engine.py 31.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import logging
from collections import defaultdict
18
import socket
19 20

import paddle
21
import paddle.utils as utils
22

23
from paddle import fluid, static
24
from paddle.io import Dataset
25
from paddle.jit import to_static
26
from paddle.metric import Metric
27
from paddle.static import InputSpec
28
from paddle.fluid import core
29
from paddle.fluid import program_guard
30
from paddle.fluid.layers.utils import flatten
31
from paddle.fluid.executor import global_scope, _to_name_str
32
from paddle.fluid.backward import append_backward
33
from paddle.fluid.framework import Operator, Parameter, _non_static_mode
34 35
from paddle.fluid.framework import _current_expected_place as _get_device
from paddle.fluid.dygraph.parallel import ParallelEnv
36
from paddle.distributed import fleet
37
from paddle.distributed.utils import get_logger
38
from paddle.distributed.passes import new_pass, PassContext
39

40 41
from ..collective import _get_global_env
from .cluster import Cluster, get_default_cluster
42 43
from .planner_v2 import Planner
from .parallelizer_v2 import Parallelizer
44 45 46 47 48
from .dist_op import DistributedOperator
from .dist_saver import DistributedSaver
from .dist_loader import NonIterableGeneratorLoader
from .utils import make_data_unshard, set_grad_var_shape
from .utils import print_program_with_dist_attr, to_list
49
from .process_group import new_process_group, get_all_process_groups, get_world_process_group
50
from .dist_context import DistributedContext, get_default_distributed_context
51 52 53


class Engine:
54

55 56 57 58 59 60
    def __init__(self,
                 model=None,
                 inputs_spec=None,
                 labels_spec=None,
                 cluster=None,
                 strategy=None):
61
        self.model = model
62 63
        self.inputs_spec = self._validate_spec(inputs_spec)
        self.labels_spec = self._validate_spec(labels_spec)
64
        self.cluster = cluster
65 66
        if self.cluster is None:
            self.cluster = get_default_cluster()
67
        self.strategy = strategy
68 69
        if self.strategy is None:
            self.strategy = fleet.DistributedStrategy()
70

71
        self._executor = None
72 73 74 75 76
        self._cur_rank = paddle.distributed.get_rank()
        self._nranks = paddle.distributed.get_world_size()
        self._saver = DistributedSaver()
        self._logger = get_logger(logging.INFO)

77 78
        self._orig_main_prog = static.default_main_program()
        self._orig_startup_prog = static.default_startup_program()
79
        self._orig_dist_context = get_default_distributed_context()
80
        self._dist_contexts = {}
81 82
        self._serial_main_progs = {}
        self._serial_startup_progs = {}
83 84 85 86
        self._dist_main_progs = defaultdict(dict)  # dist main programs
        self._dist_startup_progs = defaultdict(dict)  # dist startup programs
        self._feed_vars = {}
        self._fetch_vars = {}
87
        self._planners = {}
88 89 90 91 92
        self._mode_init_states = {
            "train": False,
            "eval": False,
            "predict": False
        }
93
        self._dygraph_mode = False
94 95 96 97

    def prepare(self,
                optimizer=None,
                loss=None,
98
                gradient_scale=True,
99 100
                metrics=None,
                all_ranks=False):
101 102 103
        if optimizer and not isinstance(
                optimizer,
            (paddle.optimizer.Optimizer, paddle.fluid.optimizer.Optimizer)):
104 105 106 107
            raise TypeError(
                    "'optimizer' must be object of class `paddle.optimizer.Optimizer`" \
                        " or `paddle.fluid.optimizer.Optimizer`."
                )
108
        self._optimizer = optimizer
109
        self._all_ranks = all_ranks
110 111 112 113 114 115

        if loss and not isinstance(loss,
                                   paddle.nn.Layer) and not callable(loss):
            raise TypeError(
                "'loss' must be sub classes of `paddle.nn.Layer` or any callable function."
            )
116
        self._loss = loss
117 118 119 120 121 122

        metrics = metrics or []
        for metric in to_list(metrics):
            assert isinstance(metric, Metric), \
                "{} is not sub class of Metric".format(
                    metric.__class__.__name__)
123
        self._metrics = to_list(metrics)
124
        self._gradient_scale = gradient_scale
125
        self._planned_mode = None
126
        self._prepare_single_mode("train")
127

