dist_context.py 41.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import copy
from collections import defaultdict
17
import paddle.fluid
18
from paddle.fluid import framework
19
from paddle.fluid.framework import get_flags, set_flags
20
from paddle.fluid import core
21
from paddle.distributed.passes import PassContext
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
from .dist_attribute import TensorDistributedAttribute
from .dist_attribute import OperatorDistributedAttribute
from .dist_tensor import DistributedTensor
from .dist_op import DistributedOperator
from .process_mesh import ProcessMesh

# There always exists a default context for user. And user can set it to another one.
_g_default_distributed_context = None


def get_default_distributed_context():
    global _g_default_distributed_context
    if _g_default_distributed_context is None:
        dist_context = DistributedContext()
        set_default_distributed_context(dist_context)
    return _g_default_distributed_context


def set_default_distributed_context(dist_context):
    global _g_default_distributed_context
    _g_default_distributed_context = dist_context


45 46 47 48
def _node_id(node):
    return (node.node.graph_id(), node.node.id())


49 50 51 52 53 54
class DistributedContext:
    """
    DistributedContext is used to collect related distributed information for program and graph.
    One auto-parallel run should use its own DistributedContext to avoid interfering other run.
    """

55 56 57
    def __init__(self,
                 serial_main_prog=None,
                 serial_startup_prog=None,
58
                 serial_optimizer=None,
59
                 serial_loss=None,
60 61 62
                 feed_vars={},
                 fetch_vars={},
                 cluster=None,
63 64 65 66
                 strategy=None):
        # Data members related to original programs (unchanged)
        self._original_serial_main_program = serial_main_prog
        self._original_serial_startup_program = serial_startup_prog
67
        self._original_serial_optimizer = serial_optimizer
68
        self._original_serial_loss = serial_loss
69 70
        self._original_serial_feed_vars = feed_vars
        self._original_serial_fetch_vars = fetch_vars
71 72 73 74 75
        self._original_serial_optimizer = serial_optimizer

        # Data members related to programs (changed)
        self._serial_main_program = None
        self._serial_startup_program = None
76 77 78 79
        self._serial_loss = None
        self._serial_optimizer = None
        self._serial_feed_vars = {}
        self._serial_fetch_vars = {}
80 81

        # Data members related to the program
82 83
        self._dist_tensors_for_program = {}
        self._dist_ops_for_program = {}
84 85

        # Data members related to the graph
86
        self._serial_graph = None
87 88
        self._dist_tensors_for_graph = {}
        self._dist_ops_for_graph = {}
89 90
        self._node_id_to_tensor_id = {}
        self._node_id_to_op_id = {}
91

92
        # Data members related to the distributed programs
93
        # Distributed programs
94 95
        self._dist_main_programs = {}
        self._dist_startup_programs = {}
96 97
        self._dist_op_context = DistributedOperatorContext()
        self._process_meshes = []
98

99
        self._cluster = cluster
100 101 102 103
        self._strategy = strategy

        # Pass Context
        self._pass_context = PassContext()
104
        self._block_state = BlockState()
105 106 107 108 109 110 111 112

        # Other data members
        self._serial_ordered_tensor_nodes = []
        self._serial_ordered_op_nodes = []
        self._serial_ordered_nodes = []
        # self._tensor_id_to_tensor_node_ids = {}

        self._is_initialized = False
113
        #TODO: need a better way to remove the following flag
114 115 116 117 118 119 120
        self._need_copy_dist_attr_to_graph = False
        self._backup_pass_context_stack = []
        self._backup_block_state_stack = []
        self._backup_dist_tensors_for_program_stack = []
        self._backup_dist_ops_for_program_stack = []
        self._backup_serial_main_program_stack = []
        self._backup_serial_startup_program_stack = []
121

122 123 124
        # flag whether scale gradient with dp size
        self._gradient_scale = True

125 126 127
        # A flag indicates whether the used parallelism is data parallel
        self._data_parallel = False

128
    @property
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    def serial_main_program(self):
        return self._serial_main_program

