stat.py 28.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define statistical functions of a tensor
16

Z
zhiboniu 已提交
17
from ..static import Variable
18
from ..framework import LayerHelper
Z
zhiboniu 已提交
19
from ..framework import core
20
from paddle.fluid.framework import _in_legacy_dygraph, in_dygraph_mode
21
from .search import where
22
from ..fluid.data_feeder import check_type, check_variable_and_dtype
23
import paddle
24
from paddle import _C_ops, _legacy_C_ops
25
from .math import _get_reduce_axis_with_tensor
26

27 28
__all__ = []

29 30 31 32 33 34

def mean(x, axis=None, keepdim=False, name=None):
    """
    Computes the mean of the input tensor's elements along ``axis``.

    Args:
35
        x (Tensor): The input Tensor with data type float32, float64.
36 37 38 39 40 41 42
        axis (int|list|tuple, optional): The axis along which to perform mean
            calculations. ``axis`` should be int, list(int) or tuple(int). If
            ``axis`` is a list/tuple of dimension(s), mean is calculated along
            all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
            should be in range [-D, D), where D is the dimensions of ``x`` . If
            ``axis`` or element(s) of ``axis`` is less than 0, it works the
            same way as :math:`axis + D` . If ``axis`` is None, mean is
43
            calculated over all elements of ``x``. Default is None.
44
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
45
            in the output Tensor. If ``keepdim`` is True, the dimensions of
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of average along ``axis`` of ``x``, with the same data
        type as ``x``.

    Examples:
        .. code-block:: python

            import paddle

Z
zhupengyang 已提交
61 62 63 64 65 66
            x = paddle.to_tensor([[[1., 2., 3., 4.],
                                   [5., 6., 7., 8.],
                                   [9., 10., 11., 12.]],
                                  [[13., 14., 15., 16.],
                                   [17., 18., 19., 20.],
                                   [21., 22., 23., 24.]]])
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
            out1 = paddle.mean(x)
            # [12.5]
            out2 = paddle.mean(x, axis=-1)
            # [[ 2.5  6.5 10.5]
            #  [14.5 18.5 22.5]]
            out3 = paddle.mean(x, axis=-1, keepdim=True)
            # [[[ 2.5]
            #   [ 6.5]
            #   [10.5]]
            #  [[14.5]
            #   [18.5]
            #   [22.5]]]
            out4 = paddle.mean(x, axis=[0, 2])
            # [ 8.5 12.5 16.5]
    """

83
    reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
84

85
    if in_dygraph_mode():
86
        return _C_ops.mean(x, axis, keepdim)
87
    if _in_legacy_dygraph():
88 89 90 91 92 93 94 95 96 97 98 99 100
        return _legacy_C_ops.reduce_mean(
            x, 'dim', axis, 'keep_dim', keepdim, 'reduce_all', reduce_all
        )

    check_variable_and_dtype(
        x,
        'x/input',
        ['uint16', 'float16', 'float32', 'float64'],
        'mean/reduce_mean',
    )
    check_type(
        axis, 'axis/dim', (int, list, tuple, Variable), 'mean/reduce_mean'
    )
101 102
    if isinstance(axis, (list, tuple)):
        for item in axis:
103 104 105 106 107 108
            check_type(
                item,
                'elements of axis/dim',
                (int, Variable),
                'mean/reduce_mean',
            )
109 110

    helper = LayerHelper('mean', **locals())
111

112 113
    attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}
    out = helper.create_variable_for_type_inference(x.dtype)
114 115 116
    helper.append_op(
        type='reduce_mean', inputs={'X': x}, outputs={'Out': out}, attrs=attrs
    )
117
    return out
118 119


120
def var(x, axis=None, unbiased=True, keepdim=False, name=None):
121
    """
122
    Computes the variance of ``x`` along ``axis`` .
123 124

    Args:
125
        x (Tensor): The input Tensor with data type float32, float64.
126 127 128 129
        axis (int|list|tuple, optional): The axis along which to perform variance calculations. ``axis`` should be int, list(int) or tuple(int).

