dist_context.py 42.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import copy
from collections import defaultdict
17
import paddle.fluid
18
from paddle.fluid import framework
19
from paddle.fluid.framework import get_flags, set_flags
20
from paddle.fluid import core
21
from paddle.distributed.passes import PassContext
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
from .dist_attribute import TensorDistributedAttribute
from .dist_attribute import OperatorDistributedAttribute
from .dist_tensor import DistributedTensor
from .dist_op import DistributedOperator
from .process_mesh import ProcessMesh

# There always exists a default context for user. And user can set it to another one.
_g_default_distributed_context = None


def get_default_distributed_context():
    global _g_default_distributed_context
    if _g_default_distributed_context is None:
        dist_context = DistributedContext()
        set_default_distributed_context(dist_context)
    return _g_default_distributed_context


def set_default_distributed_context(dist_context):
    global _g_default_distributed_context
    _g_default_distributed_context = dist_context


45 46 47 48
def _node_id(node):
    return (node.node.graph_id(), node.node.id())


49 50 51 52 53 54
class DistributedContext:
    """
    DistributedContext is used to collect related distributed information for program and graph.
    One auto-parallel run should use its own DistributedContext to avoid interfering other run.
    """

55 56 57
    def __init__(self,
                 serial_main_prog=None,
                 serial_startup_prog=None,
58
                 serial_optimizer=None,
59
                 serial_loss=None,
60 61 62
                 feed_vars={},
                 fetch_vars={},
                 cluster=None,
63 64 65 66
                 strategy=None):
        # Data members related to original programs (unchanged)
        self._original_serial_main_program = serial_main_prog
        self._original_serial_startup_program = serial_startup_prog
67
        self._original_serial_optimizer = serial_optimizer
68
        self._original_serial_loss = serial_loss
69 70
        self._original_serial_feed_vars = feed_vars
        self._original_serial_fetch_vars = fetch_vars
71 72 73 74

        # Data members related to programs (changed)
        self._serial_main_program = None
        self._serial_startup_program = None
75 76 77 78
        self._serial_loss = None
        self._serial_optimizer = None
        self._serial_feed_vars = {}
        self._serial_fetch_vars = {}
79
        self._lr_optimizer = None  # record the optimzier holding lr_scheduler
80 81

        # Data members related to the program
82 83
        self._dist_tensors_for_program = {}
        self._dist_ops_for_program = {}
84 85

        # Data members related to the graph
86
        self._serial_graph = None
87 88
        self._dist_tensors_for_graph = {}
        self._dist_ops_for_graph = {}
89 90
        self._node_id_to_tensor_id = {}
        self._node_id_to_op_id = {}
91

92
        # Data members related to the distributed programs
93
        # Distributed programs
94 95
        self._dist_main_programs = {}
        self._dist_startup_programs = {}
96 97
        self._dist_op_context = DistributedOperatorContext()
        self._process_meshes = []
98

99
        self._cluster = cluster
100 101 102 103
        self._strategy = strategy

        # Pass Context
        self._pass_context = PassContext()
104
        self._block_state = BlockState()
105 106 107 108 109 110 111 112

        # Other data members
        self._serial_ordered_tensor_nodes = []
        self._serial_ordered_op_nodes = []
        self._serial_ordered_nodes = []
        # self._tensor_id_to_tensor_node_ids = {}

        self._is_initialized = False
113
        #TODO: need a better way to remove the following flag
114 115 116 117 118 119 120
        self._need_copy_dist_attr_to_graph = False
        self._backup_pass_context_stack = []
        self._backup_block_state_stack = []
        self._backup_dist_tensors_for_program_stack = []
        self._backup_dist_ops_for_program_stack = []
        self._backup_serial_main_program_stack = []
        self._backup_serial_startup_program_stack = []
121

122 123 124
        # flag whether scale gradient with dp size
        self._gradient_scale = True

125 126 127
        # A flag indicates whether the used parallelism is data parallel
        self._data_parallel = False

128
        # flag whether using `to_static`
129
        self._dygraph_mode = False
130

131
    @property
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    def serial_main_program(self):
        return self._serial_main_program

    @property
    def serial_startup_program(self):
        return self._serial_startup_program

    @property
    def serial_loss(self):
        return self._serial_loss

    @property
    def serial_optimizer(self):
        return self._serial_optimizer

147 148 149 150 151 152 153
    @property
    def serial_feed_vars(self):
        return self._serial_feed_vars

    @property
    def serial_fetch_vars(self):
        return self._serial_fetch_vars
154

155 156 157 158 159 160 161 162 163 164 165 166
    @property
    def dist_main_programs(self):
        return self._dist_main_programs

    @property
    def dist_startup_programs(self):
        return self._dist_startup_programs

    @property
    def cluster(self):
        return self._cluster

167 168 169 170
    @property
    def strategy(self):
        return self._strategy

171 172 173 174
    @property
    def serial_graph(self):
        return self._serial_graph

175 176 177 178
    @property
    def serial_ordered_nodes(self):
        return self._serial_ordered_nodes