128 129 130 131
    def _prepare_single_mode(self, mode):
        self._modes = [mode]
        self._build(self._modes[0])
        # Do auto parallel process
132 133 134
        for mode in self._modes:
            # Do the planning process
            self._plan(mode)
135
        for mode in self._modes:
136
            # Do the parallel process
137 138
            self._parallel(mode, self._all_ranks)

139 140
            # Init comm and startup program
            self._initialize(mode)
141
            self._mode_init_states[mode] = True
142

143 144
    def _build(self, mode):

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
        if _non_static_mode() or self._dygraph_mode:
            self._dygraph_mode = True
            self._logger.info("Building model with 'to_static' method.")

            # build forward main program
            self.static_model = to_static(self.model,
                                          input_spec=self.inputs_spec)
            inputs = self.static_model.forward.inputs
            outputs = self.static_model.forward.outputs
            forward_main_prog = self.static_model.forward.main_program
            forward_startup_prog = self.static_model.forward.concrete_program.startup_program
            self.concrete_program = self.static_model.forward.concrete_program

            # build loss main program
            outputs_spec = []
            outputs_name = []
            for out in outputs:
                outputs_spec.append(InputSpec(out.shape, out.dtype, out.name))
                outputs_name.append(out.name)
            if isinstance(self._loss, paddle.nn.Layer):
                self.static_loss = to_static(self._loss.forward,
                                             input_spec=outputs_spec +
                                             self.labels_spec)
                loss_main_prog = self.static_loss.main_program
            elif callable(self._loss):
                self.static_loss = to_static(self._loss,
                                             input_spec=outputs_spec +
                                             self.labels_spec)
                loss_main_prog = self.static_loss.main_program

            # build startup program
            for param in self.concrete_program.parameters:
                Parameter(name=param.name,
                          desc=param,
                          type=param.type,
                          shape=param.shape,
                          dtype=param.dtype,
                          stop_gradient=param.stop_gradient,
                          block=forward_startup_prog.global_block())

            paddle.enable_static()

            # NOTE: pure program will loss dist_attr
            # feeded_var_names = [var.name for var in inputs]
            # main_prog_0 = main_prog_0._prune_with_input(
            #     feeded_var_names=feeded_var_names, targets=outputs)

            labels = []
            losses = []
            metrics = []
            # concat forward and loss prog
            if mode != 'predict' and self._loss:
                forward_block = forward_main_prog.global_block()
                loss_block = loss_main_prog.global_block()
                for idx, op in enumerate(loss_block.ops):
                    op_desc = forward_block.desc.append_op()
                    op_desc.copy_from(op.desc)
                    for in_name in op.input_arg_names:
                        if in_name in outputs_name:
                            continue
                        in_var = forward_block._clone_variable(
                            loss_block.vars[in_name], force_persistable=False)
                        if loss_block.vars[in_name].is_data:
                            labels.append(in_var)
                    for out_name in op.output_arg_names:
                        out_var = forward_block._clone_variable(
                            loss_block.vars[out_name], force_persistable=False)
                        if idx == len(loss_block.ops) - 1:
                            losses.append(out_var)
                forward_block._sync_with_cpp()
            serial_main_prog = forward_main_prog
            serial_startup_prog = forward_startup_prog
            # update metrics op in program
            with static.program_guard(serial_main_prog, serial_startup_prog), \
                utils.unique_name.guard():
                if mode != "predict":
                    for metric in self._metrics:
                        metrics.extend(
                            to_list(metric.compute(*(outputs + labels))))

        else:
            # build program in static mode
            serial_main_prog = self._serial_main_progs.get(mode, None)
            if serial_main_prog is not None:
                return

