Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c8fc3379
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c8fc3379
编写于
10月 31, 2022
作者:
zhouweiwei2014
提交者:
GitHub
10月 31, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Zero-Dim] support input 0D Tensor for reduce_sum/reduce_mean (#47219)
上级
81b93ebb
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
160 addition
and
116 deletion
+160
-116
paddle/phi/infermeta/unary.cc
paddle/phi/infermeta/unary.cc
+5
-4
paddle/phi/kernels/funcs/broadcast_function.h
paddle/phi/kernels/funcs/broadcast_function.h
+4
-4
paddle/phi/kernels/funcs/reduce_function.h
paddle/phi/kernels/funcs/reduce_function.h
+8
-0
paddle/phi/kernels/gpu/reduce_mean_grad_kernel.cu
paddle/phi/kernels/gpu/reduce_mean_grad_kernel.cu
+21
-10
paddle/phi/kernels/gpu/reduce_sum_grad_kernel.cu
paddle/phi/kernels/gpu/reduce_sum_grad_kernel.cu
+13
-23
paddle/phi/kernels/reduce_mean_kernel.cc
paddle/phi/kernels/reduce_mean_kernel.cc
+3
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+0
-3
python/paddle/fluid/tests/unittests/test_mean_op.py
python/paddle/fluid/tests/unittests/test_mean_op.py
+15
-0
python/paddle/fluid/tests/unittests/test_reduce_op.py
python/paddle/fluid/tests/unittests/test_reduce_op.py
+15
-0
python/paddle/fluid/tests/unittests/test_zero_dim_shape.py
python/paddle/fluid/tests/unittests/test_zero_dim_shape.py
+51
-0
python/paddle/tensor/math.py
python/paddle/tensor/math.py
+23
-55
python/paddle/tensor/stat.py
python/paddle/tensor/stat.py
+2
-17
未找到文件。
paddle/phi/infermeta/unary.cc
浏览文件 @
c8fc3379
...
...
@@ -2685,7 +2685,7 @@ DDim ReduceInferDim(const MetaTensor& x,
bool
full_dim
=
true
;
std
::
set
<
int64_t
>
dims_set
(
formated_axis
.
begin
(),
formated_axis
.
end
());
for
(
int64_t
i
=
0
;
i
<
x
.
dims
().
size
()
;
++
i
)
{
for
(
int64_t
i
=
0
;
i
<
x
_rank
;
++
i
)
{
if
(
dims_set
.
find
(
i
)
==
dims_set
.
end
())
{
full_dim
=
false
;
break
;
...
...
@@ -2695,7 +2695,7 @@ DDim ReduceInferDim(const MetaTensor& x,
std
::
vector
<
int64_t
>
out_dim_vector
;
if
(
keep_dim
)
{
for
(
int64_t
i
=
0
;
i
<
x
.
dims
().
size
()
;
++
i
)
{
for
(
int64_t
i
=
0
;
i
<
x
_rank
;
++
i
)
{
if
(
reduce_all
||
dims_set
.
find
(
i
)
!=
dims_set
.
end
())
{
out_dim_vector
.
push_back
(
1
);
}
else
{
...
...
@@ -2703,7 +2703,7 @@ DDim ReduceInferDim(const MetaTensor& x,
}
}
}
else
{
for
(
int64_t
i
=
0
;
i
<
x
.
dims
().
size
()
;
++
i
)
{
for
(
int64_t
i
=
0
;
i
<
x
_rank
;
++
i
)
{
if
(
reduce_all
||
dims_set
.
find
(
i
)
!=
dims_set
.
end
())
{
continue
;
}
else
{
...
...
@@ -2711,7 +2711,7 @@ DDim ReduceInferDim(const MetaTensor& x,
}
}
if
(
out_dim_vector
.
size
()
==
0
)
{
if
(
x_rank
>
0
&&
out_dim_vector
.
size
()
==
0
)
{
out_dim_vector
.
push_back
(
1
);
}
}
...
...
@@ -3013,6 +3013,7 @@ void SetValueInferMeta(const MetaTensor& x, MetaTensor* out) {
phi
::
errors
::
InvalidArgument
(
"The rank of input should be less than 7, but received %d."
,
in_dims
.
size
()));
out
->
set_dims
(
in_dims
);
}
void
ShapeInferMeta
(
const
MetaTensor
&
input
,
MetaTensor
*
out
)
{
...
...
paddle/phi/kernels/funcs/broadcast_function.h
浏览文件 @
c8fc3379
...