179 180 181 182
    @property
    def process_meshes(self):
        return self._process_meshes

183 184 185 186
    @property
    def pass_context(self):
        return self._pass_context

187 188 189 190
    @property
    def dist_op_context(self):
        return self._dist_op_context

191 192 193 194
    @property
    def block_state(self):
        return self._block_state

195
    @property
196
    def has_annotation(self):
197 198 199
        return len(self._dist_tensors_for_program) or len(
            self._dist_ops_for_program)

200 201 202 203 204 205 206 207
    @property
    def gradient_scale(self):
        return self._gradient_scale

    @gradient_scale.setter
    def gradient_scale(self, gs):
        self._gradient_scale = gs

208 209 210 211 212 213 214 215
    @property
    def data_parallel(self):
        return self._data_parallel

    @data_parallel.setter
    def data_parallel(self, dp):
        self._data_parallel = dp

216 217 218 219 220
    def _backup_serial_info(self, mode):
        self._backup_serial_main_program_stack.append(
            self._serial_main_program.clone())
        self._backup_serial_startup_program_stack.append(
            self._serial_startup_program.clone())
221 222
        self._backup_pass_context_stack.append(copy.deepcopy(
            self._pass_context))
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
        self._backup_block_state_stack.append(copy.deepcopy(self._block_state))

    def _backup_dist_info(self, mode):
        self._backup_dist_tensors_for_program_stack.append(
            copy.deepcopy(self._dist_tensors_for_program))
        self._backup_dist_ops_for_program_stack.append(
            copy.deepcopy(self._dist_ops_for_program))

    def _backup(self, serial=True, serial_mode=None, dist=True, dist_mode=None):
        # Use this function carefully
        if serial:
            self._backup_serial_info(serial_mode)
        if dist:
            self._backup_dist_info(dist_mode)

238
    def _restore_serial_loss(self):
239 240
        if self._original_serial_loss:
            if isinstance(self._original_serial_loss, list):
241 242 243 244 245 246 247 248 249 250 251
                if len(self._original_serial_loss) == 1:
                    loss = self._original_serial_loss[0]
                    block_idx = loss.block.idx
                    var_name = loss.name
                    var = self._serial_main_program.blocks[
                        block_idx]._var_recursive(var_name)
                    self._serial_loss = var
                elif len(self._original_serial_loss) == 0:
                    self._serial_loss = []
                else:
                    raise ValueError("multi loss vars are not supported.")
252
            else:
253 254 255 256 257 258
                block_idx = self._original_serial_loss.block.idx
                var_name = self._original_serial_loss.name
                var = self._serial_main_program.blocks[
                    block_idx]._var_recursive(var_name)
                self._serial_loss = var

259
    def _restore_serial_feed_vars(self):
260 261 262 263 264 265 266 267 268 269
        for key, var_list in self._original_serial_feed_vars.items():
            new_var_list = []
            for var in var_list:
                block_idx = var.block.idx
                var_name = var.name
                var = self._serial_main_program.blocks[
                    block_idx]._var_recursive(var_name)
                new_var_list.append(var)
            self._serial_feed_vars[key] = new_var_list

270
    def _restore_serial_fetch_vars(self):
271 272 273 274 275 276 277 278 279 280
        for key, var_list in self._original_serial_fetch_vars.items():
            new_var_list = []
            for var in var_list:
                block_idx = var.block.idx
                var_name = var.name
                var = self._serial_main_program.blocks[
                    block_idx]._var_recursive(var_name)
                new_var_list.append(var)
            self._serial_fetch_vars[key] = new_var_list

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
    def _restore_serial_info(self, mode="to_backup"):
        if mode == "to_backup":
            self._serial_main_program = self._backup_serial_main_program_stack.pop(
            )
            self._serial_startup_program = self._backup_serial_startup_program_stack.pop(
            )
        elif mode == "to_original":
            assert self._original_serial_main_program is not None
            assert self._original_serial_startup_program is not None
            self._serial_main_program = self._original_serial_main_program.clone(
            )
            self._serial_startup_program = self._original_serial_startup_program.clone(
            )

        self._restore_serial_loss()
        self._restore_serial_feed_vars()
        self._restore_serial_fetch_vars()
        self._serial_optimizer = self._original_serial_optimizer
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
        self._pass_context = self._backup_pass_context_stack.pop()
        self._block_state = self._backup_block_state_stack.pop()