            - If ``axis`` is a list/tuple of dimension(s), variance is calculated along all element(s) of ``axis`` . ``axis`` or element(s) of ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            - If ``axis`` or element(s) of ``axis`` is less than 0, it works the same way as :math:`axis + D` .
130 131 132 133 134
            - If ``axis`` is None, variance is calculated over all elements of ``x``. Default is None.

        unbiased (bool, optional): Whether to use the unbiased estimation. If ``unbiased`` is True, the divisor used in the computation is :math:`N - 1`, where :math:`N` represents the number of elements along ``axis`` , otherwise the divisor is :math:`N`. Default is True.
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result tensor will have one fewer dimension than the input unless keep_dim is true. Default is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
135 136

    Returns:
137
        Tensor, results of variance along ``axis`` of ``x``, with the same data type as ``x``.
138 139 140 141 142

    Examples:
        .. code-block:: python

            import paddle
143

Z
zhupengyang 已提交
144
            x = paddle.to_tensor([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]])
145 146 147 148
            out1 = paddle.var(x)
            # [2.66666667]
            out2 = paddle.var(x, axis=1)
            # [1.         4.33333333]
149
    """
Z
zhiboniu 已提交
150
    if not paddle.in_dynamic_mode():
151 152 153
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'var')

    u = mean(x, axis, True, name)
154
    out = paddle.sum((x - u) ** 2, axis, keepdim=keepdim, name=name)
155

156
    dtype = x.dtype
157 158 159
    n = paddle.cast(paddle.numel(x), paddle.int64) / paddle.cast(
        paddle.numel(out), paddle.int64
    )
160
    n = n.astype(dtype)
161
    if unbiased:
162
        one_const = paddle.ones([], x.dtype)
163
        n = where(n > one_const, n - 1.0, one_const)
164 165 166
    out /= n
    return out

S
swtkiwi 已提交
167

168 169 170
def std(x, axis=None, unbiased=True, keepdim=False, name=None):
    """
    Computes the standard-deviation of ``x`` along ``axis`` .
L
Liufang Sang 已提交
171 172

    Args:
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int|list|tuple, optional): The axis along which to perform
            standard-deviation calculations. ``axis`` should be int, list(int)
            or tuple(int). If ``axis`` is a list/tuple of dimension(s),
            standard-deviation is calculated along all element(s) of ``axis`` .
            ``axis`` or element(s) of ``axis`` should be in range [-D, D),
            where D is the dimensions of ``x`` . If ``axis`` or element(s) of
            ``axis`` is less than 0, it works the same way as :math:`axis + D` .
            If ``axis`` is None, standard-deviation is calculated over all
            elements of ``x``. Default is None.
        unbiased (bool, optional): Whether to use the unbiased estimation. If
            ``unbiased`` is True, the standard-deviation is calculated via the
            unbiased estimator. If ``unbiased`` is True,  the divisor used in
            the computation is :math:`N - 1`, where :math:`N` represents the
            number of elements along ``axis`` , otherwise the divisor is
            :math:`N`. Default is True.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
L
Liufang Sang 已提交
196 197

    Returns:
198 199 200
        Tensor, results of standard-deviation along ``axis`` of ``x``, with the
        same data type as ``x``.

L
Liufang Sang 已提交
201 202 203 204
    Examples:
        .. code-block:: python

            import paddle
205

Z
zhupengyang 已提交
206
            x = paddle.to_tensor([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]])
207 208
            out1 = paddle.std(x)
            # [1.63299316]
209 210 211
            out2 = paddle.std(x, unbiased=False)
            # [1.49071205]
            out3 = paddle.std(x, axis=1)
212
            # [1.       2.081666]
213

L
Liufang Sang 已提交
214
    """
Z
zhiboniu 已提交
215
    if not paddle.in_dynamic_mode():
216 217 218 219
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'std')

    out = var(**locals())
    return paddle.sqrt(out)
220 221 222 223 224


def numel(x, name=None):
    """
    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1] in static mode
225
    or a scalar value in imperative mode.
226 227 228

    Args:
        x (Tensor): The input Tensor, it's data type can be bool, float16, float32, float64, int32, int64.
229 230
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
231 232 233 234 235 236 237

    Returns:
        Tensor: The number of elements for the input Tensor.