    @property
    def serial_startup_program(self):
        return self._serial_startup_program

    @property
    def serial_loss(self):
        return self._serial_loss

    @property
    def serial_optimizer(self):
        return self._serial_optimizer

144 145 146 147 148 149 150
    @property
    def serial_feed_vars(self):
        return self._serial_feed_vars

    @property
    def serial_fetch_vars(self):
        return self._serial_fetch_vars
151

152 153 154 155 156 157 158 159 160 161 162 163
    @property
    def dist_main_programs(self):
        return self._dist_main_programs

    @property
    def dist_startup_programs(self):
        return self._dist_startup_programs

    @property
    def cluster(self):
        return self._cluster

164 165 166 167
    @property
    def strategy(self):
        return self._strategy

168 169 170 171
    @property
    def serial_graph(self):
        return self._serial_graph

172 173 174 175
    @property
    def serial_ordered_nodes(self):
        return self._serial_ordered_nodes

176 177 178 179
    @property
    def process_meshes(self):
        return self._process_meshes

180 181 182 183
    @property
    def pass_context(self):
        return self._pass_context

184 185 186 187
    @property
    def dist_op_context(self):
        return self._dist_op_context

188 189 190 191
    @property
    def block_state(self):
        return self._block_state

192
    @property
193
    def has_annotation(self):
194 195 196
        return len(self._dist_tensors_for_program) or len(
            self._dist_ops_for_program)

197 198 199 200 201 202 203 204
    @property
    def gradient_scale(self):
        return self._gradient_scale

    @gradient_scale.setter
    def gradient_scale(self, gs):
        self._gradient_scale = gs

205 206 207 208 209 210 211 212
    @property
    def data_parallel(self):
        return self._data_parallel

    @data_parallel.setter
    def data_parallel(self, dp):
        self._data_parallel = dp

213 214 215 216 217
    def _backup_serial_info(self, mode):
        self._backup_serial_main_program_stack.append(
            self._serial_main_program.clone())
        self._backup_serial_startup_program_stack.append(
            self._serial_startup_program.clone())
218 219
        self._backup_pass_context_stack.append(copy.deepcopy(
            self._pass_context))
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
        self._backup_block_state_stack.append(copy.deepcopy(self._block_state))

    def _backup_dist_info(self, mode):
        self._backup_dist_tensors_for_program_stack.append(
            copy.deepcopy(self._dist_tensors_for_program))
        self._backup_dist_ops_for_program_stack.append(
            copy.deepcopy(self._dist_ops_for_program))

    def _backup(self, serial=True, serial_mode=None, dist=True, dist_mode=None):
        # Use this function carefully
        if serial:
            self._backup_serial_info(serial_mode)
        if dist:
            self._backup_dist_info(dist_mode)

    def _restore_serial_info(self, mode="to_backup"):
        if mode == "to_backup":
            self._serial_main_program = self._backup_serial_main_program_stack.pop(
            )
            self._serial_startup_program = self._backup_serial_startup_program_stack.pop(
            )
        elif mode == "to_original":
            assert self._original_serial_main_program is not None
            assert self._original_serial_startup_program is not None
244 245 246 247
            self._serial_main_program = self._original_serial_main_program.clone(
            )
            self._serial_startup_program = self._original_serial_startup_program.clone(
            )
248 249 250 251 252 253 254 255 256 257 258 259

        self._serial_optimizer = self._original_serial_optimizer

        if self._original_serial_loss:
            if isinstance(self._original_serial_loss, list):
                assert len(self._original_serial_loss) == 1
                loss = self._original_serial_loss[0]
                block_idx = loss.block.idx
                var_name = loss.name
                var = self._serial_main_program.blocks[
                    block_idx]._var_recursive(var_name)
                self._serial_loss = var
260
            else:
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
                block_idx = self._original_serial_loss.block.idx
                var_name = self._original_serial_loss.name
                var = self._serial_main_program.blocks[
                    block_idx]._var_recursive(var_name)
                self._serial_loss = var

