stat.py 28.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define statistical functions of a tensor
16

17
import paddle
18
from paddle import _C_ops, _legacy_C_ops
19 20 21 22 23
from paddle.fluid.framework import _in_legacy_dygraph, in_dygraph_mode

from ..fluid.data_feeder import check_type, check_variable_and_dtype
from ..framework import LayerHelper, core
from ..static import Variable
24
from .math import _get_reduce_axis_with_tensor
25
from .search import where
26

27 28
__all__ = []

29 30 31 32 33 34

def mean(x, axis=None, keepdim=False, name=None):
    """
    Computes the mean of the input tensor's elements along ``axis``.

    Args:
35
        x (Tensor): The input Tensor with data type float32, float64.
36 37 38 39 40 41 42
        axis (int|list|tuple, optional): The axis along which to perform mean
            calculations. ``axis`` should be int, list(int) or tuple(int). If
            ``axis`` is a list/tuple of dimension(s), mean is calculated along
            all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
            should be in range [-D, D), where D is the dimensions of ``x`` . If
            ``axis`` or element(s) of ``axis`` is less than 0, it works the
            same way as :math:`axis + D` . If ``axis`` is None, mean is
43
            calculated over all elements of ``x``. Default is None.
44
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
45
            in the output Tensor. If ``keepdim`` is True, the dimensions of
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of average along ``axis`` of ``x``, with the same data
        type as ``x``.

    Examples:
        .. code-block:: python

            import paddle

Z
zhupengyang 已提交
61 62 63 64 65 66
            x = paddle.to_tensor([[[1., 2., 3., 4.],
                                   [5., 6., 7., 8.],
                                   [9., 10., 11., 12.]],
                                  [[13., 14., 15., 16.],
                                   [17., 18., 19., 20.],
                                   [21., 22., 23., 24.]]])
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
            out1 = paddle.mean(x)
            # [12.5]
            out2 = paddle.mean(x, axis=-1)
            # [[ 2.5  6.5 10.5]
            #  [14.5 18.5 22.5]]
            out3 = paddle.mean(x, axis=-1, keepdim=True)
            # [[[ 2.5]
            #   [ 6.5]
            #   [10.5]]
            #  [[14.5]
            #   [18.5]
            #   [22.5]]]
            out4 = paddle.mean(x, axis=[0, 2])
            # [ 8.5 12.5 16.5]
    """
82
    if in_dygraph_mode():
83
        return _C_ops.mean(x, axis, keepdim)
84 85

    reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
86
    if _in_legacy_dygraph():
87 88 89 90 91 92 93 94 95 96 97 98 99
        return _legacy_C_ops.reduce_mean(
            x, 'dim', axis, 'keep_dim', keepdim, 'reduce_all', reduce_all
        )

    check_variable_and_dtype(
        x,
        'x/input',
        ['uint16', 'float16', 'float32', 'float64'],
        'mean/reduce_mean',
    )
    check_type(
        axis, 'axis/dim', (int, list, tuple, Variable), 'mean/reduce_mean'
    )
100 101
    if isinstance(axis, (list, tuple)):
        for item in axis:
102 103 104 105 106 107
            check_type(
                item,
                'elements of axis/dim',
                (int, Variable),
                'mean/reduce_mean',
            )
108 109

    helper = LayerHelper('mean', **locals())
110

111 112
    attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}
    out = helper.create_variable_for_type_inference(x.dtype)
113 114 115
    helper.append_op(
        type='reduce_mean', inputs={'X': x}, outputs={'Out': out}, attrs=attrs
    )
116
    return out
117 118


119
def var(x, axis=None, unbiased=True, keepdim=False, name=None):
120
    """
121
    Computes the variance of ``x`` along ``axis`` .
122 123

    Args:
124
        x (Tensor): The input Tensor with data type float32, float64.
125 126 127 128
        axis (int|list|tuple, optional): The axis along which to perform variance calculations. ``axis`` should be int, list(int) or tuple(int).

