stat.py 24.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define statistical functions of a tensor  
16

17
import numpy as np
Z
zhiboniu 已提交
18
from ..static import Variable
19
from ..framework import LayerHelper
Z
zhiboniu 已提交
20
from ..framework import core
21
from paddle.fluid.framework import _in_legacy_dygraph, in_dygraph_mode
22
from .search import where
L
Liufang Sang 已提交
23
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
24
import paddle
W
wanghuancoder 已提交
25
from paddle import _C_ops
26

27 28
__all__ = []

29 30 31 32 33 34

def mean(x, axis=None, keepdim=False, name=None):
    """
    Computes the mean of the input tensor's elements along ``axis``.

    Args:
35
        x (Tensor): The input Tensor with data type float32, float64.
36 37 38 39 40 41 42
        axis (int|list|tuple, optional): The axis along which to perform mean
            calculations. ``axis`` should be int, list(int) or tuple(int). If
            ``axis`` is a list/tuple of dimension(s), mean is calculated along
            all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
            should be in range [-D, D), where D is the dimensions of ``x`` . If
            ``axis`` or element(s) of ``axis`` is less than 0, it works the
            same way as :math:`axis + D` . If ``axis`` is None, mean is
43
            calculated over all elements of ``x``. Default is None.
44
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
45
            in the output Tensor. If ``keepdim`` is True, the dimensions of
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of average along ``axis`` of ``x``, with the same data
        type as ``x``.

    Examples:
        .. code-block:: python

            import paddle

Z
zhupengyang 已提交
61 62 63 64 65 66
            x = paddle.to_tensor([[[1., 2., 3., 4.],
                                   [5., 6., 7., 8.],
                                   [9., 10., 11., 12.]],
                                  [[13., 14., 15., 16.],
                                   [17., 18., 19., 20.],
                                   [21., 22., 23., 24.]]])
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
            out1 = paddle.mean(x)
            # [12.5]
            out2 = paddle.mean(x, axis=-1)
            # [[ 2.5  6.5 10.5]
            #  [14.5 18.5 22.5]]
            out3 = paddle.mean(x, axis=-1, keepdim=True)
            # [[[ 2.5]
            #   [ 6.5]
            #   [10.5]]
            #  [[14.5]
            #   [18.5]
            #   [22.5]]]
            out4 = paddle.mean(x, axis=[0, 2])
            # [ 8.5 12.5 16.5]
    """

    if isinstance(axis, int):
        axis = [axis]
    reduce_all = True if axis is None \
        or len(axis)==0 \
        or len(axis) == len(x.shape) else False
    if axis is None or len(axis) == 0:
        axis = [0]

91 92 93 94 95
    if in_dygraph_mode():
        if reduce_all:
            axis = range(len(x.shape))
        return _C_ops.final_state_mean(x, axis, keepdim)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
96 97
        return _C_ops.reduce_mean(x, 'dim', axis, 'keep_dim', keepdim,
                                  'reduce_all', reduce_all)
98

S
sneaxiy 已提交
99 100
    check_variable_and_dtype(x, 'x/input',
                             ['uint16', 'float16', 'float32', 'float64'],
101
                             'mean/reduce_mean')
102 103 104 105
    check_type(axis, 'axis/dim', (int, list, tuple), 'mean/reduce_mean')
    if isinstance(axis, (list, tuple)):
        for item in axis:
            check_type(item, 'elements of axis/dim', (int), 'mean/reduce_mean')
106 107 108 109 110 111 112

    helper = LayerHelper('mean', **locals())
    attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='reduce_mean', inputs={'X': x}, outputs={'Out': out}, attrs=attrs)
    return out
113 114


115
def var(x, axis=None, unbiased=True, keepdim=False, name=None):
116
    """
117
    Computes the variance of ``x`` along ``axis`` .
118 119

