engine.py 32.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import time
16 17 18 19 20
import copy
import logging
from collections import defaultdict

import paddle
21
import paddle.utils as utils
22

23
from paddle import fluid, static
24
from paddle.io import Dataset
25
from paddle.jit import to_static
26
from paddle.metric import Metric
27
from paddle.static import InputSpec
28
from paddle.fluid import core
29
from paddle.fluid import program_guard
30
from paddle.fluid.layers.utils import flatten
31
from paddle.fluid.executor import global_scope, _to_name_str
32
from paddle.fluid.backward import append_backward
33
from paddle.fluid.framework import Operator, Parameter, _non_static_mode
34 35
from paddle.fluid.framework import _current_expected_place as _get_device
from paddle.fluid.dygraph.parallel import ParallelEnv
36
from paddle.distributed import fleet
37
from paddle.distributed.passes import new_pass, PassContext
38

39
from .helper import ProgramHelper
40 41
from ..collective import _get_global_env
from .cluster import Cluster, get_default_cluster
42 43
from .planner_v2 import Planner
from .parallelizer_v2 import Parallelizer
44 45 46 47 48
from .dist_op import DistributedOperator
from .dist_saver import DistributedSaver
from .dist_loader import NonIterableGeneratorLoader
from .utils import make_data_unshard, set_grad_var_shape
from .utils import print_program_with_dist_attr, to_list
49
from .process_group import new_process_group, get_all_process_groups, get_world_process_group
50
from .dist_context import DistributedContext, get_default_distributed_context
51 52 53


class Engine:
54

55 56 57 58 59
    def __init__(self,
                 model=None,
                 inputs_spec=None,
                 labels_spec=None,
                 cluster=None,
60 61
                 strategy=None,
                 user_tuning_config=None):
62
        self.model = model
63 64
        self.inputs_spec = self._validate_spec(inputs_spec)
        self.labels_spec = self._validate_spec(labels_spec)
65
        self.cluster = cluster
66 67
        if self.cluster is None:
            self.cluster = get_default_cluster()
68
        self.strategy = strategy
69 70
        if self.strategy is None:
            self.strategy = fleet.DistributedStrategy()
71
        self._user_tuning_config = user_tuning_config
72

73
        self._executor = None
74 75 76
        self._cur_rank = paddle.distributed.get_rank()
        self._nranks = paddle.distributed.get_world_size()
        self._saver = DistributedSaver()
77 78 79 80 81 82 83 84 85 86 87 88

        # TODO: add logger module
        self._logger = logging.getLogger()
        self._logger.propagate = False
        if not self._logger.handlers:
            self._logger.setLevel(logging.INFO)
            log_handler = logging.StreamHandler()
            log_format = logging.Formatter(
                '[%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s'
            )
            log_handler.setFormatter(log_format)
            self._logger.addHandler(log_handler)
89

90 91
        self._orig_main_prog = static.default_main_program()
        self._orig_startup_prog = static.default_startup_program()
92
        self._orig_dist_context = get_default_distributed_context()
93
        self._dist_contexts = {}
94 95
        self._serial_main_progs = {}
        self._serial_startup_progs = {}
96 97 98 99
        self._dist_main_progs = defaultdict(dict)  # dist main programs
        self._dist_startup_progs = defaultdict(dict)  # dist startup programs
        self._feed_vars = {}
        self._fetch_vars = {}
100
        self._planners = {}
101 102 103 104 105
        self._mode_init_states = {
            "train": False,
            "eval": False,
            "predict": False
        }
106
        self._dygraph_mode = False
107 108 109 110

    def prepare(self,
                optimizer=None,
                loss=None,
111
                gradient_scale=True,
112 113
                metrics=None,
                all_ranks=False):
114 115 116
        if optimizer and not isinstance(
                optimizer,
            (paddle.optimizer.Optimizer, paddle.fluid.optimizer.Optimizer)):
117 118 119 120
            raise TypeError(
                    "'optimizer' must be object of class `paddle.optimizer.Optimizer`" \
                        " or `paddle.fluid.optimizer.Optimizer`."
                )
121
        self._optimizer = self._validate_opt(optimizer)
122 123 124 125 126 127

        if loss and not isinstance(loss,
                                   paddle.nn.Layer) and not callable(loss):
            raise TypeError(
                "'loss' must be sub classes of `paddle.nn.Layer` or any callable function."
            )
128
        self._loss = loss
129 130 131 132 133 134

        metrics = metrics or []
        for metric in to_list(metrics):
            assert isinstance(metric, Metric), \
                "{} is not sub class of Metric".format(
                    metric.__class__.__name__)
135
        self._metrics = to_list(metrics)
136
        self._gradient_scale = gradient_scale
137
        self._planned_mode = None
138
        self._all_ranks = all_ranks
139
        self._prepare_single_mode("train")
140

