model is an instance of
            paddle.nn.Layer.
        loss (Loss|Callable|None, optional): The loss can be a `paddle.nn.Layer`
            instance or any callable function taken the predicted values and
            ground truth values as input. It can be None when there is no loss.
            Default: None.
        optimizer (Optimizer|None, optional): The optimizer need to be set in training
            and should be None in eval and predict mode. Default: None.
        metrics (Metric|list[Metric]|None, optional): If metrics is set, all
            metrics will be calculated and output in train/eval mode. Default: None.
        cluster (Cluster|None, optional): The cluster represents the topology information
            about the used physical devices. Default: None. (Unused for now)
        strategy (Strategy|None, optional): The strategy is used to configure the
        parallelization and optimization behaviors. Default: None.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.vision.transforms as T
            import paddle.distributed.auto_parallel as auto
            from paddle.vision.datasets import MNIST

            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            train_dataset = MNIST(mode='train', transform=transform)
            valid_dataset = MNIST(mode='test', transform=transform)

            model = paddle.vision.models.LeNet()
            loss = paddle.nn.CrossEntropyLoss()
            optimizer = paddle.optimizer.Adam(
                learning_rate=0.001, parameters=model.parameters())
            metrics = paddle.metric.Accuracy(topk=(1, 2))

            engine = auto.Engine(model, loss, optimizer, metrics)
            # fit
            engine.fit(train_dataset,
                       epochs=2,
                       batch_size=64)
            # evaluate
            engine.evaluate(valid_dataset,
                            batch_size=64)
            # predict
            engine.predict(valid_dataset,
                           batch_size=64)
            # save
            engine.save("./my_model")
            # load
            engine.load("./my_model")

    """
117

118 119
    def __init__(self,
                 model=None,
120 121 122
                 loss=None,
                 optimizer=None,
                 metrics=None,
123
                 cluster=None,
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
                 strategy=None):

        if model and not isinstance(model,
                                    paddle.nn.Layer) and not callable(model):
            raise TypeError(
                "'model must be sub classes of `paddle.nn.Layer` or any callable function."
            )
        self._model = model

        if loss and not isinstance(loss,
                                   paddle.nn.Layer) and not callable(loss):
            raise TypeError(
                "'loss' must be sub classes of `paddle.nn.Layer` or any callable function."
            )
        self._loss = loss

        if optimizer and not isinstance(
                optimizer,
            (paddle.optimizer.Optimizer, paddle.fluid.optimizer.Optimizer)):
            raise TypeError(
                "'optimizer' must be object of class `paddle.optimizer.Optimizer`"
                " or `paddle.fluid.optimizer.Optimizer`.")
        self._optimizer = self._validate_opt(optimizer)

        metrics = metrics or []
        for metric in to_list(metrics):
            assert isinstance(metric, Metric), \
                "{} is not sub class of Metric".format(
                    metric.__class__.__name__)
        self._metrics = to_list(metrics)

        if cluster and not isinstance(cluster, Cluster):
            raise TypeError(
                "'cluster' must be the object or class `paddle.distributed.auto_parallel.Cluster`"
            )
        self._cluster = cluster or get_default_cluster()

        if strategy and not isinstance(strategy, Strategy):
            raise TypeError(
                "'strategy' must be object of class `paddle.distributed.auto_parallel.Strategy`"
            )
        self._strategy = strategy or Strategy()

        if os.getenv("POD_NAME"):
            print("Distribute training by paddle.distributed.launch",
                  flush=True)
            fleet.init(is_collective=True)
171

172
        self._executor = None
173 174 175
        self._cur_rank = paddle.distributed.get_rank()
        self._nranks = paddle.distributed.get_world_size()
        self._saver = DistributedSaver()
176

177
        self._logger = get_logger(logging.INFO)
178

179 180
        self._orig_main_prog = static.default_main_program()
        self._orig_startup_prog = static.default_startup_program()
181
        self._orig_dist_context = get_default_distributed_context()
182
        self._dist_contexts = {}
183 184
        self._serial_main_progs = {}
        self._serial_startup_progs = {}
185 186 187 188
        self._dist_main_progs = defaultdict(dict)  # dist main programs
        self._dist_startup_progs = defaultdict(dict)  # dist startup programs
        self._feed_vars = {}
        self._fetch_vars = {}
189
        self._planners = {}
190 191 192 193 194
        self._mode_init_states = {
            "train": False,
            "eval": False,
            "predict": False
        }
195

196
        self._planned_mode = None
197 198
        self._dygraph_mode = False
        self._tuning = self._strategy.tuning
199

200
    def _prepare_single_mode(self, mode):
201
        # Do the build process
202 203 204 205
        self._build(mode)
        # Do the planning process
        self._plan(mode)
        # Do the parallel process
206
        self._parallel(mode)
207 208 209
        # Init comm and startup program
        self._initialize(mode)
        self._mode_init_states[mode] = True
210

211
    def _build(self, mode):
212
        if _non_static_mode() or self._dygraph_mode:
213
            paddle.disable_static()
214 215 216
            self._dygraph_mode = True
            self._logger.info("Building model with 'to_static' method.")