    def _restore_dist_info(self, mode="to_backup"):
        if mode == "to_backup":
            self._dist_tensors_for_program = self._backup_dist_tensors_for_program_stack.pop(
            )
            self._dist_ops_for_program = self._backup_dist_ops_for_program_stack.pop(
            )
        elif mode == "to_original":
            assert self._original_dist_tensors_for_program
            assert self._original_dist_ops_for_program
            self._dist_tensors_for_program = copy.deepcopy(
                self._original_dist_tensors_for_program)
            self._dist_ops_for_program = copy.deepcopy(
                self._original_dist_ops_for_program)
        elif mode == "to_default":
            new_tensors_ids = []
            for tensor_id, dist_tensor in self._dist_tensors_for_program.items(
            ):
                if tensor_id in self._tensors_ids:
                    dist_tensor.dist_attr.reset()
                else:
                    new_tensors_ids.append(tensor_id)
            for tensor_id in new_tensors_ids:
                self._dist_tensors_for_program.pop(tensor_id)
            new_ops_ids = []
            for op_id, dist_op in self._dist_ops_for_program.items():
                if op_id in self._ops_ids:
                    dist_op.dist_attr.reset()
                else:
                    new_ops_ids.append(op_id)
            for op_id in new_ops_ids:
                self._dist_ops_for_program.pop(op_id)
        else:
            new_tensors_ids = []
            for tensor_id, dist_tensor in self._dist_tensors_for_program.items(
            ):
                new_tensors_ids.append(tensor_id)
            for tensor_id in new_tensors_ids:
                self._dist_tensors_for_program.pop(tensor_id)
            new_ops_ids = []
            for op_id, dist_op in self._dist_ops_for_program.items():
                new_ops_ids.append(op_id)
            for op_id in new_ops_ids:
                self._dist_ops_for_program.pop(op_id)
        self._dist_main_programs = {}
        self._dist_startup_programs = {}
        self._dist_op_context = DistributedOperatorContext()
        self._need_copy_dist_attr_to_graph = True
        self._process_meshes = []

    def _restore(self,
                 serial=True,
                 serial_mode="to_backup",
                 dist=True,
                 dist_mode="to_backup"):
        # Use this function carefully
        if serial:
            self._restore_serial_info(serial_mode)
        if dist:
            self._restore_dist_info(dist_mode)

362
    def initialize(self, with_graph=True):
363 364
        if not self._is_initialized:
            if not self._serial_main_program:
365 366 367
                if self._original_serial_main_program:
                    self._serial_main_program = self._original_serial_main_program.clone(
                    )
368
            if not self._serial_startup_program:
369 370 371
                if self._original_serial_startup_program:
                    self._serial_startup_program = self._original_serial_startup_program.clone(
                    )
372
            if not self._serial_loss:
373
                self._restore_serial_loss()
374 375 376
            if not self._serial_optimizer:
                self._serial_optimizer = self._original_serial_optimizer
            if not self._serial_feed_vars:
377
                self._restore_serial_feed_vars()
378
            if not self._serial_fetch_vars:
379
                self._restore_serial_fetch_vars()
380

381
            self._init_dist_attr_for_program()
382 383 384 385 386
            # Backup the original distributed information for later restore
            self._original_dist_tensors_for_program = copy.deepcopy(
                self._dist_tensors_for_program)
            self._original_dist_ops_for_program = copy.deepcopy(
                self._dist_ops_for_program)
387 388 389
            self._tensors_ids = list(self._dist_tensors_for_program.keys())
            self._ops_ids = list(self._dist_ops_for_program.keys())
            self._is_initialized = True
390 391 392 393 394 395 396 397 398

            if with_graph:
                set_flags({"FLAGS_convert_all_blocks": True})
                self._serial_graph = framework.IrGraph(
                    core.Graph(self._serial_main_program.desc))
                self._init_dist_attr_for_graph()
                self._need_copy_dist_attr_to_graph = False

        if self._need_copy_dist_attr_to_graph and with_graph:
399
            self.copy_dist_attr_from_program_to_graph()
400

401 402 403 404 405 406 407 408
    def add_process_mesh(self, process_mesh):
        assert isinstance(process_mesh, ProcessMesh), \
            'The type of dim_mapping must be ProcessMesh.'
        if process_mesh not in self.process_meshes:
            self._process_meshes.append(process_mesh)

    def add_dist_tensor_for_program(self, dist_tensor):
        inner_serial_tensor = dist_tensor.serial_tensor
409
        inner_serial_tensor_id = inner_serial_tensor.desc.original_id()
410 411 412 413
        self._dist_tensors_for_program[inner_serial_tensor_id] = dist_tensor

    def add_dist_op_for_program(self, dist_op):
        inner_serial_op = dist_op.serial_op
414
        inner_serial_op_id = inner_serial_op.desc.original_id()
415 416 417 418
        self._dist_ops_for_program[inner_serial_op_id] = dist_op

    def get_dist_tensor_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
419 420 421 422 423
        dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id, None)
        if dist_tensor:
            return dist_tensor
        else:
            serial_tensor_id = serial_tensor.desc.original_id()
424 425
            dist_tensor = self._dist_tensors_for_program.get(
                serial_tensor_id, None)
426 427 428 429
            if dist_tensor:
                return dist_tensor
            else:
                return None
430 431

    def get_dist_tensor_for_graph(self, serial_tensor_node):
432
        serial_tensor_node_id = _node_id(serial_tensor_node)
433 434
        return self._dist_tensors_for_graph.get(serial_tensor_node_id, None)