            - If ``axis`` is a list/tuple of dimension(s), variance is calculated along all element(s) of ``axis`` . ``axis`` or element(s) of ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            - If ``axis`` or element(s) of ``axis`` is less than 0, it works the same way as :math:`axis + D` .
129 130 131 132 133
            - If ``axis`` is None, variance is calculated over all elements of ``x``. Default is None.

        unbiased (bool, optional): Whether to use the unbiased estimation. If ``unbiased`` is True, the divisor used in the computation is :math:`N - 1`, where :math:`N` represents the number of elements along ``axis`` , otherwise the divisor is :math:`N`. Default is True.
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result tensor will have one fewer dimension than the input unless keep_dim is true. Default is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
134 135

    Returns:
136
        Tensor, results of variance along ``axis`` of ``x``, with the same data type as ``x``.
137 138 139 140 141

    Examples:
        .. code-block:: python

            import paddle
142

Z
zhupengyang 已提交
143
            x = paddle.to_tensor([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]])
144 145 146 147
            out1 = paddle.var(x)
            # [2.66666667]
            out2 = paddle.var(x, axis=1)
            # [1.         4.33333333]
148
    """
Z
zhiboniu 已提交
149
    if not paddle.in_dynamic_mode():
150 151 152
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'var')

    u = mean(x, axis, True, name)
153
    out = paddle.sum((x - u) ** 2, axis, keepdim=keepdim, name=name)
154

155
    dtype = x.dtype
156 157 158
    n = paddle.cast(paddle.numel(x), paddle.int64) / paddle.cast(
        paddle.numel(out), paddle.int64
    )
159
    n = n.astype(dtype)
160
    if unbiased:
161
        one_const = paddle.ones([], x.dtype)
162
        n = where(n > one_const, n - 1.0, one_const)
163 164 165
    out /= n
    return out

S
swtkiwi 已提交
166

167 168 169
def std(x, axis=None, unbiased=True, keepdim=False, name=None):
    """
    Computes the standard-deviation of ``x`` along ``axis`` .
L
Liufang Sang 已提交
170 171

    Args:
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int|list|tuple, optional): The axis along which to perform
            standard-deviation calculations. ``axis`` should be int, list(int)
            or tuple(int). If ``axis`` is a list/tuple of dimension(s),
            standard-deviation is calculated along all element(s) of ``axis`` .
            ``axis`` or element(s) of ``axis`` should be in range [-D, D),
            where D is the dimensions of ``x`` . If ``axis`` or element(s) of
            ``axis`` is less than 0, it works the same way as :math:`axis + D` .
            If ``axis`` is None, standard-deviation is calculated over all
            elements of ``x``. Default is None.
        unbiased (bool, optional): Whether to use the unbiased estimation. If
            ``unbiased`` is True, the standard-deviation is calculated via the
            unbiased estimator. If ``unbiased`` is True,  the divisor used in
            the computation is :math:`N - 1`, where :math:`N` represents the
            number of elements along ``axis`` , otherwise the divisor is
            :math:`N`. Default is True.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
L
Liufang Sang 已提交
195 196

    Returns:
197 198 199
        Tensor, results of standard-deviation along ``axis`` of ``x``, with the
        same data type as ``x``.

L
Liufang Sang 已提交
200 201 202 203
    Examples:
        .. code-block:: python

            import paddle
204

Z
zhupengyang 已提交
205
            x = paddle.to_tensor([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]])
206 207
            out1 = paddle.std(x)
            # [1.63299316]
208 209 210
            out2 = paddle.std(x, unbiased=False)
            # [1.49071205]
            out3 = paddle.std(x, axis=1)
211
            # [1.       2.081666]
212

L
Liufang Sang 已提交
213
    """
Z
zhiboniu 已提交
214
    if not paddle.in_dynamic_mode():
215 216 217 218
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'std')

    out = var(**locals())
    return paddle.sqrt(out)
219 220 221 222 223


def numel(x, name=None):
    """
    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1] in static mode
224
    or a scalar value in imperative mode.
225 226 227

    Args:
        x (Tensor): The input Tensor, it's data type can be bool, float16, float32, float64, int32, int64.
228 229
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
230 231 232 233 234 235 236

    Returns:
        Tensor: The number of elements for the input Tensor.