            losses = []
            metrics = []
            serial_main_prog = self._orig_main_prog.clone()
            serial_startup_prog = self._orig_startup_prog.clone()
            with static.program_guard(serial_main_prog, serial_startup_prog), \
                utils.unique_name.guard():
                inputs_spec = self.inputs_spec
                labels_spec = self.labels_spec if self.labels_spec else []
                inputs = [s._create_feed_layer() for s in inputs_spec]
                labels = [s._create_feed_layer() for s in labels_spec]
                outputs = to_list(self.model(*inputs))
                if mode != "predict" and self._loss:
                    losses = to_list(self._loss(*(outputs + labels)))

                if mode != "predict":
                    for metric in self._metrics:
                        metrics.extend(
                            to_list(metric.compute(*(outputs + labels))))
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268

        default_ctx = get_default_distributed_context()
        if not default_ctx.has_annotation:
            # We build the world process group because the data parallel
            # needs all ranks by default.
            new_process_group(list(range(self._nranks)))
            default_ctx.data_parallel = True

        feed_vars = {"inputs": inputs, "labels": labels}

        fetch_vars = {
            "outputs": flatten(outputs),
            "loss": losses,
            "metrics": metrics
        }

        self._dist_contexts[mode] = DistributedContext(
            serial_main_prog, serial_startup_prog, self._optimizer, losses,
            feed_vars, fetch_vars, self.cluster, self.strategy)
        self._dist_contexts[mode].gradient_scale = self._gradient_scale
269
        self._dist_contexts[mode]._dygraph_mode = self._dygraph_mode
270 271 272 273 274 275 276

    def _plan(self, mode):
        if self._planned_mode is None:
            self._planned_mode = mode
        else:
            self._init_dist_context(mode)

277 278
        self._planners[mode] = Planner(mode, self._dist_contexts[mode])
        self._planners[mode].plan()
279 280

    def _parallel(self, mode, all_ranks):
281 282 283
        # Parallelize program based on the planner's results
        # For now, the completer has to be passed to the planner,
        # because we may use it to complete the annotation of the backwarkward and update.
284
        parallelizer = Parallelizer(mode, self._planners[mode].completer,
285 286 287 288 289
                                    self._dist_contexts[mode])
        if not all_ranks:
            parallelizer.parallel(self._cur_rank)
        else:
            parallelizer.parallel_all()
290 291

    def _init_dist_context(self, mode):
292
        # Init dist_context['mode'] with the first planned dist_context
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
        # to guarantee that train/eval/predict mode have same parallel strategy
        dist_context = self._dist_contexts[mode]
        origin_main_prog = dist_context._original_serial_main_program
        ref_mode = self._planned_mode
        ref_dist_context = self._dist_contexts[ref_mode]
        ref_origin_main_prog = ref_dist_context._original_serial_main_program
        ref_blocks = ref_origin_main_prog.blocks
        for ib, block in enumerate(origin_main_prog.blocks):
            for iop, op in enumerate(block.ops):
                ref_op = ref_blocks[ib].ops[iop]
                assert op.type == ref_op.type, \
                    "'{}' mode op '{}' is different with '{}' op '{}'. ".format(mode, op.type, ref_mode, ref_op.type)
                ref_op_dist_attr = ref_dist_context.get_op_dist_attr_for_program(
                    ref_op)
                dist_context.set_op_dist_attr_for_program(op, ref_op_dist_attr)

    def _initialize(self, mode):
310
        # Get the current content from the distributed context
311 312 313 314
        self._serial_main_progs[mode] = self._dist_contexts[
            mode].serial_main_program
        self._serial_startup_progs[mode] = self._dist_contexts[
            mode].serial_startup_program
315 316 317 318
        self._dist_main_progs[mode] = self._dist_contexts[
            mode].dist_main_programs
        self._dist_startup_progs[mode] = self._dist_contexts[
            mode].dist_startup_programs
319 320
        self._feed_vars[mode] = self._dist_contexts[mode].serial_feed_vars
        self._fetch_vars[mode] = self._dist_contexts[mode].serial_fetch_vars
321