435 436 437 438 439 440 441 442 443 444 445 446
    def get_dist_op_for_program(self, serial_op):
        serial_op_id = serial_op.desc.id()
        dist_op = self._dist_ops_for_program.get(serial_op_id, None)
        if dist_op:
            return dist_op
        else:
            serial_op_id = serial_op.desc.original_id()
            dist_op = self._dist_ops_for_program.get(serial_op_id, None)
            if dist_op:
                return dist_op
            else:
                return None
447

448 449 450 451 452
    def del_dist_op_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
        if self._dist_ops_for_program.get(serial_tensor_id, None):
            del self._dist_ops_for_program[serial_tensor_id]

453
    def get_dist_op_for_graph(self, serial_op_node):
454
        serial_op_node_id = _node_id(serial_op_node)
455
        return self._dist_ops_for_graph.get(serial_op_node_id, None)
456 457 458 459 460 461 462

    def get_tensor_dist_attr_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
        dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id, None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
463
            serial_tensor_id = serial_tensor.desc.original_id()
464 465
            dist_tensor = self._dist_tensors_for_program.get(
                serial_tensor_id, None)
466 467 468 469
            if dist_tensor:
                return dist_tensor.dist_attr
            else:
                return None
470

471 472 473 474 475 476 477
    def get_tensor_dist_attr_for_program_with_id(self, tensor_id):
        dist_tensor = self._dist_tensors_for_program.get(tensor_id, None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
            return None

478 479 480 481 482
    def set_tensor_dist_attr_for_program(self, serial_tensor, dist_attr):
        dist_tensor = DistributedTensor(serial_tensor, dist_attr)
        self.add_dist_tensor_for_program(dist_tensor)

    def get_tensor_dist_attr_for_graph(self, serial_tensor_node):
483
        serial_tensor_node_id = _node_id(serial_tensor_node)
484 485 486 487 488 489 490 491 492 493 494 495 496
        dist_tensor = self._dist_tensors_for_graph.get(serial_tensor_node_id,
                                                       None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
            return None

    def get_op_dist_attr_for_program(self, serial_op):
        serial_op_id = serial_op.desc.id()
        dist_op = self._dist_ops_for_program.get(serial_op_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
497 498 499 500 501 502
            serial_op_id = serial_op.desc.original_id()
            dist_op = self._dist_ops_for_program.get(serial_op_id, None)
            if dist_op:
                return dist_op.dist_attr
            else:
                return None
503

504 505 506 507 508 509 510
    def get_op_dist_attr_for_program_with_id(self, op_id):
        dist_op = self._dist_ops_for_program.get(op_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
            return None

511 512 513 514 515
    def set_op_dist_attr_for_program(self, serial_op, dist_attr):
        dist_op = DistributedOperator(serial_op, dist_attr)
        self.add_dist_op_for_program(dist_op)

    def get_op_dist_attr_for_graph(self, serial_op_node):
516
        serial_op_node_id = _node_id(serial_op_node)
517 518 519 520 521 522
        dist_op = self._dist_ops_for_graph.get(serial_op_node_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
            return None

523 524
    def get_dist_attr_for_graph(self, serial_node):
        if serial_node.is_var() and serial_node.var() is not None:
525
            serial_tensor_node_id = _node_id(serial_node)
526 527 528 529 530 531 532
            dist_tensor = self._dist_tensors_for_graph.get(
                serial_tensor_node_id, None)
            if dist_tensor:
                return dist_tensor.dist_attr
            else:
                return None
        if serial_node.is_op() and serial_node.op() is not None:
533
            serial_op_node_id = _node_id(serial_node)
534 535 536 537 538 539
            dist_op = self._dist_ops_for_graph.get(serial_op_node_id, None)
            if dist_op:
                return dist_op.dist_attr
            else:
                return None
        return None
540

541
    def _init_dist_attr_for_program(self, no_default=False):
542
        # Copy the dist tensors and dist ops annotated by users from the default context
543 544 545 546 547
        if not no_default:
            default_ctx = get_default_distributed_context()
            self._process_meshes = copy.deepcopy(default_ctx.process_meshes)
        else:
            default_ctx = self
548 549
        # Copy the data parallel flag from the default context
        self._data_parallel = default_ctx.data_parallel
550
        for block in self._serial_main_program.blocks:
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
            for tensor in block.vars.values():
                # Copy the distributed tensors in the default context
                default_dist_tensor = default_ctx.get_dist_tensor_for_program(
                    tensor)
                if default_dist_tensor and default_ctx is not self:
                    self.add_dist_tensor_for_program(default_dist_tensor)
                current_dist_tensor = self.get_dist_tensor_for_program(tensor)
                if current_dist_tensor is None:
                    dist_tensor = DistributedTensor(tensor)
                    self.add_dist_tensor_for_program(dist_tensor)
            for op in block.ops:
                # Copy the distributed operators in the default context
                default_dist_op = default_ctx.get_dist_op_for_program(op)
                if default_dist_op and default_ctx is not self:
                    self.add_dist_op_for_program(default_dist_op)
                current_dist_op = self.get_dist_op_for_program(op)
                if current_dist_op is None:
                    dist_op = DistributedOperator(op)
                    self.add_dist_op_for_program(dist_op)
570 571 572 573
        self._original_dist_tensors_for_program = copy.deepcopy(
            self._dist_tensors_for_program)
        self._original_dist_ops_for_program = copy.deepcopy(
            self._dist_ops_for_program)
574