    Args:
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int|list|tuple, optional): The axis along which to perform
            variance calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), variance
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is less
            than 0, it works the same way as :math:`axis + D` . If ``axis`` is
            None, variance is calculated over all elements of ``x``. Default
            is None.
        unbiased (bool, optional): Whether to use the unbiased estimation. If
            ``unbiased`` is True, the divisor used in the computation is
            :math:`N - 1`, where :math:`N` represents the number of elements
            along ``axis`` , otherwise the divisor is :math:`N`. Default is True.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
141 142

    Returns:
143 144
        Tensor, results of variance along ``axis`` of ``x``, with the same data
        type as ``x``.
145 146 147 148 149

    Examples:
        .. code-block:: python

            import paddle
150

Z
zhupengyang 已提交
151
            x = paddle.to_tensor([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]])
152 153 154 155
            out1 = paddle.var(x)
            # [2.66666667]
            out2 = paddle.var(x, axis=1)
            # [1.         4.33333333]
156
    """
Z
zhiboniu 已提交
157
    if not paddle.in_dynamic_mode():
158 159 160 161
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'var')

    u = mean(x, axis, True, name)
    out = paddle.sum((x - u)**2, axis, keepdim=keepdim, name=name)
162

163 164
    n = paddle.cast(paddle.numel(x), x.dtype) \
        / paddle.cast(paddle.numel(out), x.dtype)
165
    if unbiased:
166 167 168 169 170
        one_const = paddle.ones([1], x.dtype)
        n = where(n > one_const, n - 1., one_const)
    out /= n
    return out

S
swtkiwi 已提交
171

172 173 174
def std(x, axis=None, unbiased=True, keepdim=False, name=None):
    """
    Computes the standard-deviation of ``x`` along ``axis`` .
L
Liufang Sang 已提交
175 176

    Args:
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int|list|tuple, optional): The axis along which to perform
            standard-deviation calculations. ``axis`` should be int, list(int)
            or tuple(int). If ``axis`` is a list/tuple of dimension(s),
            standard-deviation is calculated along all element(s) of ``axis`` .
            ``axis`` or element(s) of ``axis`` should be in range [-D, D),
            where D is the dimensions of ``x`` . If ``axis`` or element(s) of
            ``axis`` is less than 0, it works the same way as :math:`axis + D` .
            If ``axis`` is None, standard-deviation is calculated over all
            elements of ``x``. Default is None.
        unbiased (bool, optional): Whether to use the unbiased estimation. If
            ``unbiased`` is True, the standard-deviation is calculated via the
            unbiased estimator. If ``unbiased`` is True,  the divisor used in
            the computation is :math:`N - 1`, where :math:`N` represents the
            number of elements along ``axis`` , otherwise the divisor is
            :math:`N`. Default is True.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
L
Liufang Sang 已提交
200 201

    Returns:
202 203 204
        Tensor, results of standard-deviation along ``axis`` of ``x``, with the
        same data type as ``x``.

L
Liufang Sang 已提交
205 206 207 208
    Examples:
        .. code-block:: python

            import paddle
209

Z
zhupengyang 已提交
210
            x = paddle.to_tensor([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]])
211 212 213 214
            out1 = paddle.std(x)
            # [1.63299316]
            out2 = paddle.std(x, axis=1)
            # [1.       2.081666]
L
Liufang Sang 已提交
215
    """
Z
zhiboniu 已提交
216
    if not paddle.in_dynamic_mode():
217 218 219 220
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'std')

    out = var(**locals())
    return paddle.sqrt(out)
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236


def numel(x, name=None):
    """
    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1] in static mode
    or a scalar value in imperative mode

    Args:
        x (Tensor): The input Tensor, it's data type can be bool, float16, float32, float64, int32, int64.

    Returns:
        Tensor: The number of elements for the input Tensor.