141
    def _prepare_single_mode(self, mode):
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

        self._build(mode)
        # Do the planning process
        self._plan(mode)

        # Do the Optimization tuning
        if self._user_tuning_config and mode == "train":
            self._optimization_tuning(mode)

        # Do the parallel process
        self._parallel(mode, self._all_ranks)

        # Init comm and startup program
        self._initialize(mode)
        self._mode_init_states[mode] = True
157

158
    def _build(self, mode):
159
        if _non_static_mode() or self._dygraph_mode:
160
            paddle.disable_static()
161 162 163
            self._dygraph_mode = True
            self._logger.info("Building model with 'to_static' method.")

164 165 166 167 168
            inputs_spec = self.inputs_spec
            labels_spec = self.labels_spec if self.labels_spec else []
            self.program_helper = ProgramHelper(self.model, self._loss,
                                                self._metrics, inputs_spec,
                                                labels_spec)
169
            # build forward main program
170
            self.program_helper.build_program(mode)
171

172 173 174
            self.concrete_program = self.program_helper.concrete_program
            serial_main_prog = self.program_helper.main_program
            serial_startup_prog = self.program_helper.startup_program
175

176 177 178 179 180
            inputs = self.program_helper.input_vars
            outputs = self.program_helper.output_vars
            labels = self.program_helper.label_vars
            losses = self.program_helper.loss_vars
            metrics = self.program_helper.metric_vars
181

182
            paddle.enable_static()
183 184 185 186 187 188 189 190 191 192
        else:
            # build program in static mode
            serial_main_prog = self._serial_main_progs.get(mode, None)
            if serial_main_prog is not None:
                return

            losses = []
            metrics = []
            serial_main_prog = self._orig_main_prog.clone()
            serial_startup_prog = self._orig_startup_prog.clone()
193
            # FIXME to support grad clip
J
JZ-LIANG 已提交
194 195
            with static.program_guard(serial_main_prog, serial_startup_prog), \
                utils.unique_name.guard():
196 197 198 199 200 201 202 203 204 205 206 207
                inputs_spec = self.inputs_spec
                labels_spec = self.labels_spec if self.labels_spec else []
                inputs = [s._create_feed_layer() for s in inputs_spec]
                labels = [s._create_feed_layer() for s in labels_spec]
                outputs = to_list(self.model(*inputs))
                if mode != "predict" and self._loss:
                    losses = to_list(self._loss(*(outputs + labels)))

                if mode != "predict":
                    for metric in self._metrics:
                        metrics.extend(
                            to_list(metric.compute(*(outputs + labels))))
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

        default_ctx = get_default_distributed_context()
        if not default_ctx.has_annotation:
            # We build the world process group because the data parallel
            # needs all ranks by default.
            new_process_group(list(range(self._nranks)))
            default_ctx.data_parallel = True

        feed_vars = {"inputs": inputs, "labels": labels}

        fetch_vars = {
            "outputs": flatten(outputs),
            "loss": losses,
            "metrics": metrics
        }

224
        self._set_recompute_ckpts()
225 226 227 228
        self._dist_contexts[mode] = DistributedContext(
            serial_main_prog, serial_startup_prog, self._optimizer, losses,
            feed_vars, fetch_vars, self.cluster, self.strategy)
        self._dist_contexts[mode].gradient_scale = self._gradient_scale
229
        self._dist_contexts[mode]._dygraph_mode = self._dygraph_mode
230