...
@@ -44,7 +44,7 @@ struct DimensionsTransform {
int64_t
in_idx
=
0
;
if
(
in_dim
.
size
()
<
dim_size
)
{
DimVector
tmp_dim
(
dim_size
,
1
);
do
{
for
(;
in_idx
<
in_dim
.
size
();)
{
if
(
in_dim
[
in_idx
]
==
out_dims
[
axis
]
||
in_dim
[
in_idx
]
==
1
)
{
tmp_dim
[
axis
]
=
in_dim
[
in_idx
];
in_idx
++
;
...
...
@@ -59,11 +59,11 @@ struct DimensionsTransform {
out_dims
[
axis
],
in_dim
[
in_idx
]));
}
}
while
(
in_idx
<
in_dim
.
size
());
}
in_dim
.
resize
(
dim_size
);
std
::
copy
(
tmp_dim
.
begin
(),
tmp_dim
.
end
(),
in_dim
.
begin
());
}
else
{
do
{
for
(;
in_idx
<
dim_size
;)
{
if
(
in_dim
[
in_idx
]
==
out_dims
[
in_idx
]
||
in_dim
[
in_idx
]
==
1
)
{
in_idx
++
;
}
else
{
...
...
@@ -76,7 +76,7 @@ struct DimensionsTransform {
out_dims
[
in_idx
],
in_dim
[
in_idx
]));
}
}
while
(
in_idx
<
dim_size
);
}
}
std
::
reverse
(
in_dim
.
begin
(),
in_dim
.
end
());
}
...
...
paddle/phi/kernels/funcs/reduce_function.h
浏览文件 @
c8fc3379
...
...
@@ -1063,6 +1063,14 @@ void ReduceKernel(const KPDevice& dev_ctx,
dev_ctx
.
Alloc
<
Ty
>
(
y
);
auto
x_dim
=
phi
::
vectorize
<
int
>
(
x
.
dims
());
if
(
x_dim
.
size
()
==
0
)
{
std
::
vector
<
const
DenseTensor
*>
inputs
=
{
&
x
};
std
::
vector
<
DenseTensor
*>
outputs
=
{
y
};
funcs
::
ElementwiseKernel
<
Ty
>
(
dev_ctx
,
inputs
,
&
outputs
,
transform
);
return
;
}
auto
config
=
ReduceConfig
<
Ty
>
(
origin_reduce_dims
,
x_dim
);
config
.
Run
(
dev_ctx
);
int
numel
=
x
.
numel
();
...
...
paddle/phi/kernels/gpu/reduce_mean_grad_kernel.cu
浏览文件 @
c8fc3379
...
...
@@ -16,8 +16,8 @@
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/broadcast_function.h"
#include "paddle/phi/kernels/funcs/reduce_function.h"
#include "paddle/phi/kernels/gpu/reduce_grad.h"
namespace
phi
{
...
...
@@ -29,23 +29,34 @@ void ReduceMeanGradKernel(const Context& dev_ctx,
bool
keep_dim
,
bool
reduce_all
,
DenseTensor
*
x_grad
)
{
// get reduce_dim and reduce_num for reduce_mean_grad
int
dim_size
=
x
.
dims
().
size
();
if
(
dims
.
size
()
==
0
)
{
reduce_all
=
true
;
}
std
::
vector
<
int
>
reduce_dims
=
funcs
::
details
::
GetReduceDim
(
dims
.
GetData
(),
dim_size
,
reduce_all
);
auto
update_dims
=
vectorize
(
x
.
dims
());
int
reduce_num
=
1
;
for
(
auto
i
:
reduce_dims
)
{
reduce_num
*=
(
x
.
dims
())[
i
];
update_dims
[
i
]
=
1
;
}
// make new tensor
DenseTensor
new_out_grad
(
out_grad
.
dtype
());
new_out_grad
.
ShareDataWith
(
out_grad
);
new_out_grad
.
Resize
(
phi
::
make_ddim
(
update_dims
));
// call BroadcastKernel
dev_ctx
.
Alloc
(
x_grad
,
x
.
dtype
());
std
::
vector
<
const
DenseTensor
*>
inputs
=
{
&
new_out_grad
};
std
::
vector
<
DenseTensor
*>
outputs
=
{
x_grad
};
using
MPType
=
typename
kps
::
details
::
MPTypeTrait
<
T
>::
Type
;
ReduceGradKernel
<
T
,
T
,
Context
,
kps
::
DivideFunctor
<
T
,
MPType
>>
(
dev_ctx
,
x
,
out_grad
,
dims
.