    Examples:
        .. code-block:: python

237
            import paddle
238

239 240
            x = paddle.full(shape=[4, 5, 7], fill_value=0, dtype='int32')
            numel = paddle.numel(x) # 140
241 242 243


    """
244
    if in_dygraph_mode():
245
        return _C_ops.numel(x)
246 247
    elif _in_legacy_dygraph():
        return _legacy_C_ops.size(x)
248 249 250 251 252

    if not isinstance(x, Variable):
        raise TypeError("x must be a Tensor in numel")
    helper = LayerHelper('numel', **locals())
    out = helper.create_variable_for_type_inference(
253 254
        dtype=core.VarDesc.VarType.INT64
    )
255 256
    helper.append_op(type='size', inputs={'Input': x}, outputs={'Out': out})
    return out
Z
zhulei 已提交
257 258


259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
def nanmedian(x, axis=None, keepdim=True, name=None):
    r"""
    Compute the median along the specified axis, while ignoring NaNs.

    If the valid count of elements is a even number,
    the average value of both elements in the middle is calculated as the median.

    Args:
        x (Tensor): The input Tensor, it's data type can be int32, int64, float16, float32, float64.
        axis (None|int|list|tuple, optional):
            The axis along which to perform median calculations ``axis`` should be int or list of int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is None, median is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is True.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of median along ``axis`` of ``x``. The output dtype is the same as `x`.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([[float('nan'), 2. , 3. ], [0. , 1. , 2. ]])

            y1 = x.nanmedian()
            # y1 is [[2.]]

            y2 = x.nanmedian(0)
            # y2 is [[0.,  1.5, 2.5]]

            y3 = x.nanmedian(0, keepdim=False)
            # y3 is [0.,  1.5, 2.5]

            y4 = x.nanmedian((0, 1))
            # y4 is [[2.]]
    """
    if not isinstance(x, Variable):
        raise TypeError("In median, the input x should be a Tensor.")

    if isinstance(axis, (list, tuple)) and len(axis) == 0:
        raise ValueError("Axis list should not be empty.")

    dims = len(x.shape)
    if axis is None:
        axis = []
    elif isinstance(axis, tuple):
        axis = list(axis)
    elif isinstance(axis, int):
        axis = [axis]

    if not isinstance(axis, list):
        raise ValueError(
            "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
        )

    for i in range(len(axis)):
322 323 324
        if not isinstance(axis[i], int) or not (
            axis[i] < dims and axis[i] >= -dims
        ):
325 326 327 328 329 330 331 332 333 334
            raise ValueError(
                "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
            )
        if axis[i] < 0:
            axis[i] += dims

    if len(axis) != len(set(axis)):
        raise ValueError("Axis has duplicated elements.")

    if _in_legacy_dygraph():
335 336 337
        median_index, out = _legacy_C_ops.nanmedian(
            x, 'axis', axis, 'keepdim', keepdim
        )
338 339 340
        return out

    check_variable_and_dtype(
341 342
        x, 'X', ['int32', 'int64', 'float16', 'float32', 'float64'], 'nanmedian'
    )
343 344 345 346 347

    helper = LayerHelper('nanmedian', **locals())
    attrs = {'axis': axis, 'keepdim': keepdim}
    out = helper.create_variable_for_type_inference(x.dtype)
    medians = helper.create_variable_for_type_inference(x.dtype)
348 349 350 351 352 353
    helper.append_op(
        type='nanmedian',
        inputs={'X': x},
        outputs={'Out': out, 'MedianIndex': medians},
        attrs=attrs,
    )
354 355 356
    return out


Z
zhulei 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
def median(x, axis=None, keepdim=False, name=None):
    """
    Compute the median along the specified axis.