231 232 233 234 235 236 237
    def _optimization_tuning(self, mode):

        self.mode = mode
        assert "batch_size" in self._user_tuning_config, "Optimization Tuning should provide with batch size."
        assert "dataset" in self._user_tuning_config, "Optimization Tuning should provide with dataset."
        batch_size = self._user_tuning_config["batch_size"]
        dataset = self._user_tuning_config["dataset"]
238 239
        dataset.dp_world_size = self.dp_world_sizes
        dataset.dp_rank = self.dp_ranks
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258

        from .tuner.optimization_tuner import OptimizationTuner
        self._optimization_tuner = OptimizationTuner(self._user_tuning_config,
                                                     self._dist_contexts[mode],
                                                     dataset,
                                                     self.inputs_spec,
                                                     self.labels_spec,
                                                     batch_size=batch_size,
                                                     rank=self._cur_rank)

        self._optimization_tuner.tune()

        if self._user_tuning_config["run_after_tuning"]:
            # update the strategy
            self._dist_contexts[
                mode]._strategy = self._optimization_tuner.get_best_config()
        else:
            return

259 260 261 262 263 264
    def _plan(self, mode):
        if self._planned_mode is None:
            self._planned_mode = mode
        else:
            self._init_dist_context(mode)

265 266
        self._planners[mode] = Planner(mode, self._dist_contexts[mode])
        self._planners[mode].plan()
267

268 269 270 271 272 273 274 275 276
        # infer data parallel info
        inputs_var = self._dist_contexts[mode].serial_feed_vars["inputs"]
        labels_var = self._dist_contexts[mode].serial_feed_vars["labels"]
        block = self._dist_contexts[mode].serial_main_program.global_block()
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in block.vars:
                feed_list.append(block.vars[var.name])

277 278 279 280 281 282 283
        self.dp_world_sizes = []
        self.dp_ranks = []
        for feed_var in feed_list:
            dp_world_size, dp_rank = self._get_input_split_info(
                feed_var, self._dist_contexts[mode])
            self.dp_world_sizes.append(dp_world_size)
            self.dp_ranks.append(dp_rank)
284

285
    def _parallel(self, mode, all_ranks):
286 287 288
        # Parallelize program based on the planner's results
        # For now, the completer has to be passed to the planner,
        # because we may use it to complete the annotation of the backwarkward and update.
289
        parallelizer = Parallelizer(mode, self._planners[mode].completer,
290 291 292 293 294
                                    self._dist_contexts[mode])
        if not all_ranks:
            parallelizer.parallel(self._cur_rank)
        else:
            parallelizer.parallel_all()
295 296

    def _init_dist_context(self, mode):
297
        # Init dist_context['mode'] with the first planned dist_context
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
        # to guarantee that train/eval/predict mode have same parallel strategy
        dist_context = self._dist_contexts[mode]
        origin_main_prog = dist_context._original_serial_main_program
        ref_mode = self._planned_mode
        ref_dist_context = self._dist_contexts[ref_mode]
        ref_origin_main_prog = ref_dist_context._original_serial_main_program
        ref_blocks = ref_origin_main_prog.blocks
        for ib, block in enumerate(origin_main_prog.blocks):
            for iop, op in enumerate(block.ops):
                ref_op = ref_blocks[ib].ops[iop]
                assert op.type == ref_op.type, \
                    "'{}' mode op '{}' is different with '{}' op '{}'. ".format(mode, op.type, ref_mode, ref_op.type)
                ref_op_dist_attr = ref_dist_context.get_op_dist_attr_for_program(
                    ref_op)
                dist_context.set_op_dist_attr_for_program(op, ref_op_dist_attr)

    def _initialize(self, mode):
315
        # Get the current content from the distributed context
316 317 318 319
        self._serial_main_progs[mode] = self._dist_contexts[
            mode].serial_main_program
        self._serial_startup_progs[mode] = self._dist_contexts[
            mode].serial_startup_program
320 321 322 323
        self._dist_main_progs[mode] = self._dist_contexts[
            mode].dist_main_programs
        self._dist_startup_progs[mode] = self._dist_contexts[
            mode].dist_startup_programs
324 325
        self._feed_vars[mode] = self._dist_contexts[mode].serial_feed_vars
        self._fetch_vars[mode] = self._dist_contexts[mode].serial_fetch_vars
326
        self._lr_optimizer = self._dist_contexts[mode]._lr_optimizer
327

328 329 330 331
        if self._nranks > 1:
            # Traverse different rank programs and traverse each op of them,
            # instantiate communication by process_mapping.
            all_process_groups = get_all_process_groups()
332

333
            # NOTE: add the comm init control in the future for auto search
334 335 336 337
            for process_group in all_process_groups:
                if self._cur_rank not in process_group.ranks:
                    continue
                process_group.instantiate()
338