217 218
            inputs_spec = self.inputs_spec
            labels_spec = self.labels_spec if self.labels_spec else []
219
            self.program_helper = ProgramHelper(self._model, self._loss,
220 221
                                                self._metrics, inputs_spec,
                                                labels_spec)
222
            # build forward main program
223
            self.program_helper.build_program(mode)
224

225 226 227
            self.concrete_program = self.program_helper.concrete_program
            serial_main_prog = self.program_helper.main_program
            serial_startup_prog = self.program_helper.startup_program
228

229 230 231 232 233
            inputs = self.program_helper.input_vars
            outputs = self.program_helper.output_vars
            labels = self.program_helper.label_vars
            losses = self.program_helper.loss_vars
            metrics = self.program_helper.metric_vars
234

235
            paddle.enable_static()
236 237 238 239 240 241 242 243 244 245
        else:
            # build program in static mode
            serial_main_prog = self._serial_main_progs.get(mode, None)
            if serial_main_prog is not None:
                return

            losses = []
            metrics = []
            serial_main_prog = self._orig_main_prog.clone()
            serial_startup_prog = self._orig_startup_prog.clone()
J
JZ-LIANG 已提交
246 247
            with static.program_guard(serial_main_prog, serial_startup_prog), \
                utils.unique_name.guard():
248 249 250 251
                inputs_spec = self.inputs_spec
                labels_spec = self.labels_spec if self.labels_spec else []
                inputs = [s._create_feed_layer() for s in inputs_spec]
                labels = [s._create_feed_layer() for s in labels_spec]
252
                outputs = to_list(self._model(*inputs))
253 254 255 256 257 258 259
                if mode != "predict" and self._loss:
                    losses = to_list(self._loss(*(outputs + labels)))

                if mode != "predict":
                    for metric in self._metrics:
                        metrics.extend(
                            to_list(metric.compute(*(outputs + labels))))
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

        default_ctx = get_default_distributed_context()
        if not default_ctx.has_annotation:
            # We build the world process group because the data parallel
            # needs all ranks by default.
            new_process_group(list(range(self._nranks)))
            default_ctx.data_parallel = True

        feed_vars = {"inputs": inputs, "labels": labels}

        fetch_vars = {
            "outputs": flatten(outputs),
            "loss": losses,
            "metrics": metrics
        }

276 277 278
        if mode != "train":
            serial_main_prog = serial_main_prog.clone(for_test=True)

279
        self._set_recompute_ckpts()
280 281
        self._dist_contexts[mode] = DistributedContext(
            serial_main_prog, serial_startup_prog, self._optimizer, losses,
282 283
            feed_vars, fetch_vars, self._cluster, self._strategy)
        self._dist_contexts[mode].gradient_scale = self._strategy.gradient_scale
284

285 286 287
    def _optimization_tuning(self, mode, dataset, batch_size):
        if not self._tuning.enable:
            raise ValueError("Please set `tuning.enable=True`.")
288

289 290 291 292 293 294 295 296
        assert mode == "train"
        # Do the build process
        self._build(mode)
        # Do the planning process
        self._plan(mode)

        dataset.dp_world_size = self._dp_world_sizes
        dataset.dp_rank = self._dp_ranks
297 298

        from .tuner.optimization_tuner import OptimizationTuner
299
        self._optimization_tuner = OptimizationTuner(self._tuning.to_dict(),
300 301 302 303 304 305 306 307 308
                                                     self._dist_contexts[mode],
                                                     dataset,
                                                     self.inputs_spec,
                                                     self.labels_spec,
                                                     batch_size=batch_size,
                                                     rank=self._cur_rank)

        self._optimization_tuner.tune()

309
        if self._tuning.run_after_tuning:
310 311 312 313
            # update the strategy
            self._dist_contexts[
                mode]._strategy = self._optimization_tuner.get_best_config()

314 315 316 317 318 319
    def _plan(self, mode):
        if self._planned_mode is None:
            self._planned_mode = mode
        else:
            self._init_dist_context(mode)

320 321
        self._planners[mode] = Planner(mode, self._dist_contexts[mode])
        self._planners[mode].plan()
322

323 324 325 326 327 328 329 330 331
        # infer data parallel info
        inputs_var = self._dist_contexts[mode].serial_feed_vars["inputs"]
        labels_var = self._dist_contexts[mode].serial_feed_vars["labels"]
        block = self._dist_contexts[mode].serial_main_program.global_block()
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in block.vars:
                feed_list.append(block.vars[var.name])