    Args:
        x (Tensor): The input Tensor, it's data type can be bool, float16, float32, float64, int32, int64.
        axis (int, optional): The axis along which to perform median calculations ``axis`` should be int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is None, median is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of median along ``axis`` of ``x``. If data type of ``x`` is float64, data type of results will be float64, otherwise data type will be float32.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(12).reshape([3, 4])
384 385 386 387
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0 , 1 , 2 , 3 ],
            #         [4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11]])
Z
zhulei 已提交
388 389

            y1 = paddle.median(x)
390 391
            # Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [5.50000000])
Z
zhulei 已提交
392 393

            y2 = paddle.median(x, axis=0)
394 395
            # Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [4., 5., 6., 7.])
Z
zhulei 已提交
396 397

            y3 = paddle.median(x, axis=1)
398 399
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1.50000000, 5.50000000, 9.50000000])
Z
zhulei 已提交
400 401

            y4 = paddle.median(x, axis=0, keepdim=True)
402 403
            # Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[4., 5., 6., 7.]])
Z
zhulei 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425

    """
    if not isinstance(x, Variable):
        raise TypeError("In median, the input x should be a Tensor.")
    is_flatten = axis is None
    dims = len(x.shape)
    if is_flatten:
        x = paddle.flatten(x)
        axis = 0
    else:
        if not isinstance(axis, int) or not (axis < dims and axis >= -dims):
            raise ValueError(
                "In median, axis should be none or an integer in range [-rank(x), rank(x))."
            )
        if axis < 0:
            axis += dims
    sz = x.shape[axis]
    kth = sz >> 1
    tensor_topk, idx = paddle.topk(x, kth + 1, axis=axis, largest=False)
    dtype = 'float64' if x.dtype == core.VarDesc.VarType.FP64 else 'float32'
    if sz & 1 == 0:
        out_tensor = paddle.slice(
426 427
            tensor_topk, axes=[axis], starts=[kth - 1], ends=[kth]
        ) + paddle.slice(tensor_topk, axes=[axis], starts=[kth], ends=[kth + 1])
Z
zhulei 已提交
428 429
        out_tensor = paddle.cast(out_tensor, dtype=dtype) / 2
    else:
430 431 432 433 434 435
        out_tensor = paddle.cast(
            paddle.slice(
                tensor_topk, axes=[axis], starts=[kth], ends=[kth + 1]
            ),
            dtype=dtype,
        )
436
    out_tensor = out_tensor + paddle.sum(
437 438
        paddle.cast(paddle.isnan(x), dtype=dtype) * x, axis=axis, keepdim=True
    )
Z
zhulei 已提交
439 440
    if not keepdim or is_flatten:
        if not is_flatten:
441
            newshape = x.shape[:axis] + x.shape[axis + 1 :]
Z
zhulei 已提交
442 443 444 445 446 447 448 449
        elif not keepdim:
            newshape = [1]
        else:
            newshape = [1] * dims
    else:
        newshape = out_tensor.shape
    out_tensor = out_tensor.reshape(newshape, name=name)
    return out_tensor
450 451


452
def _compute_quantile(x, q, axis=None, keepdim=False, ignore_nan=False):
453 454 455
    """
    Compute the quantile of the input along the specified axis.

456
    Args:
457
        x (Tensor): The input Tensor, it's data type can be float32, float64, int32, int64.
458
        q (int|float|list): The q for calculate quantile, which should be in range [0, 1]. If q is a list,
459 460 461 462 463 464 465 466 467 468 469
            each q will be calculated and the first dimension of output is same to the number of ``q`` .
        axis (int|list, optional): The axis along which to calculate quantile. ``axis`` should be int or list of int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is a list, quantile is calculated over all elements of given axises.
            If ``axis`` is None, quantile is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
470 471 472
        ignore_nan: (bool, optional): Whether to ignore NaN of input Tensor.
            If ``ignore_nan`` is True, it will calculate nanquantile.
            Otherwise it will calculate quantile. Default is False.
473 474

    Returns:
475 476
        Tensor, results of quantile along ``axis`` of ``x``.
        In order to obtain higher precision, data type of results will be float64.
477
    """
478
    # Validate x
479 480
    if not isinstance(x, Variable):
        raise TypeError("input x should be a Tensor.")
481 482 483 484 485 486 487 488 489 490 491

    # Validate q
    if isinstance(q, (int, float)):
        q = [q]
    elif isinstance(q, (list, tuple)):
        if len(q) <= 0:
            raise ValueError("q should not be empty")
    else:
        raise TypeError("Type of q should be int, float, list or tuple.")