339 340 341
        place = _get_device()
        if isinstance(place, fluid.CUDAPlace):
            place = fluid.CUDAPlace(ParallelEnv().dev_id)
342 343

        if self._dygraph_mode:
344 345 346
            dist_context = self._dist_contexts[mode]
            dist_main_program = self._dist_main_progs[mode][self._cur_rank]
            self.program_helper.init(dist_main_program, place, dist_context)
347

348
        if self._executor is None:
349
            self._executor = paddle.static.Executor(place)
350 351 352 353 354 355 356 357 358 359
            uninitialized = []
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            for var in dist_startup_prog.list_vars():
                scope_var = global_scope().find_var(var.name)
                if scope_var and scope_var.get_tensor()._is_initialized():
                    continue
                uninitialized.append(var)
            if uninitialized:
                prune_startup_prog = dist_startup_prog._prune(uninitialized)
                self._executor.run(prune_startup_prog)
360

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
            if self.strategy.amp and self.strategy.amp_configs['use_pure_fp16']:
                # from paddle.fluid.contrib.mixed_precision.fp16_utils import cast_parameters_to_fp16
                def cast_parameters_to_fp16(place,
                                            program,
                                            scope=None,
                                            to_fp16_var_names=None):
                    """
                    Traverse all parameters in the whole model and set them to the FP16 data type.
                    Whereas, this function will keep parameters of batchnorms in FP32.
                    Args:
                        place(fluid.CPUPlace|fluid.CUDAPlace): `place` is used to restore the FP16 weight tensors.
                        program (Program): The used program.
                        scope(fluid.Scope, optional): `scope` is used to get the FP32 weight tensor values.
                                                    Default is None.
                        to_fp16_var_names(set|list, optional): The data types of vars in `to_fp16_var_names`
                                                            will be set to FP16. Usually, it is the returned
                                                            value of `cast_model_to_fp16` API.
                    """
                    from paddle.framework import core
                    import numpy as np
                    all_parameters = []
                    for block in program.blocks:
                        all_parameters.extend(block.all_parameters())

                    var_scope = scope if scope else paddle.static.global_scope()
                    for param in all_parameters:
                        if param.dtype == core.VarDesc.VarType.FP16:
                            param_t = var_scope.find_var(
                                param.name).get_tensor()
                            data = np.array(param_t)
                            param_t.set(np.float16(data), place)

393
                cast_parameters_to_fp16(place, prune_startup_prog)
394

395 396 397 398
    def fit(self,
            train_data,
            batch_size=1,
            epochs=1,
399
            fetches=None,
400
            steps_per_epoch=None,
401 402
            collate_fn=None,
            use_cache=False,
403
            return_numpy=True):
404 405
        # TODO: callbacks
        # TODO: evaluate after training
406 407 408 409 410 411

        if not self._mode_init_states['train']:
            raise Exception(
                "train program is not initialized yet, please call engine.prepare() before calling fit() funtion."
            )

412
        self.mode = 'train'
413
        assert self.mode in self._dist_main_progs, \
414
            "train model is not ready, please call `engine.prepare()` first."
415
        train_dataloader = self._create_dataloader(train_data, batch_size,
416 417
                                                   epochs, steps_per_epoch,
                                                   collate_fn)
418

419 420
        usr_fetch = self._validate_fetches(fetches)
        fetch_loss = self._validate_fetches(self.fetch_vars["loss"])
421
        fetch_list, fetch_map = self._fetch_map(fetch_loss, usr_fetch)
422 423
        lr_scheduler = self.get_lr_scheduler(self.main_program)

424
        for epoch in range(epochs):
425
            train_logs = {"epoch: {:d} ": epoch}
426
            for step, _ in enumerate(train_dataloader):
427 428 429 430 431 432 433
                try:
                    outs = self._executor.run(self.main_program,
                                              fetch_list=fetch_list,
                                              use_program_cache=use_cache,
                                              return_numpy=return_numpy)
                except fluid.core.EOFException:
                    break
434