575
    def _order_nodes_by_program_order(self):
576

577 578
        def _contains(nodes, target_node):
            for node in nodes:
579
                if _node_id(node) == _node_id(target_node):
580 581 582
                    return True
            return False

583 584 585 586 587 588
        serial_ordered_tensor_nodes = []
        serial_ordered_op_nodes = []
        all_nodes = []
        for idx, graph in enumerate(self._serial_graph.all_sub_graphs()):
            for node in graph.all_nodes():
                all_nodes.append(node)
589 590
        for node in all_nodes:
            if node.is_var() and node.var() is not None:
591
                serial_ordered_tensor_nodes.append(node)
592
            if node.is_op() and node.op() is not None:
593 594 595 596 597 598 599 600 601 602
                serial_ordered_op_nodes.append(node)
        serial_ordered_tensor_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        serial_ordered_op_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        num_nodes_before = len(serial_ordered_tensor_nodes) + len(
            serial_ordered_op_nodes)

        new_serial_ordered_tensor_nodes = []
        new_serial_ordered_op_nodes = []
603
        new_serial_ordered_nodes = []
604
        for op_node in serial_ordered_op_nodes:
605 606 607 608
            tensor_nodes = []
            for tensor_node in op_node.inputs:
                if tensor_node.is_var() \
                    and tensor_node.var() is not None \
609
                    and not _contains(new_serial_ordered_nodes, tensor_node):
610
                    tensor_nodes.append(tensor_node)
611
                    new_serial_ordered_tensor_nodes.append(tensor_node)
612
            tensor_nodes.sort(key=lambda node: node.node.original_desc_id())
613 614
            new_serial_ordered_nodes.extend(tensor_nodes)
            new_serial_ordered_nodes.append(op_node)
615
            new_serial_ordered_op_nodes.append(op_node)
616 617 618 619
            tensor_nodes = []
            for tensor_node in op_node.outputs:
                if tensor_node.is_var() \
                    and tensor_node.var() is not None \
620
                    and not _contains(new_serial_ordered_nodes, tensor_node):
621
                    tensor_nodes.append(tensor_node)
622 623
                    new_serial_ordered_tensor_nodes.append(tensor_node)
            tensor_nodes.sort(key=lambda node: node.node.original_desc_id())
624
            new_serial_ordered_nodes.extend(tensor_nodes)
625 626 627 628 629 630
        new_serial_ordered_tensor_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        new_serial_ordered_op_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        self._serial_ordered_tensor_nodes = new_serial_ordered_tensor_nodes
        self._serial_ordered_op_nodes = new_serial_ordered_op_nodes
631
        self._serial_ordered_nodes = new_serial_ordered_nodes
632 633 634 635 636 637 638 639 640 641 642
        assert len(self._serial_ordered_nodes) == len(
            self._serial_ordered_tensor_nodes) + len(
                self._serial_ordered_op_nodes)
        self._serial_orphan_tensor_nodes = []
        for tensor_node in serial_ordered_tensor_nodes:
            if not _contains(self._serial_ordered_tensor_nodes, tensor_node):
                self._serial_orphan_tensor_nodes.append(tensor_node)
        if len(self._serial_ordered_nodes) != num_nodes_before:
            print(
                "WARNING: there are some orphan tensors or ops which are not used in the execution."
            )
643

644 645 646
    def _init_dist_attr_for_graph(self):
        # Convert program to graph and initialize the distributed attributes
        self._order_nodes_by_program_order()
647
        for node in self.serial_ordered_nodes:
648
            if node.is_var() and node.var() is not None:
649 650 651 652 653 654 655
                dist_tensor = None
                tensor_id = node.node.original_desc_id()
                for cur_tensor_id, cur_dist_tensor in self._dist_tensors_for_program.items(
                ):
                    if tensor_id == cur_tensor_id \
                        or tensor_id == cur_dist_tensor.serial_tensor.desc.original_id():
                        dist_tensor = cur_dist_tensor
656 657
                        self._node_id_to_tensor_id[_node_id(
                            node)] = cur_tensor_id
658 659
                assert dist_tensor is not None, \
                    "Tensor must have a distributed tensor after the initialization for program."
660
                serial_tensor_node_id = _node_id(node)
661 662 663 664
                new_dist_tensor = DistributedTensor(dist_tensor.serial_tensor,
                                                    dist_tensor.dist_attr)
                self._dist_tensors_for_graph[
                    serial_tensor_node_id] = new_dist_tensor
665
            if node.is_op() and node.op() is not None:
666 667 668 669 670 671 672
                dist_op = None
                op_id = node.node.original_desc_id()
                for cur_op_id, cur_dist_op in self._dist_ops_for_program.items(
                ):
                    if op_id == cur_op_id \
                        or op_id == cur_dist_op.serial_op.desc.original_id():
                        dist_op = cur_dist_op
673
                        self._node_id_to_op_id[_node_id(node)] = cur_op_id
674 675
                assert dist_op is not None, \
                    "Operator must have a distributed operator after the initialization for program."
676
                serial_op_node_id = _node_id(node)
677 678 679
                new_dist_op = DistributedOperator(dist_op.serial_op,
                                                  dist_op.dist_attr)
                self._dist_ops_for_graph[serial_op_node_id] = new_dist_op
680 681 682 683 684 685 686 687 688