    Examples:
        .. code-block:: python

237 238 239 240
            import paddle
            
            x = paddle.full(shape=[4, 5, 7], fill_value=0, dtype='int32')
            numel = paddle.numel(x) # 140
241 242 243


    """
Z
zhiboniu 已提交
244
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
245
        return _C_ops.size(x)
246 247 248 249 250 251 252 253

    if not isinstance(x, Variable):
        raise TypeError("x must be a Tensor in numel")
    helper = LayerHelper('numel', **locals())
    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)
    helper.append_op(type='size', inputs={'Input': x}, outputs={'Out': out})
    return out
Z
zhulei 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328


def median(x, axis=None, keepdim=False, name=None):
    """
    Compute the median along the specified axis.

    Args:
        x (Tensor): The input Tensor, it's data type can be bool, float16, float32, float64, int32, int64.
        axis (int, optional): The axis along which to perform median calculations ``axis`` should be int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is None, median is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of median along ``axis`` of ``x``. If data type of ``x`` is float64, data type of results will be float64, otherwise data type will be float32.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(12).reshape([3, 4])
            # x is [[0 , 1 , 2 , 3 ],
            #       [4 , 5 , 6 , 7 ],
            #       [8 , 9 , 10, 11]]

            y1 = paddle.median(x)
            # y1 is [5.5]

            y2 = paddle.median(x, axis=0)
            # y2 is [4., 5., 6., 7.]

            y3 = paddle.median(x, axis=1)
            # y3 is [1.5, 5.5, 9.5]

            y4 = paddle.median(x, axis=0, keepdim=True)
            # y4 is [[4., 5., 6., 7.]]

    """
    if not isinstance(x, Variable):
        raise TypeError("In median, the input x should be a Tensor.")
    is_flatten = axis is None
    dims = len(x.shape)
    if is_flatten:
        x = paddle.flatten(x)
        axis = 0
    else:
        if not isinstance(axis, int) or not (axis < dims and axis >= -dims):
            raise ValueError(
                "In median, axis should be none or an integer in range [-rank(x), rank(x))."
            )
        if axis < 0:
            axis += dims
    sz = x.shape[axis]
    kth = sz >> 1
    tensor_topk, idx = paddle.topk(x, kth + 1, axis=axis, largest=False)
    dtype = 'float64' if x.dtype == core.VarDesc.VarType.FP64 else 'float32'
    if sz & 1 == 0:
        out_tensor = paddle.slice(
            tensor_topk, axes=[axis], starts=[kth - 1],
            ends=[kth]) + paddle.slice(
                tensor_topk, axes=[axis], starts=[kth], ends=[kth + 1])
        out_tensor = paddle.cast(out_tensor, dtype=dtype) / 2
    else:
        out_tensor = paddle.cast(
            paddle.slice(
                tensor_topk, axes=[axis], starts=[kth], ends=[kth + 1]),
            dtype=dtype)
329 330 331
    out_tensor = out_tensor + paddle.sum(
        paddle.cast(
            paddle.isnan(x), dtype=dtype) * x, axis=axis, keepdim=True)
Z
zhulei 已提交
332 333 334 335 336 337 338 339 340 341 342
    if not keepdim or is_flatten:
        if not is_flatten:
            newshape = x.shape[:axis] + x.shape[axis + 1:]
        elif not keepdim:
            newshape = [1]
        else:
            newshape = [1] * dims
    else:
        newshape = out_tensor.shape
    out_tensor = out_tensor.reshape(newshape, name=name)
    return out_tensor
343 344


345
def _compute_quantile(x, q, axis=None, keepdim=False, ignore_nan=False):
346 347 348
    """
    Compute the quantile of the input along the specified axis.