GetData
(),
keep_dim
,
reduce_all
,
x_grad
,
kps
::
DivideFunctor
<
T
,
MPType
>
(
reduce_num
));
funcs
::
BroadcastKernel
<
phi
::
ElementwiseType
::
kUnary
,
T
,
T
>
(
dev_ctx
,
inputs
,
&
outputs
,
0
,
kps
::
DivideFunctor
<
T
,
MPType
>
(
reduce_num
));
}
}
// namespace phi
...
...
paddle/phi/kernels/gpu/reduce_sum_grad_kernel.cu
浏览文件 @
c8fc3379
...
...
@@ -29,42 +29,32 @@ void ReduceSumGradKernel(const Context& dev_ctx,
bool
keep_dim
,
bool
reduce_all
,
DenseTensor
*
x_grad
)
{
using
MPType
=
typename
kps
::
details
::
MPTypeTrait
<
T
>::
Type
;
auto
out_dtype
=
x
.
dtype
();
auto
*
in_x
=
&
x
;
auto
*
d_out
=
&
out_grad
;
auto
*
d_x
=
x_grad
;
// get reduce_dim and reduce_num for reduce_mean_grad
int
dim_size
=
in_x
->
dims
().
size
();
// get reduce_dim for reduce_mean_grad
int
dim_size
=
x
.
dims
().
size
();
if
(
dims
.
size
()
==
0
)
{
reduce_all
=
true
;
}
std
::
vector
<
int
>
reduce_dims
=
funcs
::
details
::
GetReduceDim
(
dims
.
GetData
(),
dim_size
,
reduce_all
);
auto
update_dims
=
vectorize
(
d_x
->
dims
());
int
reduce_num
=
1
;
auto
update_dims
=
vectorize
(
x
.
dims
());
for
(
auto
i
:
reduce_dims
)
{
reduce_num
*=
(
in_x
->
dims
())[
i
];
update_dims
[
i
]
=
1
;
}
// make new tensor
DenseTensor
new_
d_out
(
d_out
->
dtype
());
new_
d_out
.
ShareDataWith
(
*
d_out
);
new_
d_out
.
Resize
(
phi
::
make_ddim
(
update_dims
));
DenseTensor
new_
out_grad
(
out_grad
.
dtype
());
new_
out_grad
.
ShareDataWith
(
out_grad
);
new_
out_grad
.
Resize
(
phi
::
make_ddim
(
update_dims
));
dev_ctx
.
Alloc
(
d_x
,
x
.
dtype
());
auto
pt_out_dtype
=
x
.
dtype
();
auto
pt_d_out
=
new_d_out
;
auto
pt_d_x
=
*
d_x
;
std
::
vector
<
const
DenseTensor
*>
inputs
=
{
&
pt_d_out
};
std
::
vector
<
DenseTensor
*>
outputs
=
{
&
pt_d_x
};
// call ReduceGrad
dev_ctx
.
Alloc
(
x_grad
,
x
.
dtype
());
using
MPType
=
typename
kps
::
details
::
MPTypeTrait
<
T
>::
Type
;
phi
::
ReduceGrad
<
T
,
kps
::
IdentityFunctor
<
T
,
MPType
>>
(
dev_ctx
,
&
pt_d_out
,
&
pt_d_x
,
pt_out_dtype
,
&
new_out_grad
,
x_grad
,
x
.
dtype
()
,
kps
::
IdentityFunctor
<
T
,
MPType
>
());
}
...
...
paddle/phi/kernels/reduce_mean_kernel.cc
浏览文件 @
c8fc3379
...
...
@@ -26,6 +26,9 @@ void MeanKernel(const Context& dev_ctx,
bool
keep_dim
,
DenseTensor
*
out
)
{
bool
reduce_all
=
false
;
if
(
dims
.
size
()
==
0
)
{
reduce_all
=
true
;
}
MeanRawKernel
<
T
>
(
dev_ctx
,
x
,
dims
,
keep_dim
,
reduce_all
,
out
);
}
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
c8fc3379
...
...
@@ -5096,9 +5096,6 @@ def reduce_sum(input, dim=None, keep_dim=False, name=None):
fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
"""
if dim is not None and not isinstance(dim, list):
dim = [dim]
reduce_all, dim = _get_reduce_dim(dim, input)
if in_dygraph_mode():
...