    Examples:
        .. code-block:: python

238
            import paddle
239

240 241
            x = paddle.full(shape=[4, 5, 7], fill_value=0, dtype='int32')
            numel = paddle.numel(x) # 140
242 243 244


    """
245
    if in_dygraph_mode():
246
        return _C_ops.numel(x)
247 248
    elif _in_legacy_dygraph():
        return _legacy_C_ops.size(x)
249 250 251 252 253

    if not isinstance(x, Variable):
        raise TypeError("x must be a Tensor in numel")
    helper = LayerHelper('numel', **locals())
    out = helper.create_variable_for_type_inference(
254 255
        dtype=core.VarDesc.VarType.INT64
    )
256 257
    helper.append_op(type='size', inputs={'Input': x}, outputs={'Out': out})
    return out
Z
zhulei 已提交
258 259


260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
def nanmedian(x, axis=None, keepdim=True, name=None):
    r"""
    Compute the median along the specified axis, while ignoring NaNs.

    If the valid count of elements is a even number,
    the average value of both elements in the middle is calculated as the median.

    Args:
        x (Tensor): The input Tensor, it's data type can be int32, int64, float16, float32, float64.
        axis (None|int|list|tuple, optional):
            The axis along which to perform median calculations ``axis`` should be int or list of int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is None, median is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is True.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of median along ``axis`` of ``x``. The output dtype is the same as `x`.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([[float('nan'), 2. , 3. ], [0. , 1. , 2. ]])

            y1 = x.nanmedian()
            # y1 is [[2.]]

            y2 = x.nanmedian(0)
            # y2 is [[0.,  1.5, 2.5]]

            y3 = x.nanmedian(0, keepdim=False)
            # y3 is [0.,  1.5, 2.5]

            y4 = x.nanmedian((0, 1))
            # y4 is [[2.]]
    """
    if not isinstance(x, Variable):
        raise TypeError("In median, the input x should be a Tensor.")

    if isinstance(axis, (list, tuple)) and len(axis) == 0:
        raise ValueError("Axis list should not be empty.")

    dims = len(x.shape)
    if axis is None:
        axis = []
    elif isinstance(axis, tuple):
        axis = list(axis)
    elif isinstance(axis, int):
        axis = [axis]

    if not isinstance(axis, list):
        raise ValueError(
            "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
        )

    for i in range(len(axis)):
323 324 325
        if not isinstance(axis[i], int) or not (
            axis[i] < dims and axis[i] >= -dims
        ):
326 327 328 329 330 331 332 333 334 335
            raise ValueError(
                "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
            )
        if axis[i] < 0:
            axis[i] += dims

    if len(axis) != len(set(axis)):
        raise ValueError("Axis has duplicated elements.")

    if _in_legacy_dygraph():
336 337 338
        median_index, out = _legacy_C_ops.nanmedian(
            x, 'axis', axis, 'keepdim', keepdim
        )
339 340 341
        return out

    check_variable_and_dtype(
342 343
        x, 'X', ['int32', 'int64', 'float16', 'float32', 'float64'], 'nanmedian'
    )
344 345 346 347 348

    helper = LayerHelper('nanmedian', **locals())
    attrs = {'axis': axis, 'keepdim': keepdim}
    out = helper.create_variable_for_type_inference(x.dtype)
    medians = helper.create_variable_for_type_inference(x.dtype)
349 350 351 352 353 354
    helper.append_op(
        type='nanmedian',
        inputs={'X': x},
        outputs={'Out': out, 'MedianIndex': medians},
        attrs=attrs,
    )
355 356 357
    return out


Z
zhulei 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
def median(x, axis=None, keepdim=False, name=None):
    """
    Compute the median along the specified axis.