332 333
        self._dp_world_sizes = []
        self._dp_ranks = []
334 335 336
        for feed_var in feed_list:
            dp_world_size, dp_rank = self._get_input_split_info(
                feed_var, self._dist_contexts[mode])
337 338
            self._dp_world_sizes.append(dp_world_size)
            self._dp_ranks.append(dp_rank)
339

340
    def _parallel(self, mode, all_ranks=False):
341 342 343
        # Parallelize program based on the planner's results
        # For now, the completer has to be passed to the planner,
        # because we may use it to complete the annotation of the backwarkward and update.
344
        parallelizer = Parallelizer(mode, self._planners[mode].completer,
345 346 347 348 349
                                    self._dist_contexts[mode])
        if not all_ranks:
            parallelizer.parallel(self._cur_rank)
        else:
            parallelizer.parallel_all()
350 351

    def _init_dist_context(self, mode):
352
        # Init dist_context['mode'] with the first planned dist_context
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
        # to guarantee that train/eval/predict mode have same parallel strategy
        dist_context = self._dist_contexts[mode]
        origin_main_prog = dist_context._original_serial_main_program
        ref_mode = self._planned_mode
        ref_dist_context = self._dist_contexts[ref_mode]
        ref_origin_main_prog = ref_dist_context._original_serial_main_program
        ref_blocks = ref_origin_main_prog.blocks
        for ib, block in enumerate(origin_main_prog.blocks):
            for iop, op in enumerate(block.ops):
                ref_op = ref_blocks[ib].ops[iop]
                assert op.type == ref_op.type, \
                    "'{}' mode op '{}' is different with '{}' op '{}'. ".format(mode, op.type, ref_mode, ref_op.type)
                ref_op_dist_attr = ref_dist_context.get_op_dist_attr_for_program(
                    ref_op)
                dist_context.set_op_dist_attr_for_program(op, ref_op_dist_attr)

    def _initialize(self, mode):
370
        # Get the current content from the distributed context
371 372 373 374
        self._serial_main_progs[mode] = self._dist_contexts[
            mode].serial_main_program
        self._serial_startup_progs[mode] = self._dist_contexts[
            mode].serial_startup_program
375 376 377 378
        self._dist_main_progs[mode] = self._dist_contexts[
            mode].dist_main_programs
        self._dist_startup_progs[mode] = self._dist_contexts[
            mode].dist_startup_programs
379 380
        self._feed_vars[mode] = self._dist_contexts[mode].serial_feed_vars
        self._fetch_vars[mode] = self._dist_contexts[mode].serial_fetch_vars
381
        self._lr_optimizer = self._dist_contexts[mode]._lr_optimizer
382

383 384 385 386
        if self._nranks > 1:
            # Traverse different rank programs and traverse each op of them,
            # instantiate communication by process_mapping.
            all_process_groups = get_all_process_groups()
387

388
            # NOTE: add the comm init control in the future for auto search
389 390 391 392
            for process_group in all_process_groups:
                if self._cur_rank not in process_group.ranks:
                    continue
                process_group.instantiate()
393

394 395 396
        place = _get_device()
        if isinstance(place, fluid.CUDAPlace):
            place = fluid.CUDAPlace(ParallelEnv().dev_id)
397

398 399 400 401 402
        if self._strategy.seed:
            paddle.seed(self._strategy.seed + self._dp_ranks[0])
            np.random.seed(self._strategy.seed + self._dp_ranks[0])
            random.seed(self._strategy.seed + self._dp_ranks[0])

403
        if self._dygraph_mode:
404 405 406
            dist_context = self._dist_contexts[mode]
            dist_main_program = self._dist_main_progs[mode][self._cur_rank]
            self.program_helper.init(dist_main_program, place, dist_context)
407

408
        if self._executor is None:
409
            self._executor = paddle.static.Executor(place)
410 411 412 413 414 415 416 417 418 419
            uninitialized = []
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            for var in dist_startup_prog.list_vars():
                scope_var = global_scope().find_var(var.name)
                if scope_var and scope_var.get_tensor()._is_initialized():
                    continue
                uninitialized.append(var)
            if uninitialized:
                prune_startup_prog = dist_startup_prog._prune(uninitialized)
                self._executor.run(prune_startup_prog)
420

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
            if hasattr(self, "_state_dict") and hasattr(self, "_dist_attr"):
                self._set_state_dict(mode, self._strict, self._state_dict,
                                     self._dist_attr)

        if self._strategy.reinit:
            self._logger.info("NOTE: parameters wiil be re-initialized.")
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            self._executor.run(dist_startup_prog)

    def _infer_sample_spec(self, data, batch_size, split):
        if isinstance(data, paddle.io.IterableDataset):
            if split is None:
                input, label = next(iter(data))
            else:
                sample = next(iter(data))
                input = sample[:split]
                label = sample[split:]
        elif isinstance(data, paddle.io.Dataset):
            if split is None:
                input, label = data[0]
            else:
                sample = data[0]
                input = sample[:split]
                label = sample[split:]
        else:
            raise ValueError(
                "Data should be a Dataset or IterableDatset, but received {}.".
                format(type(data).__name__))