        for key, var_list in self._original_serial_feed_vars.items():
            new_var_list = []
            for var in var_list:
                block_idx = var.block.idx
                var_name = var.name
                var = self._serial_main_program.blocks[
                    block_idx]._var_recursive(var_name)
                new_var_list.append(var)
            self._serial_feed_vars[key] = new_var_list

        for key, var_list in self._original_serial_fetch_vars.items():
            new_var_list = []
            for var in var_list:
                block_idx = var.block.idx
                var_name = var.name
                var = self._serial_main_program.blocks[
                    block_idx]._var_recursive(var_name)
                new_var_list.append(var)
            self._serial_fetch_vars[key] = new_var_list

        self._pass_context = self._backup_pass_context_stack.pop()
        self._block_state = self._backup_block_state_stack.pop()

    def _restore_dist_info(self, mode="to_backup"):
        if mode == "to_backup":
            self._dist_tensors_for_program = self._backup_dist_tensors_for_program_stack.pop(
            )
            self._dist_ops_for_program = self._backup_dist_ops_for_program_stack.pop(
            )
        elif mode == "to_original":
            assert self._original_dist_tensors_for_program
            assert self._original_dist_ops_for_program
            self._dist_tensors_for_program = copy.deepcopy(
                self._original_dist_tensors_for_program)
            self._dist_ops_for_program = copy.deepcopy(
                self._original_dist_ops_for_program)
        elif mode == "to_default":
            new_tensors_ids = []
            for tensor_id, dist_tensor in self._dist_tensors_for_program.items(
            ):
                if tensor_id in self._tensors_ids:
                    dist_tensor.dist_attr.reset()
                else:
                    new_tensors_ids.append(tensor_id)
            for tensor_id in new_tensors_ids:
                self._dist_tensors_for_program.pop(tensor_id)
            new_ops_ids = []
            for op_id, dist_op in self._dist_ops_for_program.items():
                if op_id in self._ops_ids:
                    dist_op.dist_attr.reset()
                else:
                    new_ops_ids.append(op_id)
            for op_id in new_ops_ids:
                self._dist_ops_for_program.pop(op_id)
        else:
            new_tensors_ids = []
            for tensor_id, dist_tensor in self._dist_tensors_for_program.items(
            ):
                new_tensors_ids.append(tensor_id)
            for tensor_id in new_tensors_ids:
                self._dist_tensors_for_program.pop(tensor_id)
            new_ops_ids = []
            for op_id, dist_op in self._dist_ops_for_program.items():
                new_ops_ids.append(op_id)
            for op_id in new_ops_ids:
                self._dist_ops_for_program.pop(op_id)
        self._dist_main_programs = {}
        self._dist_startup_programs = {}
        self._dist_op_context = DistributedOperatorContext()
        self._need_copy_dist_attr_to_graph = True
        self._process_meshes = []

    def _restore(self,
                 serial=True,
                 serial_mode="to_backup",
                 dist=True,
                 dist_mode="to_backup"):
        # Use this function carefully
        if serial:
            self._restore_serial_info(serial_mode)
        if dist:
            self._restore_dist_info(dist_mode)

350
    def initialize(self, with_graph=True):
351 352 353 354 355 356 357
        if not self._is_initialized:
            if not self._serial_main_program:
                self._serial_main_program = self._original_serial_main_program
            if not self._serial_startup_program:
                self._serial_startup_program = self._original_serial_startup_program
            if not self._serial_loss:
                if isinstance(self._original_serial_loss, list):
358 359 360 361 362 363
                    if len(self._original_serial_loss) == 1:
                        self._serial_loss = self._original_serial_loss[0]
                    elif len(self._original_serial_loss) == 0:
                        self._serial_loss = self._original_serial_loss
                    else:
                        raise ValueError("multi loss vars are not supported.")
364 365 366 367 368 369 370 371 372
                else:
                    self._serial_loss = self._original_serial_loss
            if not self._serial_optimizer:
                self._serial_optimizer = self._original_serial_optimizer
            if not self._serial_feed_vars:
                self._serial_feed_vars = self._original_serial_feed_vars
            if not self._serial_fetch_vars:
                self._serial_fetch_vars = self._original_serial_fetch_vars