322 323 324 325
        if self._nranks > 1:
            # Traverse different rank programs and traverse each op of them,
            # instantiate communication by process_mapping.
            all_process_groups = get_all_process_groups()
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

            has_recv_by_socket = []
            # This is a magic number and the rank number for training is usually less than 5000
            magic_num = 5000
            genv = _get_global_env()
            cur_rank_ip, cur_rank_port = genv.current_endpoint.split(":")
            cur_rank_recv_port = int(cur_rank_port) + magic_num
            server_socket = None
            # Large enough for recv rank
            buff_size = 1024
            server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
            server_socket.bind((cur_rank_ip, cur_rank_recv_port))
            # The 10 is an empirical value
            server_socket.listen(10)
            client_sockets = {}
341 342 343
            for process_group in all_process_groups:
                if self._cur_rank not in process_group.ranks:
                    continue
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
                if len(process_group.ranks) == 2:
                    index = process_group.ranks.index(self._cur_rank)
                    is_send = True if index == 0 else False
                    if is_send:
                        recv_rank = process_group.ranks[1]
                        recv_rank_ip, recv_rank_port = genv.trainer_endpoints[
                            recv_rank].split(":")
                        connect_port = int(recv_rank_port) + magic_num
                        client_socket = socket.socket(socket.AF_INET,
                                                      socket.SOCK_STREAM)
                        client_socket.connect((recv_rank_ip, connect_port))
                        client_socket.send(str(self._cur_rank).encode('utf-8'))
                        rank = client_socket.recv(buff_size).decode('utf-8')
                        rank = int(rank)
                        if rank != recv_rank:
                            raise ValueError(
                                "Please check comm pair, the recv rank should be {} but got {}."
                                .format(recv_rank, rank))
                        else:
                            print("It is able to instantiate {} as sender now.".
                                  format(process_group.ranks))
                        client_socket.close()
                    else:
                        send_rank = process_group.ranks[0]
                        while True:
                            if send_rank not in has_recv_by_socket:
                                client_socket, recv_addr = server_socket.accept(
                                )
                                rank = int(
                                    client_socket.recv(buff_size).decode())
                                client_sockets[rank] = client_socket
                                has_recv_by_socket.append(rank)
                            else:
                                client_sockets[send_rank].send(
                                    str(self._cur_rank).encode("utf-8"))
                                client_sockets[send_rank].close()
                                print(
                                    "It is able to instantiate {} as recver now."
                                    .format(process_group.ranks))
                                break
384
                process_group.instantiate()
385
            server_socket.close()
386 387 388 389

        self._place = _get_device()
        if isinstance(self._place, fluid.CUDAPlace):
            self._place = fluid.CUDAPlace(ParallelEnv().dev_id)
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418

        if self._dygraph_mode:
            paddle.disable_static()
            main_program = self._dist_main_progs[mode][self._cur_rank]
            for param in self.concrete_program.parameters:
                # create var in scope and share parameters to scope
                if param.name not in main_program.global_block().vars:
                    continue
                # get param_var's dist_attr
                var = main_program.global_block().vars[param.name]
                var_dist_attr = self._dist_contexts[
                    mode].get_tensor_dist_attr_for_program(var)
                dist_attr = {
                    "dims_mapping": var_dist_attr.dims_mapping,
                    "process_shape": var_dist_attr.process_mesh.topology,
                    "process_group": var_dist_attr.process_mesh.processes
                }
                # slice param_value with dist_attr
                # share sliced_param_value with param_tensor in global_scope
                from .converter import Converter
                param_tensor = global_scope().var(param.name).get_tensor()
                sliced_param = Converter.slice_with_dist_attr(
                    param.numpy(), dist_attr)
                shared_tensor = paddle.to_tensor(sliced_param,
                                                 place=self._place)
                param_tensor._share_data_with(
                    shared_tensor.value().get_tensor())
            paddle.enable_static()

419 420
        if self._executor is None:
            self._executor = paddle.static.Executor(self._place)
421 422 423 424 425 426 427 428 429 430
            uninitialized = []
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            for var in dist_startup_prog.list_vars():
                scope_var = global_scope().find_var(var.name)
                if scope_var and scope_var.get_tensor()._is_initialized():
                    continue
                uninitialized.append(var)
            if uninitialized:
                prune_startup_prog = dist_startup_prog._prune(uninitialized)
                self._executor.run(prune_startup_prog)
431