...
python/paddle/fluid/tests/unittests/test_mean_op.py
浏览文件 @
c8fc3379
...
...
@@ -58,6 +58,21 @@ class TestMeanOp(OpTest):
self
.
check_grad
([
'X'
],
'Out'
,
check_eager
=
True
)
class
TestMeanOp_ZeroDim
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"mean"
self
.
python_api
=
paddle
.
mean
self
.
dtype
=
np
.
float64
self
.
inputs
=
{
'X'
:
np
.
random
.
random
([]).
astype
(
self
.
dtype
)}
self
.
outputs
=
{
'Out'
:
np
.
mean
(
self
.
inputs
[
"X"
])}
def
test_check_output
(
self
):
self
.
check_output
(
check_eager
=
True
)
def
test_checkout_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
,
check_eager
=
True
)
class
TestMeanOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
...
...
python/paddle/fluid/tests/unittests/test_reduce_op.py
浏览文件 @
c8fc3379
...
...
@@ -37,6 +37,21 @@ class TestSumOp(OpTest):
self
.
check_grad
([
'X'
],
'Out'
,
check_eager
=
True
)
class
TestSumOp_ZeroDim
(
OpTest
):
def
setUp
(
self
):
self
.
python_api
=
paddle
.
sum
self
.
op_type
=
"reduce_sum"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
([]).
astype
(
"float64"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
None
)}
self
.
attrs
=
{
'dim'
:
[],
'reduce_all'
:
True
}
def
test_check_output
(
self
):
self
.
check_output
(
check_eager
=
True
)
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
,
check_eager
=
True
)
class
TestSumOp_fp16
(
OpTest
):
def
setUp
(
self
):
self
.
python_api
=
paddle
.
sum
...
...
python/paddle/fluid/tests/unittests/test_zero_dim_shape.py
浏览文件 @
c8fc3379
...
...
@@ -17,6 +17,7 @@ import paddle.fluid as fluid
import
numpy
as
np
import
unittest
unary_api_list
=
[
paddle
.
nn
.
functional
.
elu
,
paddle
.
nn
.
functional
.
gelu
,
...
...
@@ -159,5 +160,55 @@ class TestUnaryAPI(unittest.TestCase):
paddle
.
disable_static
()
reduce_api_list
=
[
paddle
.
sum
,
paddle
.
mean
,
paddle
.
nansum
,
paddle
.
nanmean
,
]
class
TestReduceAPI
(
unittest
.
TestCase
):
def
test_dygraph
(
self
):
paddle
.
disable_static
()
fluid
.
set_flags
({
"FLAGS_retain_grad_for_all_tensor"
:
True
})
for
api
in
reduce_api_list
:
x
=
paddle
.
rand
([])
x
.
stop_gradient
=
False
out
=
api
(
x
,
None
)
out
.
backward
()
self
.
assertEqual
(
x
.
shape
,
[])
self
.
assertEqual
(
x
.
grad
.
shape
,
[])
self
.
assertEqual
(
out
.
shape
,
[])
self
.
assertEqual
(
out
.
grad
.
shape
,
[])
paddle
.
enable_static
()
def
test_static
(
self
):
paddle
.
enable_static
()
for
api
in
reduce_api_list
:
main_prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main_prog
,
fluid
.
Program
()):
x
=
paddle
.
rand
([])
x
.
stop_gradient
=
False
out
=
api
(
x
,
None
)
fluid
.
backward
.
append_backward
(
out
)
# Test compile shape, grad is always [1]
self
.
assertEqual
(
x
.
shape
,
())
self
.
assertEqual
(
out
.
shape
,
())
exe
=
fluid
.
Executor
()
result
=
exe
.
run
(
main_prog
,
fetch_list
=
[
x
,
out
])
# Test runtime shape
self
.
assertEqual
(
result
[
0
].
shape
,
())
self
.
assertEqual
(
result
[
1
].
shape
,
())
paddle
.
disable_static
()
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/tensor/math.py
浏览文件 @
c8fc3379
...
...