    # Validate axis
492
    dims = len(x.shape)
493
    out_shape = list(x.shape)
494 495 496 497 498 499
    if axis is None:
        x = paddle.flatten(x)
        axis = 0
        out_shape = [1] * dims
    else:
        if isinstance(axis, list):
500
            if len(axis) <= 0:
501 502 503 504
                raise ValueError("axis should not be empty")
            axis_src, axis_dst = [], []
            for axis_single in axis:
                if not isinstance(axis_single, int) or not (
505 506
                    axis_single < dims and axis_single >= -dims
                ):
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
                    raise ValueError(
                        "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
                    )
                if axis_single < 0:
                    axis_single = axis_single + dims
                axis_src.append(axis_single)
                out_shape[axis_single] = 1
            axis_dst = list(range(-len(axis), 0))
            x = paddle.moveaxis(x, axis_src, axis_dst)
            x = paddle.flatten(x, axis_dst[0], axis_dst[-1])
            axis = axis_dst[0]
        else:
            if not isinstance(axis, int) or not (axis < dims and axis >= -dims):
                raise ValueError(
                    "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
                )
            if axis < 0:
                axis += dims
            out_shape[axis] = 1
526 527

    mask = x.isnan()
528 529 530
    valid_counts = mask.logical_not().sum(
        axis=axis, keepdim=True, dtype='float64'
    )
531

532
    indices = []
533 534 535

    for q_num in q:
        if q_num < 0 or q_num > 1:
536
            raise ValueError("q should be in range [0, 1]")
537 538 539 540 541
        if paddle.in_dynamic_mode():
            q_num = paddle.to_tensor(q_num, dtype='float64')
        if ignore_nan:
            indices.append(q_num * (valid_counts - 1))
        else:
542
            # TODO: Use paddle.index_fill instead of where
543 544 545 546 547 548
            index = q_num * (valid_counts - 1)
            last_index = x.shape[axis] - 1
            nums = paddle.full_like(index, fill_value=last_index)
            index = paddle.where(mask.any(axis=axis, keepdim=True), nums, index)
            indices.append(index)

549 550
    sorted_tensor = paddle.sort(x, axis)

551
    outputs = []
552

553
    # TODO(chenjianye): replace the for-loop to directly take elements.
554 555 556
    for index in indices:
        indices_below = paddle.floor(index).astype(paddle.int32)
        indices_upper = paddle.ceil(index).astype(paddle.int32)
557 558 559 560 561 562 563 564 565 566 567 568
        tensor_upper = paddle.take_along_axis(
            sorted_tensor, indices_upper, axis=axis
        )
        tensor_below = paddle.take_along_axis(
            sorted_tensor, indices_below, axis=axis
        )
        weights = index - indices_below.astype('float64')
        out = paddle.lerp(
            tensor_below.astype('float64'),
            tensor_upper.astype('float64'),
            weights,
        )
569 570 571 572 573
        if not keepdim:
            out = paddle.squeeze(out, axis=axis)
        else:
            out = out.reshape(out_shape)
        outputs.append(out)
574 575 576

    if len(q) > 1:
        outputs = paddle.stack(outputs, 0)
577
    else:
578 579 580 581 582 583 584 585 586 587 588
        outputs = outputs[0]

    return outputs


def quantile(x, q, axis=None, keepdim=False):
    """
    Compute the quantile of the input along the specified axis.
    If any values in a reduced row are NaN, then the quantiles for that reduction will be NaN.