        self.inputs_spec = []
        self.labels_spec = []
        input_list = to_list(input)
        label_list = to_list(label)

        def _infer_item_spec(item, name, batch_size, specs):
            if isinstance(item, np.ndarray):
                spec = InputSpec.from_numpy(item, name)
                if batch_size is None:
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
            elif isinstance(item, (Variable, core.VarBase, core.eager.Tensor)):
                spec = InputSpec.from_tensor(item, name)
                if batch_size is None:
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
            else:
                specs.append(InputSpec([batch_size], type(item), name))

        if input_list is not None:
            for i, item in enumerate(input_list):
                assert item is not None, "Receive None input."
                name = "input" + str(i)
                _infer_item_spec(item, name, batch_size, self.inputs_spec)
        if label_list is not None:
            for i, item in enumerate(label_list):
                assert item is not None, "Receive None input."
                name = "label" + str(i)
                _infer_item_spec(item, name, batch_size, self.labels_spec)

        self.inputs_spec = self._validate_spec(self.inputs_spec)
        self.labels_spec = self._validate_spec(self.labels_spec)
484

485 486
    def fit(self,
            train_data,
487
            train_sample_split=None,
488 489 490
            batch_size=1,
            epochs=1,
            steps_per_epoch=None,
491 492 493 494
            valid_data=None,
            valid_sample_split=None,
            valid_freq=1,
            valid_steps=None,
495
            collate_fn=None,
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
            callbacks=None):
        """
        Trains the model for a fixed number of epochs. If `valid_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
            train_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            train_sample_split (int, optional): Each sample of the train dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
                more than two items, train_sample_split specifies how to split these items into
                input and label. The items before it are input and the left are label. Default: None.
            batch_size (int, optional): The batch size of train_data and valid_data if provided.
                The user's data will be used directly without batching if set to None. Default: 1.
            epochs (int, optional): The number of epochs to train the model. Default: 1.
            steps_per_epoch (int, optional): The total number of steps (batches of samples)
                is executed in one epoch before stating the next one. If None, it is equal to
                the number samples in your dataset divided by the batch size. Default: None.
            valid_data (Dataset, optional): An instance of paddle paddle.io.Dataset used for
                evaluation at the end of epoch. No evaluation will be done if set to None.
                Default: None. (Unsupported for now)
            valid_freq (int, optional): Only relevant if valid_data is provided. This specifies
                how many training epochs before a new evaluation is performed. Default: 1.
            valid_sample_split (int, optional): Only relevant if valid_data is provided.
                Each sample of the valid dataset is assumed to be a (input, label) pair
                by default and has two items. If each sample has more than two items,
                valid_sample_split specifies how to split these items into input and label.
                The items before it are input and the left are label. Default: None.
            valid_steps (int, optional): Only relevant if valid_data is provided.
                It is the total number of steps (batches of samples) to draw before
                stopping validation at the end of every epoch. If None, validation will run until the
                `valid_data` dataset is exhausted. The validation will start from the
                beginning of the dataset at each epoch. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during training. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
                import paddle.distributed.auto_parallel as auto
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
                loss = paddle.nn.CrossEntropyLoss()
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

                engine = auto.Engine(model, loss, optimizer, metrics)
                engine.fit(train_dataset,
                           epochs=2,
                           batch_size=64)
        """
563
        self.mode = 'train'
564 565 566 567 568 569
        self._infer_sample_spec(train_data, batch_size, train_sample_split)
        if not self._mode_init_states[self.mode]:
            self._prepare_single_mode(self.mode)
        else:
            self._switch_mode("train")

570
        assert self.mode in self._dist_main_progs, \
571
            "train model is not ready, please call `engine._prepare_single_mode('train')` first."
572
        train_dataloader = self._create_dataloader(train_data, batch_size,
573 574
                                                   epochs, steps_per_epoch,
                                                   collate_fn)
575

576
        fetch_loss = self._validate_fetches(self.fetch_vars["loss"])
577 578 579 580 581
        fetch_metrics = self._validate_fetches(self.fetch_vars["metrics"])
        inner_fetch = dict(fetch_loss, **fetch_metrics)
        usr_fetch = self._validate_fetches(_get_fetches())
        fetch_list, fetch_map = self._fetch_map(inner_fetch, usr_fetch)
        lr_scheduler = self._get_lr_scheduler(self.main_program)
582