@@ -1265,22 +1265,7 @@ def sum(x, axis=None, dtype=None, keepdim=False, name=None):
out8 = paddle.sum(x, axis=0) # [1, 1, 1, 1]
out9 = paddle.sum(x, axis=1) # [4, 0]
"""
if
isinstance
(
axis
,
Variable
):
reduce_all_flag
=
True
if
axis
.
shape
[
0
]
==
len
(
x
.
shape
)
else
False
else
:
if
axis
is
not
None
and
not
isinstance
(
axis
,
(
list
,
tuple
)):
axis
=
[
axis
]
if
not
axis
:
axis
=
[]
if
len
(
axis
)
==
0
:
reduce_all_flag
=
True
else
:
if
len
(
axis
)
==
len
(
x
.
shape
):
reduce_all_flag
=
True
else
:
reduce_all_flag
=
False
reduce_all
,
axis
=
_get_reduce_axis_with_tensor
(
axis
,
x
)
dtype_flag
=
False
if
dtype
is
not
None
:
...
...
@@ -1290,11 +1275,6 @@ def sum(x, axis=None, dtype=None, keepdim=False, name=None):
if
in_dygraph_mode
():
return
_C_ops
.
sum
(
x
,
axis
,
dtype
,
keepdim
)
if
not
isinstance
(
axis
,
Variable
):
axis
=
axis
if
axis
!=
None
and
axis
!=
[]
and
axis
!=
()
else
[
0
]
if
utils
.
_contain_var
(
axis
):
axis
=
utils
.
_convert_to_tensor_list
(
axis
)
if
_in_legacy_dygraph
():
if
dtype_flag
:
return
_legacy_C_ops
.
reduce_sum
(
...
...
@@ -1304,7 +1284,7 @@ def sum(x, axis=None, dtype=None, keepdim=False, name=None):
'keep_dim'
,
keepdim
,
'reduce_all'
,
reduce_all
_flag
,
reduce_all
,
'in_dtype'
,
x
.
dtype
,
'out_dtype'
,
...
...
@@ -1318,10 +1298,10 @@ def sum(x, axis=None, dtype=None, keepdim=False, name=None):
'keep_dim'
,
keepdim
,
'reduce_all'
,
reduce_all
_flag
,
reduce_all
,
)
attrs
=
{
'dim'
:
axis
,
'keep_dim'
:
keepdim
,
'reduce_all'
:
reduce_all
_flag
}
attrs
=
{
'dim'
:
axis
,
'keep_dim'
:
keepdim
,
'reduce_all'
:
reduce_all
}
if
dtype_flag
:
attrs
.
update
({
'in_dtype'
:
x
.
dtype
,
'out_dtype'
:
dtype
})
...
...
@@ -2304,13 +2284,13 @@ def inverse(x, name=None):
return
out
def
_get_reduce_axis
(
axis
):
def
_get_reduce_axis
(
axis
,
x
):
"""
Internal function for max, min, amax and amin.
It computes the attribute reduce_all value based on axis.
"""
if
axis
is
not
None
and
not
isinstance
(
axis
,
list
):
if
isinstance
(
axis
,
tuple
):
if
isinstance
(
axis
,
(
tuple
,
range
)
):
axis
=
list
(
axis
)
elif
isinstance
(
axis
,
int
):
axis
=
[
axis
]
...
...
@@ -2320,37 +2300,25 @@ def _get_reduce_axis(axis):
type
(
axis
)
)
)
reduce_all
=
True
if
axis
==
None
or
axis
==
[]
else
False
if
axis
==
None
:
if
axis
is
None
:
axis
=
[]
if
axis
==
[]
or
len
(
axis
)
==
len
(
x
.
shape
):
reduce_all
=
True
else
:
reduce_all
=
False
return
reduce_all
,
axis
def
_get_reduce_axis_with_tensor
(
axis
):
def
_get_reduce_axis_with_tensor
(
axis
,
x
):
if
isinstance
(
axis
,
Variable
):
return
False
,
axis
return
_get_reduce_axis
(
axis
)
def
_get_reduce_all_value
(
axis
):
"""
Internal function for max, min, amax and amin.
It computes the attribute reduce_all value based on axis.
"""
if
axis
is
not
None
and
not
isinstance
(
axis
,
list
):
if
isinstance
(
axis
,
tuple
):
axis
=
list
(
axis
)
elif
isinstance
(
axis
,
int
):
axis
=
[
axis
]
if
axis
.
shape
[
0
]
==
len
(
x
.
shape
):
reduce_all
=
True
else
:
raise
TypeError
(
"The type of axis must be int, list or tuple, but received {}"
.
format
(
type
(
axis
)
)
)
reduce_all
=
True
if
axis
==
None
or
axis
==
[]
else
False
axis
=
axis
if
axis
!=
None
and
axis
!=
[]
else
[
0
]
reduce_all
=
False
else
:
reduce_all
,
axis
=
_get_reduce_axis
(
axis
,
x
)
if
utils
.