    def clear_dist_info_for_program(self):
        self._dist_tensors_for_program.clear()
        self._dist_ops_for_program.clear()

    def clear_dist_info_for_graph(self):
        self._dist_tensors_for_graph.clear()
        self._dist_ops_for_graph.clear()

689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
    def copy_dist_attr_from_program_to_graph(self):
        for node in self.serial_ordered_nodes:
            if node.is_var() and node.var() is not None:
                dist_tensor = None
                tensor_id = node.node.original_desc_id()
                for cur_tensor_id, cur_dist_tensor in self._dist_tensors_for_program.items(
                ):
                    if tensor_id == cur_tensor_id \
                        or tensor_id == cur_dist_tensor.serial_tensor.desc.original_id():
                        dist_tensor = cur_dist_tensor
                assert dist_tensor is not None, \
                    "Tensor must have a distributed tensor after the initialization for program."
                serial_tensor_node_id = _node_id(node)
                new_dist_tensor = DistributedTensor(dist_tensor.serial_tensor,
                                                    dist_tensor.dist_attr)
                self._dist_tensors_for_graph[
                    serial_tensor_node_id] = new_dist_tensor
            if node.is_op() and node.op() is not None:
                dist_op = None
                op_id = node.node.original_desc_id()
                for cur_op_id, cur_dist_op in self._dist_ops_for_program.items(
                ):
                    if op_id == cur_op_id \
                        or op_id == cur_dist_op.serial_op.desc.original_id():
                        dist_op = cur_dist_op
                assert dist_op is not None, \
                    "Operator must have a distributed operator after the initialization for program."
                serial_op_node_id = _node_id(node)
                new_dist_op = DistributedOperator(dist_op.serial_op,
                                                  dist_op.dist_attr)
                self._dist_ops_for_graph[serial_op_node_id] = new_dist_op

721
    def copy_dist_attr_from_graph_to_program(self):
722
        assert self._is_initialized, \
723 724
            "Both program and graph must be initialized."
        updated_tensors = {}
725 726
        # all_nodes = self._serial_graph.all_nodes()
        all_nodes = self._serial_ordered_nodes
727 728
        for node in all_nodes:
            if node.is_var() and node.var() is not None:
729
                tensor_id = self._node_id_to_tensor_id[_node_id(node)]
730
                updated = updated_tensors.get(tensor_id, False)
731 732 733 734 735 736 737
                # If a var has multiples var nodes in graph, only use the first one for now
                if not updated:
                    tensor_dist_attr_for_graph = self.get_tensor_dist_attr_for_graph(
                        node)
                    dist_tensor_for_program = self._dist_tensors_for_program[
                        tensor_id]
                    dist_tensor_for_program.dist_attr = tensor_dist_attr_for_graph
738
                    updated_tensors[tensor_id] = True
739
            if node.is_op() and node.op() is not None:
740
                op_id = self._node_id_to_op_id[_node_id(node)]
741 742 743
                op_dist_attr_for_graph = self.get_op_dist_attr_for_graph(node)
                dist_op_for_program = self._dist_ops_for_program[op_id]
                dist_op_for_program.dist_attr = op_dist_attr_for_graph
744
        # TODO: the completion algorithm will skipped orphan tensors,
745 746 747
        # here we just set there process_mesh to the first one.
        for orphan_node in self._serial_orphan_tensor_nodes:
            serial_tensor_id = orphan_node.var().id()
748 749
            dist_tensor = self._dist_tensors_for_program.get(
                serial_tensor_id, None)
750 751 752 753 754 755 756
            if dist_tensor:
                dist_tensor.dist_attr.process_mesh = self._process_meshes[0]
            else:
                serial_tensor_id = orphan_node.var().original_id()
                dist_tensor = self._dist_tensors_for_program.get(
                    serial_tensor_id, None)
                dist_tensor.dist_attr.process_mesh = self._process_meshes[0]
757 758 759 760 761