432 433 434 435
    def fit(self,
            train_data,
            batch_size=1,
            epochs=1,
436
            fetches=None,
437 438
            steps_per_epoch=None,
            use_program_cache=False,
439
            return_numpy=True):
440 441
        # TODO: callbacks
        # TODO: evaluate after training
442 443 444 445 446 447

        if not self._mode_init_states['train']:
            raise Exception(
                "train program is not initialized yet, please call engine.prepare() before calling fit() funtion."
            )

448
        self.mode = 'train'
449
        assert self.mode in self._dist_main_progs, \
450
            "train model is not ready, please call `engine.prepare()` first."
451 452
        train_dataloader = self._create_dataloader(train_data, batch_size,
                                                   epochs, steps_per_epoch)
453

454 455
        usr_fetch = self._validate_fetches(fetches)
        fetch_loss = self._validate_fetches(self.fetch_vars["loss"])
456 457
        fetch_list, fetch_map = self._fetch_map(fetch_loss, usr_fetch)

458
        for epoch in range(epochs):
459 460 461 462 463 464 465 466 467 468 469 470 471 472
            train_logs = {"epoch": epoch}
            for step, _ in enumerate(train_dataloader):
                outs = self._executor.run(self.main_program,
                                          fetch_list=fetch_list,
                                          use_program_cache=use_program_cache,
                                          return_numpy=return_numpy)
                train_logs["step"] = step
                # inner fetches
                if fetch_loss:
                    train_logs["train_loss"] = outs[0][0]
                # user fetches
                user_outs = outs[len(fetch_loss):]
                user_fetch_list = fetch_list[len(fetch_loss):]
                for i, out in enumerate(user_outs):
473
                    train_logs["train_" + fetch_map[user_fetch_list[i]]] = out
474
                self._logger.info(train_logs)
475

476 477 478
    def evaluate(self,
                 eval_data,
                 batch_size=1,
479
                 fetches=None,
480
                 use_program_cache=False,
481
                 return_numpy=True):
482
        self.mode = 'eval'
483 484 485
        if not self._mode_init_states[self.mode]:
            self._prepare_single_mode(self.mode)

486
        assert self.mode in self._dist_main_progs, \
487
            "eval model is not ready, please call `engine.prepare()` first."
488
        eval_dataloader = self._create_dataloader(eval_data, batch_size)
489

490 491 492
        usr_fetch = self._validate_fetches(fetches)
        fetch_loss = self._validate_fetches(self.fetch_vars["loss"])
        fetch_metrics = self._validate_fetches(self.fetch_vars["metrics"])
493 494 495 496 497 498 499 500 501 502 503
        inner_fetch = dict(fetch_loss, **fetch_metrics)
        fetch_list, fetch_map = self._fetch_map(inner_fetch, usr_fetch)

        for step, _ in enumerate(eval_dataloader):
            eval_logs = {"step": step}
            outs = self._executor.run(self.main_program,
                                      fetch_list=fetch_list,
                                      use_program_cache=use_program_cache,
                                      return_numpy=return_numpy)
            # inner fetches
            if fetch_loss:
504
                eval_logs["eval_loss"] = outs[0][0]
505 506 507 508 509 510 511 512 513
            # Metric
            if fetch_metrics:
                metric_out = outs[len(fetch_loss):len(inner_fetch)]
                for metric in self._metrics:
                    metric.update(*metric_out)
                    results = metric.accumulate()
                    for i, res in enumerate(to_list(results)):
                        eval_logs["eval_" + metric.name()[i]] = res
            # usr fetches
514
            usr_outs = outs[len(inner_fetch):]
515
            usr_fetch_list = fetch_list[len(inner_fetch):]
516
            for i, out in enumerate(usr_outs):
517 518
                eval_logs["eval_" + fetch_map[usr_fetch_list[i]]] = out
            # logger
519
            self._logger.info(eval_logs)
520

521 522 523
    def predict(self,
                test_data,
                batch_size=1,
524
                fetches=None,
525
                use_program_cache=False,
526
                return_numpy=True):
527
        self.mode = 'predict'
528 529 530
        if not self._mode_init_states[self.mode]:
            self._prepare_single_mode(self.mode)