583
        outputs = defaultdict(list)
584
        for epoch in range(epochs):
585
            train_logs = {"epoch: {:d} ": epoch}
586
            for step, _ in enumerate(train_dataloader):
587
                try:
588 589 590 591 592 593
                    outs = self._executor.run(
                        self.main_program,
                        fetch_list=fetch_list,
                        use_program_cache=self._strategy.use_cache,
                        return_numpy=self._strategy.return_numpy)
                except core.EOFException:
594
                    break
595
                train_logs["step: {:d} "] = step
596 597
                # update lr
                if lr_scheduler and step % self._k_steps == 0:
598
                    lr_scheduler.step()
599
                train_logs["lr: {:5e} "] = self._get_lr(self._lr_optimizer)
600 601
                # inner fetches
                if fetch_loss:
602 603 604 605 606 607 608 609 610 611 612
                    train_logs["loss: {:8f} "] = outs[0][0]
                    outputs["loss"].append(outs[0][0])
                # Metric
                if fetch_metrics:
                    metric_out = outs[len(fetch_loss):len(inner_fetch)]
                    for metric in self._metrics:
                        metric.update(*metric_out)
                        results = metric.accumulate()
                        for i, res in enumerate(to_list(results)):
                            train_logs[metric.name()[i] + ": {:8f} "] = res
                            outputs[metric.name()[i]].append(outs[0][0])
613
                # user fetches
614 615
                user_outs = outs[len(inner_fetch):]
                user_fetch_list = fetch_list[len(inner_fetch):]
616
                for i, out in enumerate(user_outs):
617 618 619 620
                    train_logs[fetch_map[user_fetch_list[i]] + ": {}"] = out
                # logger
                string = '[train] ' + ''.join(list(train_logs.keys()))
                self._logger.info(string.format(*list(train_logs.values())))
621

622 623 624 625 626 627 628 629
            if valid_data and epoch % valid_freq == 0:
                self.evaluate(valid_data, valid_sample_split, batch_size,
                              valid_steps, collate_fn, callbacks)
                self._switch_mode("train")
            else:
                self._reset_metrics()
        return outputs

630
    def evaluate(self,
631 632
                 valid_data,
                 valid_sample_split=None,
633
                 batch_size=1,
634
                 steps=None,
635
                 collate_fn=None,
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
                 callbacks=None):
        """
        Evaluate the loss and metrics of the model on evaluation data.

        Args:
            valid_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            valid_sample_split (int, optional): Each sample of the eval dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
                more than two items, valid_sample_split specifies how to split these items into
                input and label. The items before it are input and the left are label. Default: None.
            batch_size (int, optional): The batch size of valid_data. The user's data will
                be used directly without batching if set to None. Default: 1.
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping evaluation. If None, evaluation will run until the `valid_data` dataset is exhausted.
                The evaluation will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during evaling. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
                import paddle.distributed.auto_parallel as auto
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()
                loss = paddle.nn.CrossEntropyLoss()
                metrics = paddle.metric.Accuracy(topk=(1, 2))

                engine = auto.Engine(model, loss, metrics=metrics)
                engine.evaluate(valid_dataset, batch_size=64)

        """
683
        self.mode = 'eval'
684
        self._infer_sample_spec(valid_data, batch_size, valid_sample_split)
685 686
        if not self._mode_init_states[self.mode]:
            self._prepare_single_mode(self.mode)
687 688
        else:
            self._switch_mode("eval")
689

690
        assert self.mode in self._dist_main_progs, \
691 692 693 694 695
            "eval model is not ready, please call `engine._prepare_single_mode('eval')` first."
        valid_dataloader = self._create_dataloader(valid_data,
                                                   batch_size,
                                                   steps_per_epoch=steps,
                                                   collate_fn=collate_fn)
696

697 698
        fetch_loss = self._validate_fetches(self.fetch_vars["loss"])
        fetch_metrics = self._validate_fetches(self.fetch_vars["metrics"])
699
        inner_fetch = dict(fetch_loss, **fetch_metrics)
700
        usr_fetch = self._validate_fetches(_get_fetches())
701 702
        fetch_list, fetch_map = self._fetch_map(inner_fetch, usr_fetch)

703 704
        outputs = defaultdict(list)
        for step, _ in enumerate(valid_dataloader):
705
            try:
706 707 708 709 710 711
                outs = self._executor.run(
                    self.main_program,
                    fetch_list=fetch_list,
                    use_program_cache=self._strategy.use_cache,
                    return_numpy=self._strategy.return_numpy)
            except core.EOFException:
712
                break
713
            eval_logs = {"step: {:d} ": step}
714 715
            # inner fetches
            if fetch_loss:
716 717
                eval_logs["loss: {:8f} "] = outs[0][0]
                outputs["eval_loss"].append(outs[0][0])
718 719 720 721 722 723 724
            # Metric
            if fetch_metrics:
                metric_out = outs[len(fetch_loss):len(inner_fetch)]
                for metric in self._metrics:
                    metric.update(*metric_out)
                    results = metric.accumulate()
                    for i, res in enumerate(to_list(results)):
725 726 727
                        eval_logs[metric.name()[i] + ": {:8f} "] = res
                        outputs["eval_" + metric.name()[i]].append(res)
            # user fetches
728
            usr_outs = outs[len(inner_fetch):]
729
            usr_fetch_list = fetch_list[len(inner_fetch):]
730
            for i, out in enumerate(usr_outs):
731
                eval_logs[fetch_map[usr_fetch_list[i]] + ": {}"] = out
732
            # logger
733 734
            string = '[eval] ' + ''.join(list(eval_logs.keys()))
            self._logger.info(string.format(*list(eval_logs.values())))
735 736
        self._reset_metrics()
        return outputs
737