    def amend_dist_attr_for_program(self):
        for dist_tensor in self._dist_tensors_for_program.values():
            serial_tensor = dist_tensor.serial_tensor
            dist_attr = dist_tensor.dist_attr
762 763 764
            if serial_tensor.type == core.VarDesc.VarType.READER \
                or serial_tensor.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
                or serial_tensor.type == core.VarDesc.VarType.STEP_SCOPES:
765 766 767 768 769
                tensor_shape = []
            else:
                tensor_shape = serial_tensor.shape
            dims_mapping = dist_attr.dims_mapping
            process_mesh_shape = dist_attr.process_mesh.topology
770
            process_mesh_processes = dist_attr.process_mesh.processes
771 772 773 774 775 776
            # If the dimension of tensor is less than the sharding dimension of process mesh,
            # we just amend the dimension mapping to -1. (Is this really OK?)
            for i in range(len(tensor_shape)):
                if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
                    and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]:
                    dims_mapping[i] = -1
777 778
                if dims_mapping[i] != -1 and len(process_mesh_processes) == 1:
                    dims_mapping[i] = -1
779 780 781 782

        for dist_op in self._dist_ops_for_program.values():
            serial_op = dist_op.serial_op
            dist_attr = dist_op.dist_attr
783 784
            process_mesh_shape = dist_attr.process_mesh.topology
            process_mesh_processes = dist_attr.process_mesh.processes
785 786 787 788 789
            for arg_name in serial_op.input_arg_names:
                if dist_op.get_serial_input(arg_name) is None:
                    tensor_shape = []
                else:
                    if dist_op.get_serial_input(arg_name).type == core.VarDesc.VarType.READER \
790
                        or dist_op.get_serial_input(arg_name).type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
791 792 793 794 795 796 797 798 799 800 801
                        or dist_op.serial_op.type == "create_py_reader":
                        tensor_shape = []
                    else:
                        tensor_shape = dist_op.get_serial_input(arg_name).shape
                dims_mapping = dist_attr.get_input_dims_mapping(arg_name)
                # If the dimension of tensor is less than the sharding dimension of process mesh,
                # we just amend the dimension mapping to -1. (Is this really OK?)
                for i in range(len(tensor_shape)):
                    if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
                        and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]:
                        dims_mapping[i] = -1
802 803 804
                    if dims_mapping[i] != -1 and len(
                            process_mesh_processes) == 1:
                        dims_mapping[i] = -1
805
            for arg_name in serial_op.output_arg_names:
806 807 808
                if dist_op.get_serial_output(arg_name).type == core.VarDesc.VarType.READER \
                    or dist_op.get_serial_output(arg_name).type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
                    or dist_op.get_serial_output(arg_name).type == core.VarDesc.VarType.STEP_SCOPES:
809 810 811 812 813 814 815 816 817 818
                    tensor_shape = []
                else:
                    tensor_shape = dist_op.get_serial_output(arg_name).shape
                dims_mapping = dist_attr.get_output_dims_mapping(arg_name)
                # If the dimension of tensor is less than the sharding dimension of process mesh,
                # we just amend the dimension mapping to -1. (Is this really OK?)
                for i in range(len(tensor_shape)):
                    if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
                        and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]:
                        dims_mapping[i] = -1
819 820 821 822 823 824
                    if dims_mapping[i] != -1 and len(
                            process_mesh_processes) == 1:
                        dims_mapping[i] = -1
            if len(process_mesh_processes) == 1:
                dist_op.dist_attr.impl_type = "default"
                dist_op.dist_attr.impl_idx = 0
825 826

    def validate_dist_attr_for_program(self):
827
        if not self._is_initialized:
828 829
            assert False, \
                "Program must be initialized before validating its distributed attributes"
830
        for block in self.serial_main_program.blocks:
831 832
            for tensor in block.vars.values():
                dist_tensor = self.get_dist_tensor_for_program(tensor)
833 834 835
                assert dist_tensor is not None, \
                    "Tensor {} does not have a distributed attribute.".format(
                        dist_tensor.serial_tensor.name)
836 837
                if (dist_tensor
                        is not None) and (not dist_tensor.validate_dist_attr()):
838
                    assert False, "Tensor {} (id: {}, original_id: {}) has a wrong distributed attributes {}.".format(
C
caozhou 已提交
839 840 841 842
                        dist_tensor.serial_tensor.name,
                        dist_tensor.serial_tensor.desc.id(),
                        dist_tensor.serial_tensor.desc.original_id(),
                        dist_tensor.dist_attr)
843 844
            for op in block.ops:
                dist_op = self.get_dist_op_for_program(op)
845 846 847
                assert dist_op is not None, \
                    "Operator {} does not have a distributed attribute.".format(
                        dist_op.serial_op.type)
848
                if (dist_op is not None) and (not dist_op.validate_dist_attr()):
849
                    assert False, "Operator {} (id: {}, original_id: {}) has a wrong distributed attributes {} .".format(
850
                        dist_op.serial_op.type, dist_op.serial_op.desc.id(),
851
                        dist_op.serial_op.desc.original_id(), dist_op.dist_attr)
852 853
        return True