435
                train_logs["step: {:d} "] = step
436 437
                if lr_scheduler is not None:
                    lr_scheduler.step()
438 439 440 441 442 443
                    try:
                        train_logs["lr: {:5e} "] = self._lr_optimizer.get_lr()
                    except:
                        train_logs[
                            "lr: {:5e} "] = self._lr_optimizer._learning_rate.get_lr(
                            )
444 445
                # inner fetches
                if fetch_loss:
446
                    train_logs["loss: {:9f} "] = outs[0][0]
447 448 449 450
                # user fetches
                user_outs = outs[len(fetch_loss):]
                user_fetch_list = fetch_list[len(fetch_loss):]
                for i, out in enumerate(user_outs):
451 452 453 454
                    train_logs[fetch_map[user_fetch_list[i]] + ": {}"] = out
                # logger
                string = '[train] ' + ''.join(list(train_logs.keys()))
                self._logger.info(string.format(*list(train_logs.values())))
455

456 457 458
    def evaluate(self,
                 eval_data,
                 batch_size=1,
459
                 fetches=None,
460 461
                 collate_fn=None,
                 use_cache=False,
462
                 return_numpy=True):
463
        self.mode = 'eval'
464 465 466
        if not self._mode_init_states[self.mode]:
            self._prepare_single_mode(self.mode)

467
        assert self.mode in self._dist_main_progs, \
468
            "eval model is not ready, please call `engine.prepare()` first."
469 470 471
        eval_dataloader = self._create_dataloader(eval_data,
                                                  batch_size,
                                                  collate_fn=collate_fn)
472

473 474 475
        usr_fetch = self._validate_fetches(fetches)
        fetch_loss = self._validate_fetches(self.fetch_vars["loss"])
        fetch_metrics = self._validate_fetches(self.fetch_vars["metrics"])
476 477 478 479
        inner_fetch = dict(fetch_loss, **fetch_metrics)
        fetch_list, fetch_map = self._fetch_map(inner_fetch, usr_fetch)

        for step, _ in enumerate(eval_dataloader):
480
            eval_logs = {"step: {:d} ": step}
481 482 483 484 485 486 487
            try:
                outs = self._executor.run(self.main_program,
                                          fetch_list=fetch_list,
                                          use_program_cache=use_cache,
                                          return_numpy=return_numpy)
            except fluid.core.EOFException:
                break
488 489
            # inner fetches
            if fetch_loss:
490
                eval_logs["loss: {:9f} "] = outs[0][0]
491 492 493 494 495 496 497
            # Metric
            if fetch_metrics:
                metric_out = outs[len(fetch_loss):len(inner_fetch)]
                for metric in self._metrics:
                    metric.update(*metric_out)
                    results = metric.accumulate()
                    for i, res in enumerate(to_list(results)):
498
                        eval_logs[metric.name()[i] + ": {:9f} "] = res
499
            # usr fetches
500
            usr_outs = outs[len(inner_fetch):]
501
            usr_fetch_list = fetch_list[len(inner_fetch):]
502
            for i, out in enumerate(usr_outs):
503
                eval_logs[fetch_map[usr_fetch_list[i]] + ": {}"] = out
504
            # logger
505 506
            string = '[eval] ' + ''.join(list(eval_logs.keys()))
            self._logger.info(string.format(*list(eval_logs.values())))
507

508 509 510
    def predict(self,
                test_data,
                batch_size=1,
511
                fetches=None,
512 513
                collate_fn=None,
                use_cache=False,
514
                return_numpy=True):
515
        self.mode = 'predict'
516 517 518
        if not self._mode_init_states[self.mode]:
            self._prepare_single_mode(self.mode)

519
        assert self.mode in self._dist_main_progs, \
520
            "predict model is not ready, please call `engine.prepare()` first."
521 522 523
        test_dataloader = self._create_dataloader(test_data,
                                                  batch_size,
                                                  collate_fn=collate_fn)
524

525 526
        usr_fetch = self._validate_fetches(fetches)
        fetch_outputs = self._validate_fetches(self.fetch_vars["outputs"])
527
        fetch_list, fetch_map = self._fetch_map(fetch_outputs, usr_fetch)
528 529

        outputs = []
530
        for step, _ in enumerate(test_dataloader):
531
            predict_logs = {"step: {:d} ": step}
532 533 534 535 536 537 538
            try:
                outs = self._executor.run(self.main_program,
                                          fetch_list=fetch_list,
                                          use_program_cache=use_cache,
                                          return_numpy=return_numpy)
            except fluid.core.EOFException:
                break
539 540
            outputs.append(outs[:len(fetch_outputs)])
            for i, out in enumerate(outs):
541 542 543 544
                predict_logs[fetch_map[fetch_list[i]] + ": {}"] = out
            # logger
            string = '[pred] ' + ''.join(list(predict_logs.keys()))
            self._logger.info(string.format(*list(predict_logs.values())))
545