    Args:
        x (Tensor): The input Tensor, it's data type can be bool, float16, float32, float64, int32, int64.
        axis (int, optional): The axis along which to perform median calculations ``axis`` should be int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is None, median is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of median along ``axis`` of ``x``. If data type of ``x`` is float64, data type of results will be float64, otherwise data type will be float32.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(12).reshape([3, 4])
385 386 387 388
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0 , 1 , 2 , 3 ],
            #         [4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11]])
Z
zhulei 已提交
389 390

            y1 = paddle.median(x)
391 392
            # Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [5.50000000])
Z
zhulei 已提交
393 394

            y2 = paddle.median(x, axis=0)
395 396
            # Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [4., 5., 6., 7.])
Z
zhulei 已提交
397 398

            y3 = paddle.median(x, axis=1)
399 400
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1.50000000, 5.50000000, 9.50000000])
Z
zhulei 已提交
401 402

            y4 = paddle.median(x, axis=0, keepdim=True)
403 404
            # Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[4., 5., 6., 7.]])
Z
zhulei 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426

    """
    if not isinstance(x, Variable):
        raise TypeError("In median, the input x should be a Tensor.")
    is_flatten = axis is None
    dims = len(x.shape)
    if is_flatten:
        x = paddle.flatten(x)
        axis = 0
    else:
        if not isinstance(axis, int) or not (axis < dims and axis >= -dims):
            raise ValueError(
                "In median, axis should be none or an integer in range [-rank(x), rank(x))."
            )
        if axis < 0:
            axis += dims
    sz = x.shape[axis]
    kth = sz >> 1
    tensor_topk, idx = paddle.topk(x, kth + 1, axis=axis, largest=False)
    dtype = 'float64' if x.dtype == core.VarDesc.VarType.FP64 else 'float32'
    if sz & 1 == 0:
        out_tensor = paddle.slice(
427 428
            tensor_topk, axes=[axis], starts=[kth - 1], ends=[kth]
        ) + paddle.slice(tensor_topk, axes=[axis], starts=[kth], ends=[kth + 1])
Z
zhulei 已提交
429 430
        out_tensor = paddle.cast(out_tensor, dtype=dtype) / 2
    else:
431 432 433 434 435 436
        out_tensor = paddle.cast(
            paddle.slice(
                tensor_topk, axes=[axis], starts=[kth], ends=[kth + 1]
            ),
            dtype=dtype,
        )
437
    out_tensor = out_tensor + paddle.sum(
438 439
        paddle.cast(paddle.isnan(x), dtype=dtype) * x, axis=axis, keepdim=True
    )
Z
zhulei 已提交
440 441
    if not keepdim or is_flatten:
        if not is_flatten:
442
            newshape = x.shape[:axis] + x.shape[axis + 1 :]
Z
zhulei 已提交
443 444 445 446 447 448 449 450
        elif not keepdim:
            newshape = [1]
        else:
            newshape = [1] * dims
    else:
        newshape = out_tensor.shape
    out_tensor = out_tensor.reshape(newshape, name=name)
    return out_tensor
451 452


453
def _compute_quantile(x, q, axis=None, keepdim=False, ignore_nan=False):
454 455 456
    """
    Compute the quantile of the input along the specified axis.

457
    Args:
458
        x (Tensor): The input Tensor, it's data type can be float32, float64, int32, int64.
459
        q (int|float|list): The q for calculate quantile, which should be in range [0, 1]. If q is a list,
460 461 462 463 464 465 466 467 468 469 470
            each q will be calculated and the first dimension of output is same to the number of ``q`` .
        axis (int|list, optional): The axis along which to calculate quantile. ``axis`` should be int or list of int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is a list, quantile is calculated over all elements of given axises.
            If ``axis`` is None, quantile is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
471 472 473
        ignore_nan: (bool, optional): Whether to ignore NaN of input Tensor.
            If ``ignore_nan`` is True, it will calculate nanquantile.
            Otherwise it will calculate quantile. Default is False.
474 475

    Returns:
476 477
        Tensor, results of quantile along ``axis`` of ``x``.
        In order to obtain higher precision, data type of results will be float64.
478
    """
479
    # Validate x
480 481
    if not isinstance(x, Variable):
        raise TypeError("input x should be a Tensor.")
482 483 484 485 486 487 488 489 490 491 492

    # Validate q
    if isinstance(q, (int, float)):
        q = [q]
    elif isinstance(q, (list, tuple)):
        if len(q) <= 0:
            raise ValueError("q should not be empty")
    else:
        raise TypeError("Type of q should be int, float, list or tuple.")