531
        assert self.mode in self._dist_main_progs, \
532
            "predict model is not ready, please call `engine.prepare()` first."
533
        test_dataloader = self._create_dataloader(test_data, batch_size)
534

535 536
        usr_fetch = self._validate_fetches(fetches)
        fetch_outputs = self._validate_fetches(self.fetch_vars["outputs"])
537
        fetch_list, fetch_map = self._fetch_map(fetch_outputs, usr_fetch)
538 539

        outputs = []
540 541 542 543 544 545 546 547
        for step, _ in enumerate(test_dataloader):
            predict_logs = {"step": step}
            outs = self._executor.run(self.main_program,
                                      fetch_list=fetch_list,
                                      use_program_cache=use_program_cache,
                                      return_numpy=return_numpy)
            outputs.append(outs[:len(fetch_outputs)])
            for i, out in enumerate(outs):
548
                predict_logs["pred_" + fetch_map[fetch_list[i]]] = out
549
            self._logger.info(predict_logs)
550

551
        return outputs
552

553 554 555 556
    def _create_dataloader(self,
                           dataset,
                           batch_size,
                           epochs=1,
557
                           steps_per_epoch=None):
558 559 560 561
        dist_main_prog = self._dist_main_progs[self.mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self.mode][self._cur_rank]
        dist_context = self._dist_contexts[self.mode]
        dist_main_block = dist_main_prog.global_block()
562

563
        # NOTE: Get feed_list from dist_program, then insert dataloader op
564 565
        # with sharded var shape. Because predict_program does not contain
        # labels var, so we will filter dataset's value with length of feed_list.
566 567 568 569 570 571
        inputs_var = self._feed_vars[self.mode]["inputs"]
        labels_var = self._feed_vars[self.mode]["labels"]
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
572 573
        dp_world_size, dp_rank = self._get_data_parallel_info(
            feed_list[0], dist_context)
574 575

        # remove the first three ops if multi run fit/evaluate/predict
576
        op_size = len(dist_main_block.ops)
577 578 579 580
        if dist_main_block.ops[0].type == 'create_py_reader':
            op_size -= 3
            for _ in range(3):
                dist_main_block._remove_op(0, sync=False)
581 582

        # insert read op at the end of program
583
        places = paddle.static.cuda_places()
584
        with static.program_guard(dist_main_prog, dist_startup_prog):
585
            dataloader = NonIterableGeneratorLoader(
586 587 588 589 590 591
                dataset,
                feed_list,
                places,
                batch_size,
                epochs,
                steps_per_epoch,
592 593 594 595
                data_parallel_world_size=dp_world_size,
                data_parallel_rank=dp_rank)

        # move read op from the end of program to the start of program
596
        new_op_size = len(dist_main_block.ops)
597
        for _ in range(new_op_size - 1, op_size - 1, -1):
598 599 600
            op = dist_main_block.ops[new_op_size - 1]
            new_op_desc = dist_main_block.desc._prepend_op()
            new_op_desc.copy_from(op.desc)
601 602 603
            new_op = Operator(dist_main_block,
                              new_op_desc,
                              type=new_op_desc.type())
604 605 606 607 608 609 610 611
            dist_main_block.ops.insert(0, new_op)
            dist_op = DistributedOperator(new_op)
            dist_context.add_dist_op_for_program(dist_op)
        for _ in range(new_op_size - op_size):
            dist_main_block._remove_op(new_op_size, sync=False)
        dist_main_block._sync_with_cpp()
        return dataloader

612 613 614 615 616 617 618 619 620 621 622
    def _validate_spec(self, specs):
        specs = to_list(specs)
        if specs is not None:
            for i, spec in enumerate(specs):
                assert isinstance(spec, InputSpec)
                if spec.name is None:
                    raise ValueError(
                        "Requires Input[{}].name != None, but receive `None` with {}."
                        .format(i, spec))
        return specs