_contain_var
(
axis
):
axis
=
utils
.
_convert_to_tensor_list
(
axis
)
return
reduce_all
,
axis
...
...
@@ -2432,7 +2400,7 @@ def max(x, axis=None, keepdim=False, name=None):
#[7., 8.], [[[0., 0.], [0., 0.]], [[0., 0.], [1., 1.]]]
"""
reduce_all
,
axis
=
_get_reduce_axis_with_tensor
(
axis
)
reduce_all
,
axis
=
_get_reduce_axis_with_tensor
(
axis
,
x
)
if
in_dygraph_mode
():
return
_C_ops
.
max
(
x
,
axis
,
keepdim
)
if
_in_legacy_dygraph
():
...
...
@@ -2534,7 +2502,7 @@ def min(x, axis=None, keepdim=False, name=None):
#[1., 2.], [[[1., 1.], [0., 0.]], [[0., 0.], [0., 0.]]]
"""
reduce_all
,
axis
=
_get_reduce_axis_with_tensor
(
axis
)
reduce_all
,
axis
=
_get_reduce_axis_with_tensor
(
axis
,
x
)
if
in_dygraph_mode
():
return
_C_ops
.
min
(
x
,
axis
,
keepdim
)
...
...
@@ -2650,7 +2618,7 @@ def amax(x, axis=None, keepdim=False, name=None):
#[0.9., 0.9], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
"""
reduce_all
,
axis
=
_get_reduce_axis
(
axis
)
reduce_all
,
axis
=
_get_reduce_axis
(
axis
,
x
)
if
in_dygraph_mode
():
return
_C_ops
.
amax
(
x
,
axis
,
keepdim
)
if
_in_legacy_dygraph
():
...
...
@@ -2764,7 +2732,7 @@ def amin(x, axis=None, keepdim=False, name=None):
#[0.1., 0.1], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
"""
reduce_all
,
axis
=
_get_reduce_axis
(
axis
)
reduce_all
,
axis
=
_get_reduce_axis
(
axis
,
x
)
if
in_dygraph_mode
():
return
_C_ops
.
amin
(
x
,
axis
,
keepdim
)
elif
_in_legacy_dygraph
():
...
...
python/paddle/tensor/stat.py
浏览文件 @
c8fc3379
...
...
@@ -20,9 +20,9 @@ from ..framework import core
from
paddle.fluid.framework
import
_in_legacy_dygraph
,
in_dygraph_mode
from
.search
import
where
from
..fluid.data_feeder
import
check_type
,
check_variable_and_dtype
from
..fluid.layers
import
utils
import
paddle
from
paddle
import
_C_ops
,
_legacy_C_ops
from
.math
import
_get_reduce_axis_with_tensor
__all__
=
[]
...
...
@@ -80,22 +80,9 @@ def mean(x, axis=None, keepdim=False, name=None):
# [ 8.5 12.5 16.5]
"""
if
isinstance
(
axis
,
Variable
):
reduce_all
=
True
if
axis
.
shape
[
0
]
==
len
(
x
.
shape
)
else
False
else
:
if
isinstance
(
axis
,
int
):
axis
=
[
axis
]
reduce_all
=
(
True
if
axis
is
None
or
len
(
axis
)
==
0
or
len
(
axis
)
==
len
(
x
.
shape
)
else
False
)
if
axis
is
None
or
len
(
axis
)
==
0
:
axis
=
[
0
]
reduce_all
,
axis
=
_get_reduce_axis_with_tensor
(
axis
,
x
)
if
in_dygraph_mode
():
if
reduce_all
:
axis
=
list
(
range
(
len
(
x
.
shape
)))
return
_C_ops
.
mean
(
x
,
axis
,
keepdim
)
if
_in_legacy_dygraph
():
return
_legacy_C_ops
.
reduce_mean
(
...
...
@@ -122,8 +109,6 @@ def mean(x, axis=None, keepdim=False, name=None):
helper
=
LayerHelper
(
'mean'
,
**
locals
())
if
not
isinstance
(
axis
,
Variable
)
and
utils
.
_contain_var
(
axis
):
axis
=
utils
.
_convert_to_tensor_list
(
axis
)
attrs
=
{
'dim'
:
axis
,
'keep_dim'
:
keepdim
,
'reduce_all'
:
reduce_all
}
out
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
)
helper
.
append_op
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录