    Args:
589
        x (Tensor): The input Tensor, it's data type can be float32, float64, int32, int64.
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
        q (int|float|list): The q for calculate quantile, which should be in range [0, 1]. If q is a list,
            each q will be calculated and the first dimension of output is same to the number of ``q`` .
        axis (int|list, optional): The axis along which to calculate quantile. ``axis`` should be int or list of int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is a list, quantile is calculated over all elements of given axises.
            If ``axis`` is None, quantile is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of quantile along ``axis`` of ``x``.
        In order to obtain higher precision, data type of results will be float64.

    Examples:
        .. code-block:: python

            import paddle

614 615 616 617 618 619 620
            y = paddle.arange(0, 8 ,dtype="float32").reshape([4, 2])
            # Tensor(shape=[4, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0., 1.],
            #         [2., 3.],
            #         [4., 5.],
            #         [6., 7.]])

621
            y1 = paddle.quantile(y, q=0.5, axis=[0, 1])
622 623
            # Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        3.50000000)
624 625

            y2 = paddle.quantile(y, q=0.5, axis=1)
626 627
            # Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [0.50000000, 2.50000000, 4.50000000, 6.50000000])
628 629

            y3 = paddle.quantile(y, q=[0.3, 0.5], axis=0)
630 631 632
            # Tensor(shape=[2, 2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[1.80000000, 2.80000000],
            #         [3.        , 4.        ]])
633

634
            y[0,0] = float("nan")
635
            y4 = paddle.quantile(y, q=0.8, axis=1, keepdim=True)
636 637 638 639 640
            # Tensor(shape=[4, 1], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[nan       ],
            #         [2.80000000],
            #         [4.80000000],
            #         [6.80000000]])
641 642 643 644 645 646 647 648 649 650 651

    """
    return _compute_quantile(x, q, axis=axis, keepdim=keepdim, ignore_nan=False)


def nanquantile(x, q, axis=None, keepdim=False):
    """
    Compute the quantile of the input as if NaN values in input did not exist.
    If all values in a reduced row are NaN, then the quantiles for that reduction will be NaN.

    Args:
652
        x (Tensor): The input Tensor, it's data type can be float32, float64, int32, int64.
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
        q (int|float|list): The q for calculate quantile, which should be in range [0, 1]. If q is a list,
            each q will be calculated and the first dimension of output is same to the number of ``q`` .
        axis (int|list, optional): The axis along which to calculate quantile. ``axis`` should be int or list of int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is a list, quantile is calculated over all elements of given axises.
            If ``axis`` is None, quantile is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of quantile along ``axis`` of ``x``.
        In order to obtain higher precision, data type of results will be float64.

    Examples:
        .. code-block:: python

            import paddle

677
            x = paddle.to_tensor(
678
                [[0, 1, 2, 3, 4],
679 680 681
                    [5, 6, 7, 8, 9]],
                dtype="float32")
            x[0,0] = float("nan")
682 683

            y1 = paddle.nanquantile(x, q=0.5, axis=[0, 1])
684 685
            # Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        5.)
686 687

            y2 = paddle.nanquantile(x, q=0.5, axis=1)
688 689
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [2.50000000, 7.        ])
690 691

            y3 = paddle.nanquantile(x, q=[0.3, 0.5], axis=0)
692 693 694
            # Tensor(shape=[2, 5], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[5.        , 2.50000000, 3.50000000, 4.50000000, 5.50000000],
            #         [5.        , 3.50000000, 4.50000000, 5.50000000, 6.50000000]])
695 696

            y4 = paddle.nanquantile(x, q=0.8, axis=1, keepdim=True)
697 698 699
            # Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[3.40000000],
            #         [8.20000000]])
700

701
            nan = paddle.full(shape=[2, 3], fill_value=float("nan"))
702
            y5 = paddle.nanquantile(nan, q=0.8, axis=1, keepdim=True)
703 704 705
            # Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[nan],
            #         [nan]])
706 707 708

    """
    return _compute_quantile(x, q, axis=axis, keepdim=keepdim, ignore_nan=True)