546
        return outputs
547

548 549 550 551
    def _create_dataloader(self,
                           dataset,
                           batch_size,
                           epochs=1,
552 553
                           steps_per_epoch=None,
                           collate_fn=None):
554 555 556 557
        dist_main_prog = self._dist_main_progs[self.mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self.mode][self._cur_rank]
        dist_context = self._dist_contexts[self.mode]
        dist_main_block = dist_main_prog.global_block()
558

559 560 561 562
        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
563 564 565 566 567 568
        inputs_var = self._feed_vars[self.mode]["inputs"]
        labels_var = self._feed_vars[self.mode]["labels"]
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
569 570 571 572
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)
573 574

        # remove the first three ops if multi run fit/evaluate/predict
575
        op_size = len(dist_main_block.ops)
576 577 578 579
        if dist_main_block.ops[0].type == 'create_py_reader':
            op_size -= 3
            for _ in range(3):
                dist_main_block._remove_op(0, sync=False)
580 581

        # insert read op at the end of program
582
        places = paddle.static.cuda_places()
583
        with static.program_guard(dist_main_prog, dist_startup_prog):
584
            dataloader = NonIterableGeneratorLoader(
585 586 587 588 589 590
                dataset,
                feed_list,
                places,
                batch_size,
                epochs,
                steps_per_epoch,
591
                collate_fn,
592 593 594
                data_parallel_world_size=self.dp_world_sizes,
                data_parallel_rank=self.dp_ranks,
                split_data=self.strategy.split_data)
595 596

        # move read op from the end of program to the start of program
597
        new_op_size = len(dist_main_block.ops)
598
        for _ in range(new_op_size - 1, op_size - 1, -1):
599 600 601
            op = dist_main_block.ops[new_op_size - 1]
            new_op_desc = dist_main_block.desc._prepend_op()
            new_op_desc.copy_from(op.desc)
602 603 604
            new_op = Operator(dist_main_block,
                              new_op_desc,
                              type=new_op_desc.type())
605 606 607 608 609 610 611 612
            dist_main_block.ops.insert(0, new_op)
            dist_op = DistributedOperator(new_op)
            dist_context.add_dist_op_for_program(dist_op)
        for _ in range(new_op_size - op_size):
            dist_main_block._remove_op(new_op_size, sync=False)
        dist_main_block._sync_with_cpp()
        return dataloader

613 614 615 616 617 618 619 620 621 622 623
    def _validate_spec(self, specs):
        specs = to_list(specs)
        if specs is not None:
            for i, spec in enumerate(specs):
                assert isinstance(spec, InputSpec)
                if spec.name is None:
                    raise ValueError(
                        "Requires Input[{}].name != None, but receive `None` with {}."
                        .format(i, spec))
        return specs

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
    def _is_local_var(self, var):
        var_name = _to_name_str(var)
        return var_name in self.main_program.global_block().vars

    def _validate_fetches(self, fetches):
        # 1. Check user-defined fetches type
        # 2. Prepare fetches_dict like {user_defined_name: var_name}
        if not fetches:
            return {}
        if isinstance(fetches, dict):
            fetch_var_names = list(map(_to_name_str, fetches.values()))
            fetches_dict = dict(zip(fetch_var_names, list(fetches.keys())))
        elif isinstance(fetches, list):
            fetch_var_names = list(map(_to_name_str, fetches))
            fetches_dict = dict(zip(fetch_var_names, fetch_var_names))
639
        else:
640 641 642 643 644 645 646 647 648 649 650 651 652
            raise TypeError("'fetches' only support 'dict' and 'list', "
                            "but got '{}'".format(str(type(fetches))))
        return dict(
            filter(lambda x: self._is_local_var(x[0]), fetches_dict.items()))

    def _fetch_map(self, inner_fetch, usr_fetch):
        # replace inner fetch name if usr set for it
        for iname in inner_fetch:
            if iname in usr_fetch:
                inner_fetch[iname] = usr_fetch[iname]
                usr_fetch.pop(iname)
        fetches = dict(inner_fetch, **usr_fetch)
        return list(fetches.keys()), fetches
653