738 739
    def predict(self,
                test_data,
740
                test_sample_split=None,
741
                batch_size=1,
742
                steps=None,
743
                collate_fn=None,
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
                callbacks=None):
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            test_sample_split (int, optional): Each sample of the test dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
                more than two items, test_sample_split specifies how to split these items into
                input and label. The items before it are input and the left are label. Default: None.
            batch_size (int, optional): The batch size of test_data. The user's data will
                be used directly without batching if set to None. Default: 1.
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping predict. If None, predict will run until the `test_data` dataset is exhausted.
                The predict will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during testing. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
                import paddle.distributed.auto_parallel as auto
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()

                engine = auto.Engine(model)
                engine.predict(valid_dataset, batch_size=64)
        """
788
        self.mode = 'predict'
789
        self._infer_sample_spec(test_data, batch_size, test_sample_split)
790 791
        if not self._mode_init_states[self.mode]:
            self._prepare_single_mode(self.mode)
792 793
        else:
            self._switch_mode("predict")
794

795
        assert self.mode in self._dist_main_progs, \
796
            "predict model is not ready, please call `engine._prepare_single_mode('predict')` first."
797 798
        test_dataloader = self._create_dataloader(test_data,
                                                  batch_size,
799
                                                  steps_per_epoch=steps,
800
                                                  collate_fn=collate_fn)
801

802
        fetch_outputs = self._validate_fetches(self.fetch_vars["outputs"])
803
        usr_fetch = self._validate_fetches(_get_fetches())
804
        fetch_list, fetch_map = self._fetch_map(fetch_outputs, usr_fetch)
805 806

        outputs = []
807
        for step, _ in enumerate(test_dataloader):
808
            try:
809 810 811 812 813 814
                outs = self._executor.run(
                    self.main_program,
                    fetch_list=fetch_list,
                    use_program_cache=self._strategy.use_cache,
                    return_numpy=self._strategy.return_numpy)
            except core.EOFException:
815
                break
816
            predict_logs = {"step: {:d} ": step}
817 818
            outputs.append(outs[:len(fetch_outputs)])
            for i, out in enumerate(outs):
819 820 821 822
                predict_logs[fetch_map[fetch_list[i]] + ": {}"] = out
            # logger
            string = '[pred] ' + ''.join(list(predict_logs.keys()))
            self._logger.info(string.format(*list(predict_logs.values())))
823

824
        return outputs
825

826 827 828 829 830
    def _tune(self, tune_data, tune_sample_split=None, batch_size=1):
        self.mode = 'train'
        self._infer_sample_spec(tune_data, batch_size, tune_sample_split)
        self._optimization_tuning(self.mode, tune_data, batch_size)

831 832 833 834
    def _create_dataloader(self,
                           dataset,
                           batch_size,
                           epochs=1,
835 836
                           steps_per_epoch=None,
                           collate_fn=None):
837 838 839 840 841 842

        if self._strategy.gradient_merge and batch_size is not None:
            assert batch_size % self._k_steps == 0, \
                "Requires batch_size:[{}] to be divisible by k_steps:[{}].".format(batch_size, self._k_steps)
            batch_size //= self._k_steps

843 844 845 846
        dist_main_prog = self._dist_main_progs[self.mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self.mode][self._cur_rank]
        dist_context = self._dist_contexts[self.mode]
        dist_main_block = dist_main_prog.global_block()
847

848 849 850 851
        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
852 853 854 855 856 857
        inputs_var = self._feed_vars[self.mode]["inputs"]
        labels_var = self._feed_vars[self.mode]["labels"]
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
858 859 860 861
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)
862 863

        # remove the first three ops if multi run fit/evaluate/predict
864
        op_size = len(dist_main_block.ops)
865 866 867 868
        if dist_main_block.ops[0].type == 'create_py_reader':
            op_size -= 3
            for _ in range(3):
                dist_main_block._remove_op(0, sync=False)
869 870

        # insert read op at the end of program
871
        places = paddle.static.cuda_places()
872
        with static.program_guard(dist_main_prog, dist_startup_prog):
873
            dataloader = NonIterableGeneratorLoader(
874 875 876 877 878 879
                dataset,
                feed_list,
                places,
                batch_size,
                epochs,
                steps_per_epoch,
880
                collate_fn,
881 882 883
                data_parallel_world_size=self._dp_world_sizes,
                data_parallel_rank=self._dp_ranks,
                split_data=self._strategy.split_data)
884 885