349
    Args:
350 351
    Args:
        x (Tensor): The input Tensor, it's data type can be float32, float64.
352
        q (int|float|list): The q for calculate quantile, which should be in range [0, 1]. If q is a list,
353 354 355 356 357 358 359 360 361 362 363
            each q will be calculated and the first dimension of output is same to the number of ``q`` .
        axis (int|list, optional): The axis along which to calculate quantile. ``axis`` should be int or list of int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is a list, quantile is calculated over all elements of given axises.
            If ``axis`` is None, quantile is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
364 365 366
        ignore_nan: (bool, optional): Whether to ignore NaN of input Tensor.
            If ``ignore_nan`` is True, it will calculate nanquantile.
            Otherwise it will calculate quantile. Default is False.
367 368

    Returns:
369 370
        Tensor, results of quantile along ``axis`` of ``x``.
        In order to obtain higher precision, data type of results will be float64.
371
    """
372
    # Validate x
373 374
    if not isinstance(x, Variable):
        raise TypeError("input x should be a Tensor.")
375 376 377 378 379 380 381 382 383 384 385

    # Validate q
    if isinstance(q, (int, float)):
        q = [q]
    elif isinstance(q, (list, tuple)):
        if len(q) <= 0:
            raise ValueError("q should not be empty")
    else:
        raise TypeError("Type of q should be int, float, list or tuple.")

    # Validate axis
386
    dims = len(x.shape)
387
    out_shape = list(x.shape)
388 389 390 391 392 393
    if axis is None:
        x = paddle.flatten(x)
        axis = 0
        out_shape = [1] * dims
    else:
        if isinstance(axis, list):
394
            if len(axis) <= 0:
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
                raise ValueError("axis should not be empty")
            axis_src, axis_dst = [], []
            for axis_single in axis:
                if not isinstance(axis_single, int) or not (
                        axis_single < dims and axis_single >= -dims):
                    raise ValueError(
                        "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
                    )
                if axis_single < 0:
                    axis_single = axis_single + dims
                axis_src.append(axis_single)
                out_shape[axis_single] = 1
            axis_dst = list(range(-len(axis), 0))
            x = paddle.moveaxis(x, axis_src, axis_dst)
            x = paddle.flatten(x, axis_dst[0], axis_dst[-1])
            axis = axis_dst[0]
        else:
            if not isinstance(axis, int) or not (axis < dims and axis >= -dims):
                raise ValueError(
                    "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
                )
            if axis < 0:
                axis += dims
            out_shape[axis] = 1
419 420 421 422 423 424

    mask = x.isnan()
    valid_counts = mask.logical_not().sum(axis=axis,
                                          keepdim=True,
                                          dtype='float64')

425
    indices = []
426 427 428

    for q_num in q:
        if q_num < 0 or q_num > 1:
429
            raise ValueError("q should be in range [0, 1]")
430 431 432 433 434 435 436 437 438 439 440 441
        if paddle.in_dynamic_mode():
            q_num = paddle.to_tensor(q_num, dtype='float64')
        if ignore_nan:
            indices.append(q_num * (valid_counts - 1))
        else:
            # TODO(Asthestarsfalll): Use paddle.index_fill instead of where
            index = q_num * (valid_counts - 1)
            last_index = x.shape[axis] - 1
            nums = paddle.full_like(index, fill_value=last_index)
            index = paddle.where(mask.any(axis=axis, keepdim=True), nums, index)
            indices.append(index)

442 443
    sorted_tensor = paddle.sort(x, axis)

444
    outputs = []
445

446
    # TODO(chenjianye): replace the for-loop to directly take elements.
447 448 449 450 451 452 453 454 455 456 457
    for index in indices:
        indices_below = paddle.floor(index).astype(paddle.int32)
        indices_upper = paddle.ceil(index).astype(paddle.int32)
        tensor_upper = paddle.take_along_axis(
            sorted_tensor, indices_upper, axis=axis)
        tensor_below = paddle.take_along_axis(
            sorted_tensor, indices_below, axis=axis)
        weights = (index - indices_below.astype('float64'))
        out = paddle.lerp(
            tensor_below.astype('float64'),
            tensor_upper.astype('float64'), weights)
458 459 460 461 462
        if not keepdim:
            out = paddle.squeeze(out, axis=axis)
        else:
            out = out.reshape(out_shape)
        outputs.append(out)
463 464 465

    if len(q) > 1:
        outputs = paddle.stack(outputs, 0)
466
    else:
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
        outputs = outputs[0]

    return outputs


def quantile(x, q, axis=None, keepdim=False):
    """
    Compute the quantile of the input along the specified axis.
    If any values in a reduced row are NaN, then the quantiles for that reduction will be NaN.