    # Validate axis
493
    dims = len(x.shape)
494
    out_shape = list(x.shape)
495 496 497 498 499 500
    if axis is None:
        x = paddle.flatten(x)
        axis = 0
        out_shape = [1] * dims
    else:
        if isinstance(axis, list):
501
            if len(axis) <= 0:
502 503 504 505
                raise ValueError("axis should not be empty")
            axis_src, axis_dst = [], []
            for axis_single in axis:
                if not isinstance(axis_single, int) or not (
506 507
                    axis_single < dims and axis_single >= -dims
                ):
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
                    raise ValueError(
                        "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
                    )
                if axis_single < 0:
                    axis_single = axis_single + dims
                axis_src.append(axis_single)
                out_shape[axis_single] = 1
            axis_dst = list(range(-len(axis), 0))
            x = paddle.moveaxis(x, axis_src, axis_dst)
            x = paddle.flatten(x, axis_dst[0], axis_dst[-1])
            axis = axis_dst[0]
        else:
            if not isinstance(axis, int) or not (axis < dims and axis >= -dims):
                raise ValueError(
                    "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
                )
            if axis < 0:
                axis += dims
            out_shape[axis] = 1
527 528

    mask = x.isnan()
529 530 531
    valid_counts = mask.logical_not().sum(
        axis=axis, keepdim=True, dtype='float64'
    )
532

533
    indices = []
534 535 536

    for q_num in q:
        if q_num < 0 or q_num > 1:
537
            raise ValueError("q should be in range [0, 1]")
538 539 540 541 542
        if paddle.in_dynamic_mode():
            q_num = paddle.to_tensor(q_num, dtype='float64')
        if ignore_nan:
            indices.append(q_num * (valid_counts - 1))
        else:
543
            # TODO: Use paddle.index_fill instead of where
544 545 546 547 548 549
            index = q_num * (valid_counts - 1)
            last_index = x.shape[axis] - 1
            nums = paddle.full_like(index, fill_value=last_index)
            index = paddle.where(mask.any(axis=axis, keepdim=True), nums, index)
            indices.append(index)

550 551
    sorted_tensor = paddle.sort(x, axis)

552
    outputs = []
553

554
    # TODO(chenjianye): replace the for-loop to directly take elements.
555 556 557
    for index in indices:
        indices_below = paddle.floor(index).astype(paddle.int32)
        indices_upper = paddle.ceil(index).astype(paddle.int32)
558 559 560 561 562 563 564 565 566 567 568 569
        tensor_upper = paddle.take_along_axis(
            sorted_tensor, indices_upper, axis=axis
        )
        tensor_below = paddle.take_along_axis(
            sorted_tensor, indices_below, axis=axis
        )
        weights = index - indices_below.astype('float64')
        out = paddle.lerp(
            tensor_below.astype('float64'),
            tensor_upper.astype('float64'),
            weights,
        )
570 571 572 573 574
        if not keepdim:
            out = paddle.squeeze(out, axis=axis)
        else:
            out = out.reshape(out_shape)
        outputs.append(out)
575 576 577

    if len(q) > 1:
        outputs = paddle.stack(outputs, 0)
578
    else:
579 580 581 582 583 584 585 586 587 588 589
        outputs = outputs[0]

    return outputs


def quantile(x, q, axis=None, keepdim=False):
    """
    Compute the quantile of the input along the specified axis.
    If any values in a reduced row are NaN, then the quantiles for that reduction will be NaN.