        # move read op from the end of program to the start of program
886
        new_op_size = len(dist_main_block.ops)
887
        for _ in range(new_op_size - 1, op_size - 1, -1):
888 889 890
            op = dist_main_block.ops[new_op_size - 1]
            new_op_desc = dist_main_block.desc._prepend_op()
            new_op_desc.copy_from(op.desc)
891 892 893
            new_op = Operator(dist_main_block,
                              new_op_desc,
                              type=new_op_desc.type())
894 895 896 897 898 899 900 901
            dist_main_block.ops.insert(0, new_op)
            dist_op = DistributedOperator(new_op)
            dist_context.add_dist_op_for_program(dist_op)
        for _ in range(new_op_size - op_size):
            dist_main_block._remove_op(new_op_size, sync=False)
        dist_main_block._sync_with_cpp()
        return dataloader

902 903
    def _validate_spec(self, specs):
        specs = to_list(specs)
904
        self._k_steps = self._strategy.gradient_merge.k_steps
905 906 907 908 909 910 911
        if specs is not None:
            for i, spec in enumerate(specs):
                assert isinstance(spec, InputSpec)
                if spec.name is None:
                    raise ValueError(
                        "Requires Input[{}].name != None, but receive `None` with {}."
                        .format(i, spec))
912 913 914 915 916 917
                if self._k_steps > 1:
                    shape = list(spec.shape)
                    assert shape[0] % self._k_steps == 0, \
                        "Requires batch_size[{}] to be divisible by k_steps[{}].".format(spec.shape[0], self._k_steps)
                    shape[0] //= self._k_steps
                    spec.shape = shape
918 919
        return specs

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
    def _is_local_var(self, var):
        var_name = _to_name_str(var)
        return var_name in self.main_program.global_block().vars

    def _validate_fetches(self, fetches):
        # 1. Check user-defined fetches type
        # 2. Prepare fetches_dict like {user_defined_name: var_name}
        if not fetches:
            return {}
        if isinstance(fetches, dict):
            fetch_var_names = list(map(_to_name_str, fetches.values()))
            fetches_dict = dict(zip(fetch_var_names, list(fetches.keys())))
        elif isinstance(fetches, list):
            fetch_var_names = list(map(_to_name_str, fetches))
            fetches_dict = dict(zip(fetch_var_names, fetch_var_names))
935
        else:
936 937 938 939 940 941 942 943 944 945 946 947 948
            raise TypeError("'fetches' only support 'dict' and 'list', "
                            "but got '{}'".format(str(type(fetches))))
        return dict(
            filter(lambda x: self._is_local_var(x[0]), fetches_dict.items()))

    def _fetch_map(self, inner_fetch, usr_fetch):
        # replace inner fetch name if usr set for it
        for iname in inner_fetch:
            if iname in usr_fetch:
                inner_fetch[iname] = usr_fetch[iname]
                usr_fetch.pop(iname)
        fetches = dict(inner_fetch, **usr_fetch)
        return list(fetches.keys()), fetches
949

950 951
    def _get_input_split_info(self, var, dist_context):
        # deduce how the input data is split among the cluster
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
        from .utils import _get_comm_group, _get_corresponding_rank

        tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
        process_mesh = tensor_dist_attr.process_mesh
        dims_mapping = tensor_dist_attr.dims_mapping

        if self._cur_rank not in process_mesh.processes:
            rank_id = _get_corresponding_rank(dist_context, process_mesh,
                                              self._cur_rank)
        else:
            rank_id = self._cur_rank

        batch_size_axis = dims_mapping[0]
        if batch_size_axis > -1 and process_mesh.topology[batch_size_axis] > 1:
            group_ranks = _get_comm_group(process_mesh.processes,
                                          process_mesh.topology,
                                          batch_size_axis, rank_id)
            return len(group_ranks), group_ranks.index(rank_id)

971
        return 1, 0
972

973 974 975 976
    def _set_recompute_ckpts(self):
        # NOTE hack to enable recompute in engine api for GPT-3
        # TODO support more PaddleNLP/CV models here

977
        recompute = self._strategy.recompute
978 979

        # extract ckpts by specific model
980
        if isinstance(self._model, paddle.nn.Layer):
981
            if hasattr(
982 983 984
                    self._model, "gpt"
            ) and self._model.__class__.__name__ == 'GPTForPretraining':
                exact_ckpts = self._model.gpt.checkpoints
985
            else:
986
                exact_ckpts = recompute.checkpoints
987
        else:
988
            exact_ckpts = recompute.checkpoints
989 990

        # modify strategy
991 992
        if recompute.enable:
            recompute.checkpoints = exact_ckpts[:]
993
            logs = {
994
                'Model Class': self._model.__class__.__name__,
995 996 997 998
                'Applied Recompute ckpts': exact_ckpts
            }
            self._logger.info(logs)