Z
zhaoyingli 已提交
854 855 856 857 858
    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
859 860 861 862 863
            if k in [
                "_original_serial_main_program", "_original_serial_startup_program", \
                "_serial_main_program", "_serial_startup_program", "_serial_graph", \
                "_dist_main_programs", "_dist_startup_programs", \
                "_serial_ordered_nodes", "_serial_ordered_tensor_nodes", \
864 865 866 867 868
                "_serial_ordered_op_nodes", "_original_serial_loss", \
                "_original_serial_feed_vars", "_original_serial_fetch_vars", \
                "_serial_loss", "_serial_feed_vars", "_serial_fetch_vars", "_lr_optimizer", \
                "_backup_serial_main_program_stack", "_backup_serial_startup_program_stack", \
                "_pass_context"]:
Z
zhaoyingli 已提交
869 870 871
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
872 873 874 875

        # update dist tensor's dist_context
        for key in result._dist_tensors_for_program.keys():
            result._dist_tensors_for_program[key]._dist_context = result
Z
zhaoyingli 已提交
876 877
        return result

878 879 880 881 882 883 884 885 886

class DistributedOperatorContext:
    """
    DistributedOperatorContext is used to create a dist op desc in Program.
    Every time to create a new dist op, the context should be updated for it accordingly.
    """

    def __init__(self):
        self._dst_main_program = None
887
        self._main_block = None
888
        self._dst_startup_program = None
889
        self._startup_block = None
890 891
        self._cur_src_op = None
        self._cur_dist_attr = None
892
        self.grad_op_id_to_op_id = {}
893
        self.grad_var_to_var = defaultdict(dict)
894
        self._work_block = None
895
        self.already_init_sync_vars = set()
896 897
        self.varname_mapping = None
        self.rank_id = None
898

Z
zhaoyingli 已提交
899 900 901 902 903
    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
904 905 906 907
            if k in [
                    "_dst_main_program", "_dst_startup_program", "_cur_src_op",
                    "_work_block", "_main_block", "_startup_block"
            ]:
Z
zhaoyingli 已提交
908 909 910 911 912
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
        return result

913 914
    @property
    def dst_main_program(self):
915 916
        return self._dst_main_program

917 918 919 920
    @dst_main_program.setter
    def dst_main_program(self, prog):
        self._dst_main_program = prog
        self._main_block = prog.blocks[0]
921

922 923 924
    @property
    def main_block(self):
        return self._main_block
925

926 927 928
    @property
    def dst_startup_program(self):
        return self._dst_startup_program
929

930 931 932 933
    @dst_startup_program.setter
    def dst_startup_program(self, prog):
        self._dst_startup_program = prog
        self._startup_block = prog.blocks[0]
934

935 936 937
    @property
    def startup_block(self):
        return self._startup_block
938

939 940 941 942
    @property
    def work_block(self):
        assert self._work_block is not None
        return self._work_block
943

944 945 946 947
    @work_block.setter
    def work_block(self, block):
        assert block is not None
        self._work_block = block
948

949 950 951
    @property
    def cur_src_op(self):
        assert self._cur_src_op is not None
952 953
        return self._cur_src_op

954
    def prepare_context(self, src_op):
955

956
        self._cur_src_op = src_op
957 958 959 960 961 962

        # build input varname mapping
        kinputs = {}
        for input_name in src_op.desc.input_names():
            varnames = []
            for varname in src_op.desc.input(input_name):
963 964
                assert varname in self.varname_mapping
                varnames.append(self.varname_mapping[varname])
965 966 967 968 969 970 971
            kinputs[input_name] = varnames

        # build output varname mapping
        koutputs = {}
        for output_name in src_op.desc.output_names():
            varnames = []
            for varname in src_op.desc.output(output_name):
972 973
                assert varname in self.varname_mapping
                varnames.append(self.varname_mapping[varname])
974 975 976
            koutputs[output_name] = varnames

        return kinputs, koutputs
977 978 979


class BlockState(object):
980

981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
    def __init__(self):
        self.nblock = 0
        self.forward_indices = []
        self.backward_indices = []
        self.backward_to_forward_index_map = {}

    def parse_forward_blocks(self, program):

        while program.current_block_idx != 0:
            program._rollback()

        assert program.current_block_idx == 0

        for idx, block in enumerate(program.blocks):

            assert idx == block.idx, "index doesn't match"
            assert block.forward_block_idx == -1, "forward_block_idx of forward block [{}] is not [{}]".format(
                idx, block.forward_block_idx)
            self.forward_indices.append(idx)
            self.nblock += 1

        assert self.nblock >= 1

    def parse_backward_blocks(self, program):

        assert 0 in self.forward_indices, "forward block idx are{}".format(
            self.forward_indices)
        self.backward_to_forward_index_map[0] = 0

        for idx, block in enumerate(program.blocks):

            if idx < len(self.forward_indices):
                continue

            assert idx == block.idx, "index doesn't match"
            assert block.forward_block_idx in self.forward_indices
            self.backward_indices.append(idx)
            self.backward_to_forward_index_map[idx] = block.forward_block_idx
            self.nblock += 1

        assert self.nblock == len(program.blocks)