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
    def _is_local_var(self, var):
        var_name = _to_name_str(var)
        return var_name in self.main_program.global_block().vars

    def _validate_fetches(self, fetches):
        # 1. Check user-defined fetches type
        # 2. Prepare fetches_dict like {user_defined_name: var_name}
        if not fetches:
            return {}
        if isinstance(fetches, dict):
            fetch_var_names = list(map(_to_name_str, fetches.values()))
            fetches_dict = dict(zip(fetch_var_names, list(fetches.keys())))
        elif isinstance(fetches, list):
            fetch_var_names = list(map(_to_name_str, fetches))
            fetches_dict = dict(zip(fetch_var_names, fetch_var_names))
638
        else:
639 640 641 642 643 644 645 646 647 648 649 650 651
            raise TypeError("'fetches' only support 'dict' and 'list', "
                            "but got '{}'".format(str(type(fetches))))
        return dict(
            filter(lambda x: self._is_local_var(x[0]), fetches_dict.items()))

    def _fetch_map(self, inner_fetch, usr_fetch):
        # replace inner fetch name if usr set for it
        for iname in inner_fetch:
            if iname in usr_fetch:
                inner_fetch[iname] = usr_fetch[iname]
                usr_fetch.pop(iname)
        fetches = dict(inner_fetch, **usr_fetch)
        return list(fetches.keys()), fetches
652

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
    def _get_data_parallel_info(self, var, dist_context):
        # get data parallel world size and current data parallel rank
        from .utils import _get_comm_group, _get_corresponding_rank

        tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
        process_mesh = tensor_dist_attr.process_mesh
        dims_mapping = tensor_dist_attr.dims_mapping

        if self._cur_rank not in process_mesh.processes:
            rank_id = _get_corresponding_rank(dist_context, process_mesh,
                                              self._cur_rank)
        else:
            rank_id = self._cur_rank

        batch_size_axis = dims_mapping[0]
        if batch_size_axis > -1 and process_mesh.topology[batch_size_axis] > 1:
            group_ranks = _get_comm_group(process_mesh.processes,
                                          process_mesh.topology,
                                          batch_size_axis, rank_id)
            return len(group_ranks), group_ranks.index(rank_id)

        return None, None

676 677 678 679 680
    def save(self, path, training=True, mode=None):
        if not mode:
            mode = self.mode

        if training:
681 682
            assert 'train' in self._serial_main_progs, \
                "training model is not ready, please call `engine.prepare()` first."
683 684 685
            serial_program = self._serial_main_progs["train"]
            dist_main_prog = self._dist_main_progs["train"][self._cur_rank]
            dist_context = self._dist_contexts["train"]
686 687 688 689
            self._saver.save(path,
                             serial_program=serial_program,
                             dist_main_program=dist_main_prog,
                             dist_context=dist_context)
690 691 692 693 694
        else:
            assert mode, "Please set the 'mode' you want to save."
            feed_vars = self._feed_vars[mode]['inputs']
            fetch_vars = self._fetch_vars[mode]['outputs']
            dist_main_prog = self._dist_main_progs[mode][self._cur_rank]
695 696 697 698 699
            self._saver.save_inference_model(path,
                                             feed_vars,
                                             fetch_vars,
                                             self._executor,
                                             program=dist_main_prog)
700

701 702 703 704
    def load(self, path, strict=True, load_optimizer=True, mode=None):
        if not mode:
            mode = self.mode
        assert mode, "Please set the 'mode' you want to load."
705

706 707 708 709
        dist_main_prog = self._dist_main_progs[mode][self._cur_rank]
        dist_context = self._dist_contexts[mode]
        self._saver.load(path, dist_main_prog, dist_context, strict,
                         load_optimizer)
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737

    @property
    def mode(self):
        return self._mode

    @mode.setter
    def mode(self, mode):
        self._mode = mode

    @property
    def main_program(self):
        return self._dist_main_progs[self.mode][self._cur_rank]

    @property
    def startup_program(self):
        return self._dist_startup_progs[self.mode][self._cur_rank]

    @property
    def dist_context(self):
        return self._dist_contexts[self.mode]

    @property
    def serial_main_program(self):
        return self._serial_main_progs[self.mode]

    @property
    def serial_startup_program(self):
        return self._serial_startup_progs[self.mode]
738 739 740 741

    @property
    def fetch_vars(self):
        return self._fetch_vars[self.mode]