999
    def _validate_opt(self, optimizer):
1000 1001 1002
        if optimizer is not None:
            optimizer._parameter_list = None
            optimizer._param_groups = None
1003 1004
        return optimizer

1005 1006 1007
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()
1008

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
    def _switch_mode(self, mode):
        self.mode = mode
        self._initialize(mode)

    def _set_state_dict(self, mode, strict, state_dict, dist_attr):
        program = self._dist_main_progs[mode][self._cur_rank]
        dist_context = self._dist_contexts[mode]
        cur_dist_attr = get_dist_attr(program, dist_context)
        converter = Converter(state_dict, dist_attr, cur_dist_attr)
        state_dict = converter.convert(strict=strict)
        program.set_state_dict(state_dict)

    def save(self, path, training=True):
        """
        Saves the model, parameters, optimizer state to path.
        If `training` is set to False, only inference model will be saved.

        Args:
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
            training (bool, optional): Whether to save for training. If not, save
                for inference only. If `training` is set to True, the optimzer state
                will be saved. Otherwise, only the model and parameters are saved.
                This function will silently overwrite existing file at the target
                location. Default: True.

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
                import paddle.distributed.auto_parallel as auto
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
                loss = paddle.nn.CrossEntropyLoss()
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

                engine = auto.Engine(model, loss, optimizer, metrics)
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")

        """
1066
        if training:
1067
            assert 'train' in self._serial_main_progs, \
1068
                "training model is not ready, please call `engine._prepare_single_mode('train')` first."
1069 1070 1071
            serial_program = self._serial_main_progs["train"]
            dist_main_prog = self._dist_main_progs["train"][self._cur_rank]
            dist_context = self._dist_contexts["train"]
1072 1073 1074 1075
            self._saver.save(path,
                             serial_program=serial_program,
                             dist_main_program=dist_main_prog,
                             dist_context=dist_context)
1076
        else:
1077
            mode = "predict"
1078 1079 1080
            feed_vars = self._feed_vars[mode]['inputs']
            fetch_vars = self._fetch_vars[mode]['outputs']
            dist_main_prog = self._dist_main_progs[mode][self._cur_rank]
1081 1082 1083 1084 1085
            self._saver.save_inference_model(path,
                                             feed_vars,
                                             fetch_vars,
                                             self._executor,
                                             program=dist_main_prog)
1086

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
    def load(self, path, strict=True, load_optimizer=True):
        """
        Load the stored model, parameters and optimizer states.

        Args:
            path (str): The prefix of files storing the model states and
                optimizer states.
            strict (bool, optional): Whether to skip the loading of mismatch
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
                mismatch shape). Default: False.
            load_optimizer (bool, optional): If True, the stored optimizer
                states is restored. Otherwise, the optimizer states is intialized
                from scratch. Default: False.

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
                import paddle.distributed.auto_parallel as auto
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
                loss = paddle.nn.CrossEntropyLoss()
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

                engine = auto.Engine(model, loss, optimizer, metrics)
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")
                engine.load("./my_model")
1131

1132 1133 1134 1135 1136
        """
        self._strict = strict
        self._state_dict, self._dist_attr = self._saver.load(
            path, load_optimizer)
        return self._state_dict, self._dist_attr
1137

1138
    @staticmethod
1139
    def _get_lr_scheduler(program):
1140 1141 1142 1143 1144 1145 1146
        lr_sheduler = None
        if hasattr(program, 'lr_sheduler'):
            from paddle.optimizer.lr import LRScheduler
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
        return lr_sheduler

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
    def _get_lr(self, optimizer):
        if isinstance(optimizer, paddle.optimizer.Optimizer):
            return optimizer.get_lr()
        elif isinstance(optimizer, paddle.fluid.optimizer.Optimizer):
            if isinstance(optimizer._learning_rate, float):
                return optimizer._learning_rate
            else:
                return optimizer._learning_rate()
        else:
            raise TypeError(
                    "'optimizer' must be object of class `paddle.optimizer.Optimizer`" \
                        " or `paddle.fluid.optimizer.Optimizer`, but got {}.".format(type(optimizer))
                )

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
    @property
    def mode(self):
        return self._mode

    @mode.setter
    def mode(self, mode):
        self._mode = mode

    @property
    def main_program(self):
        return self._dist_main_progs[self.mode][self._cur_rank]

    @property
    def startup_program(self):
        return self._dist_startup_progs[self.mode][self._cur_rank]

    @property
    def dist_context(self):
        return self._dist_contexts[self.mode]

    @property
    def serial_main_program(self):
        return self._serial_main_progs[self.mode]

    @property
    def serial_startup_program(self):
        return self._serial_startup_progs[self.mode]
1188 1189 1190 1191

    @property
    def fetch_vars(self):
        return self._fetch_vars[self.mode]
1192 1193 1194 1195 1196 1197 1198 1199

    @property
    def inputs(self):
        return self.inputs_spec

    @property
    def labels(self):
        return self.labels_spec