    Args:
590
        x (Tensor): The input Tensor, it's data type can be float32, float64, int32, int64.
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
        q (int|float|list): The q for calculate quantile, which should be in range [0, 1]. If q is a list,
            each q will be calculated and the first dimension of output is same to the number of ``q`` .
        axis (int|list, optional): The axis along which to calculate quantile. ``axis`` should be int or list of int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is a list, quantile is calculated over all elements of given axises.
            If ``axis`` is None, quantile is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of quantile along ``axis`` of ``x``.
        In order to obtain higher precision, data type of results will be float64.

    Examples:
        .. code-block:: python

            import paddle

615 616 617 618 619 620 621
            y = paddle.arange(0, 8 ,dtype="float32").reshape([4, 2])
            # Tensor(shape=[4, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0., 1.],
            #         [2., 3.],
            #         [4., 5.],
            #         [6., 7.]])

622
            y1 = paddle.quantile(y, q=0.5, axis=[0, 1])
623 624
            # Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        3.50000000)
625 626

            y2 = paddle.quantile(y, q=0.5, axis=1)
627 628
            # Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [0.50000000, 2.50000000, 4.50000000, 6.50000000])
629 630

            y3 = paddle.quantile(y, q=[0.3, 0.5], axis=0)
631 632 633
            # Tensor(shape=[2, 2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[1.80000000, 2.80000000],
            #         [3.        , 4.        ]])
634

635
            y[0,0] = float("nan")
636
            y4 = paddle.quantile(y, q=0.8, axis=1, keepdim=True)
637 638 639 640 641
            # Tensor(shape=[4, 1], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[nan       ],
            #         [2.80000000],
            #         [4.80000000],
            #         [6.80000000]])
642 643 644 645 646 647 648 649 650 651 652

    """
    return _compute_quantile(x, q, axis=axis, keepdim=keepdim, ignore_nan=False)


def nanquantile(x, q, axis=None, keepdim=False):
    """
    Compute the quantile of the input as if NaN values in input did not exist.
    If all values in a reduced row are NaN, then the quantiles for that reduction will be NaN.

    Args:
653
        x (Tensor): The input Tensor, it's data type can be float32, float64, int32, int64.
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
        q (int|float|list): The q for calculate quantile, which should be in range [0, 1]. If q is a list,
            each q will be calculated and the first dimension of output is same to the number of ``q`` .
        axis (int|list, optional): The axis along which to calculate quantile. ``axis`` should be int or list of int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is a list, quantile is calculated over all elements of given axises.
            If ``axis`` is None, quantile is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of quantile along ``axis`` of ``x``.
        In order to obtain higher precision, data type of results will be float64.

    Examples:
        .. code-block:: python

            import paddle

678
            x = paddle.to_tensor(
679
                [[0, 1, 2, 3, 4],
680 681 682
                    [5, 6, 7, 8, 9]],
                dtype="float32")
            x[0,0] = float("nan")
683 684

            y1 = paddle.nanquantile(x, q=0.5, axis=[0, 1])
685 686
            # Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        5.)
687 688

            y2 = paddle.nanquantile(x, q=0.5, axis=1)
689 690
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [2.50000000, 7.        ])
691 692

            y3 = paddle.nanquantile(x, q=[0.3, 0.5], axis=0)
693 694 695
            # Tensor(shape=[2, 5], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[5.        , 2.50000000, 3.50000000, 4.50000000, 5.50000000],
            #         [5.        , 3.50000000, 4.50000000, 5.50000000, 6.50000000]])
696 697

            y4 = paddle.nanquantile(x, q=0.8, axis=1, keepdim=True)
698 699 700
            # Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[3.40000000],
            #         [8.20000000]])
701

702
            nan = paddle.full(shape=[2, 3], fill_value=float("nan"))
703
            y5 = paddle.nanquantile(nan, q=0.8, axis=1, keepdim=True)
704 705 706
            # Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[nan],
            #         [nan]])
707 708 709

    """
    return _compute_quantile(x, q, axis=axis, keepdim=keepdim, ignore_nan=True)