654 655
    def _get_input_split_info(self, var, dist_context):
        # deduce how the input data is split among the cluster
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
        from .utils import _get_comm_group, _get_corresponding_rank

        tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
        process_mesh = tensor_dist_attr.process_mesh
        dims_mapping = tensor_dist_attr.dims_mapping

        if self._cur_rank not in process_mesh.processes:
            rank_id = _get_corresponding_rank(dist_context, process_mesh,
                                              self._cur_rank)
        else:
            rank_id = self._cur_rank

        batch_size_axis = dims_mapping[0]
        if batch_size_axis > -1 and process_mesh.topology[batch_size_axis] > 1:
            group_ranks = _get_comm_group(process_mesh.processes,
                                          process_mesh.topology,
                                          batch_size_axis, rank_id)
            return len(group_ranks), group_ranks.index(rank_id)

675
        return 1, 0
676

677 678 679 680 681 682 683 684 685
    def _set_recompute_ckpts(self):
        # NOTE hack to enable recompute in engine api for GPT-3
        # TODO support more PaddleNLP/CV models here

        config = self.strategy.recompute_configs

        # extract ckpts by specific model
        if isinstance(self.model, paddle.nn.Layer):
            if hasattr(
686 687 688
                    self.model, "gpt"
            ) and self.model.__class__.__name__ == 'GPTForPretraining':
                exact_ckpts = self.model.gpt.checkpoints
689 690
            else:
                exact_ckpts = config["checkpoints"]
691 692 693 694 695 696 697 698
        else:
            exact_ckpts = config["checkpoints"]

        # modify strategy
        if self.strategy.recompute:
            config["checkpoints"] = exact_ckpts[:]
            self.strategy.recompute_configs = config
            logs = {
699
                'Model Class': self.model.__class__.__name__,
700 701 702 703
                'Applied Recompute ckpts': exact_ckpts
            }
            self._logger.info(logs)

704 705 706 707 708
    def _validate_opt(self, optimizer):
        optimizer._parameter_list = None
        optimizer._param_groups = None
        return optimizer

709 710 711 712 713
    def save(self, path, training=True, mode=None):
        if not mode:
            mode = self.mode

        if training:
714 715
            assert 'train' in self._serial_main_progs, \
                "training model is not ready, please call `engine.prepare()` first."
716 717 718
            serial_program = self._serial_main_progs["train"]
            dist_main_prog = self._dist_main_progs["train"][self._cur_rank]
            dist_context = self._dist_contexts["train"]
719 720 721 722
            self._saver.save(path,
                             serial_program=serial_program,
                             dist_main_program=dist_main_prog,
                             dist_context=dist_context)
723 724 725 726 727
        else:
            assert mode, "Please set the 'mode' you want to save."
            feed_vars = self._feed_vars[mode]['inputs']
            fetch_vars = self._fetch_vars[mode]['outputs']
            dist_main_prog = self._dist_main_progs[mode][self._cur_rank]
728 729 730 731 732
            self._saver.save_inference_model(path,
                                             feed_vars,
                                             fetch_vars,
                                             self._executor,
                                             program=dist_main_prog)
733

734 735 736 737
    def load(self, path, strict=True, load_optimizer=True, mode=None):
        if not mode:
            mode = self.mode
        assert mode, "Please set the 'mode' you want to load."
738

739 740 741 742
        dist_main_prog = self._dist_main_progs[mode][self._cur_rank]
        dist_context = self._dist_contexts[mode]
        self._saver.load(path, dist_main_prog, dist_context, strict,
                         load_optimizer)
743

744 745 746 747 748 749 750 751 752
    @staticmethod
    def get_lr_scheduler(program):
        lr_sheduler = None
        if hasattr(program, 'lr_sheduler'):
            from paddle.optimizer.lr import LRScheduler
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
        return lr_sheduler

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
    @property
    def mode(self):
        return self._mode

    @mode.setter
    def mode(self, mode):
        self._mode = mode

    @property
    def main_program(self):
        return self._dist_main_progs[self.mode][self._cur_rank]

    @property
    def startup_program(self):
        return self._dist_startup_progs[self.mode][self._cur_rank]

    @property
    def dist_context(self):
        return self._dist_contexts[self.mode]

    @property
    def serial_main_program(self):
        return self._serial_main_progs[self.mode]

    @property
    def serial_startup_program(self):
        return self._serial_startup_progs[self.mode]
780 781 782 783

    @property
    def fetch_vars(self):
        return self._fetch_vars[self.mode]