373
            self._init_dist_attr_for_program()
374 375 376 377 378
            # Backup the original distributed information for later restore
            self._original_dist_tensors_for_program = copy.deepcopy(
                self._dist_tensors_for_program)
            self._original_dist_ops_for_program = copy.deepcopy(
                self._dist_ops_for_program)
379 380 381
            self._tensors_ids = list(self._dist_tensors_for_program.keys())
            self._ops_ids = list(self._dist_ops_for_program.keys())
            self._is_initialized = True
382 383 384 385 386 387 388 389 390

            if with_graph:
                set_flags({"FLAGS_convert_all_blocks": True})
                self._serial_graph = framework.IrGraph(
                    core.Graph(self._serial_main_program.desc))
                self._init_dist_attr_for_graph()
                self._need_copy_dist_attr_to_graph = False

        if self._need_copy_dist_attr_to_graph and with_graph:
391
            self.copy_dist_attr_from_program_to_graph()
392

393 394 395 396 397 398 399 400
    def add_process_mesh(self, process_mesh):
        assert isinstance(process_mesh, ProcessMesh), \
            'The type of dim_mapping must be ProcessMesh.'
        if process_mesh not in self.process_meshes:
            self._process_meshes.append(process_mesh)

    def add_dist_tensor_for_program(self, dist_tensor):
        inner_serial_tensor = dist_tensor.serial_tensor
401
        inner_serial_tensor_id = inner_serial_tensor.desc.original_id()
402 403 404 405
        self._dist_tensors_for_program[inner_serial_tensor_id] = dist_tensor

    def add_dist_op_for_program(self, dist_op):
        inner_serial_op = dist_op.serial_op
406
        inner_serial_op_id = inner_serial_op.desc.original_id()
407 408 409 410
        self._dist_ops_for_program[inner_serial_op_id] = dist_op

    def get_dist_tensor_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
411 412 413 414 415
        dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id, None)
        if dist_tensor:
            return dist_tensor
        else:
            serial_tensor_id = serial_tensor.desc.original_id()
416 417
            dist_tensor = self._dist_tensors_for_program.get(
                serial_tensor_id, None)
418 419 420 421
            if dist_tensor:
                return dist_tensor
            else:
                return None
422 423

    def get_dist_tensor_for_graph(self, serial_tensor_node):
424
        serial_tensor_node_id = _node_id(serial_tensor_node)
425 426
        return self._dist_tensors_for_graph.get(serial_tensor_node_id, None)

427 428 429 430 431 432 433 434 435 436 437 438
    def get_dist_op_for_program(self, serial_op):
        serial_op_id = serial_op.desc.id()
        dist_op = self._dist_ops_for_program.get(serial_op_id, None)
        if dist_op:
            return dist_op
        else:
            serial_op_id = serial_op.desc.original_id()
            dist_op = self._dist_ops_for_program.get(serial_op_id, None)
            if dist_op:
                return dist_op
            else:
                return None
439

440 441 442 443 444
    def del_dist_op_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
        if self._dist_ops_for_program.get(serial_tensor_id, None):
            del self._dist_ops_for_program[serial_tensor_id]

445
    def get_dist_op_for_graph(self, serial_op_node):
446
        serial_op_node_id = _node_id(serial_op_node)
447
        return self._dist_ops_for_graph.get(serial_op_node_id, None)
448 449 450 451 452 453 454

    def get_tensor_dist_attr_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
        dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id, None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
455
            serial_tensor_id = serial_tensor.desc.original_id()
456 457
            dist_tensor = self._dist_tensors_for_program.get(
                serial_tensor_id, None)
458 459 460 461
            if dist_tensor:
                return dist_tensor.dist_attr
            else:
                return None
462

463 464 465 466 467 468 469
    def get_tensor_dist_attr_for_program_with_id(self, tensor_id):
        dist_tensor = self._dist_tensors_for_program.get(tensor_id, None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
            return None