    Args:
        x (Tensor): The input Tensor, it's data type can be float32, float64.
        q (int|float|list): The q for calculate quantile, which should be in range [0, 1]. If q is a list,
            each q will be calculated and the first dimension of output is same to the number of ``q`` .
        axis (int|list, optional): The axis along which to calculate quantile. ``axis`` should be int or list of int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is a list, quantile is calculated over all elements of given axises.
            If ``axis`` is None, quantile is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of quantile along ``axis`` of ``x``.
        In order to obtain higher precision, data type of results will be float64.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            x = np.arange(0, 8, dtype=np.float32).reshape(4, 2)
            # [[0 1]
            #  [2 3]
            #  [4 5]
            #  [6 7]]
            y = paddle.to_tensor(x)
            y1 = paddle.quantile(y, q=0.5, axis=[0, 1])
            # 3.5

            y2 = paddle.quantile(y, q=0.5, axis=1)
            # [0.5 2.5 4.5 6.5]

            y3 = paddle.quantile(y, q=[0.3, 0.5], axis=0)
            # [[1.8 2.8]
            #  [3.  4. ]]

            x[0][0] = np.nan
            y = paddle.to_tensor(x)
            y4 = paddle.quantile(y, q=0.8, axis=1, keepdim=True)
            # [[nan]
            #  [2.8]
            #  [4.8]
            #  [6.8]]

    """
    return _compute_quantile(x, q, axis=axis, keepdim=keepdim, ignore_nan=False)


def nanquantile(x, q, axis=None, keepdim=False):
    """
    Compute the quantile of the input as if NaN values in input did not exist.
    If all values in a reduced row are NaN, then the quantiles for that reduction will be NaN.

    Args:
        x (Tensor): The input Tensor, it's data type can be float32, float64.
        q (int|float|list): The q for calculate quantile, which should be in range [0, 1]. If q is a list,
            each q will be calculated and the first dimension of output is same to the number of ``q`` .
        axis (int|list, optional): The axis along which to calculate quantile. ``axis`` should be int or list of int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is a list, quantile is calculated over all elements of given axises.
            If ``axis`` is None, quantile is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of quantile along ``axis`` of ``x``.
        In order to obtain higher precision, data type of results will be float64.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            x = np.array(
                [[0, 1, 2, 3, 4],
                 [5, 6, 7, 8, 9]],
                dtype=np.float32
            )
            x[0][0] = np.nan

            x = paddle.to_tensor(x)
            y1 = paddle.nanquantile(x, q=0.5, axis=[0, 1])
            # 5.0

            y2 = paddle.nanquantile(x, q=0.5, axis=1)
            # [2.5 7. ]

            y3 = paddle.nanquantile(x, q=[0.3, 0.5], axis=0)
            # [[5.  2.5 3.5 4.5 5.5]
            #  [5.  3.5 4.5 5.5 6.5]

            y4 = paddle.nanquantile(x, q=0.8, axis=1, keepdim=True)
            # [[3.4]
            #  [8.2]]

            nan = paddle.full(shape=[2, 3], fill_value=np.nan)
            y5 = paddle.nanquantile(nan, q=0.8, axis=1, keepdim=True)
            # [[nan]
            #  [nan]]

    """
    return _compute_quantile(x, q, axis=axis, keepdim=keepdim, ignore_nan=True)