470 471 472 473 474
    def set_tensor_dist_attr_for_program(self, serial_tensor, dist_attr):
        dist_tensor = DistributedTensor(serial_tensor, dist_attr)
        self.add_dist_tensor_for_program(dist_tensor)

    def get_tensor_dist_attr_for_graph(self, serial_tensor_node):
475
        serial_tensor_node_id = _node_id(serial_tensor_node)
476 477 478 479 480 481 482 483 484 485 486 487 488
        dist_tensor = self._dist_tensors_for_graph.get(serial_tensor_node_id,
                                                       None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
            return None

    def get_op_dist_attr_for_program(self, serial_op):
        serial_op_id = serial_op.desc.id()
        dist_op = self._dist_ops_for_program.get(serial_op_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
489 490 491 492 493 494
            serial_op_id = serial_op.desc.original_id()
            dist_op = self._dist_ops_for_program.get(serial_op_id, None)
            if dist_op:
                return dist_op.dist_attr
            else:
                return None
495

496 497 498 499 500 501 502
    def get_op_dist_attr_for_program_with_id(self, op_id):
        dist_op = self._dist_ops_for_program.get(op_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
            return None

503 504 505 506 507
    def set_op_dist_attr_for_program(self, serial_op, dist_attr):
        dist_op = DistributedOperator(serial_op, dist_attr)
        self.add_dist_op_for_program(dist_op)

    def get_op_dist_attr_for_graph(self, serial_op_node):
508
        serial_op_node_id = _node_id(serial_op_node)
509 510 511 512 513 514
        dist_op = self._dist_ops_for_graph.get(serial_op_node_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
            return None

515 516
    def get_dist_attr_for_graph(self, serial_node):
        if serial_node.is_var() and serial_node.var() is not None:
517
            serial_tensor_node_id = _node_id(serial_node)
518 519 520 521 522 523 524
            dist_tensor = self._dist_tensors_for_graph.get(
                serial_tensor_node_id, None)
            if dist_tensor:
                return dist_tensor.dist_attr
            else:
                return None
        if serial_node.is_op() and serial_node.op() is not None:
525
            serial_op_node_id = _node_id(serial_node)
526 527 528 529 530 531
            dist_op = self._dist_ops_for_graph.get(serial_op_node_id, None)
            if dist_op:
                return dist_op.dist_attr
            else:
                return None
        return None
532

533
    def _init_dist_attr_for_program(self, no_default=False):
534
        # Copy the dist tensors and dist ops annotated by users from the default context
535 536 537 538 539
        if not no_default:
            default_ctx = get_default_distributed_context()
            self._process_meshes = copy.deepcopy(default_ctx.process_meshes)
        else:
            default_ctx = self
540 541
        # Copy the data parallel flag from the default context
        self._data_parallel = default_ctx.data_parallel
542
        for block in self._serial_main_program.blocks:
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
            for tensor in block.vars.values():
                # Copy the distributed tensors in the default context
                default_dist_tensor = default_ctx.get_dist_tensor_for_program(
                    tensor)
                if default_dist_tensor and default_ctx is not self:
                    self.add_dist_tensor_for_program(default_dist_tensor)
                current_dist_tensor = self.get_dist_tensor_for_program(tensor)
                if current_dist_tensor is None:
                    dist_tensor = DistributedTensor(tensor)
                    self.add_dist_tensor_for_program(dist_tensor)
            for op in block.ops:
                # Copy the distributed operators in the default context
                default_dist_op = default_ctx.get_dist_op_for_program(op)
                if default_dist_op and default_ctx is not self:
                    self.add_dist_op_for_program(default_dist_op)
                current_dist_op = self.get_dist_op_for_program(op)
                if current_dist_op is None:
                    dist_op = DistributedOperator(op)
                    self.add_dist_op_for_program(dist_op)
562 563 564 565
        self._original_dist_tensors_for_program = copy.deepcopy(
            self._dist_tensors_for_program)
        self._original_dist_ops_for_program = copy.deepcopy(
            self._dist_ops_for_program)
566

567
    def _order_nodes_by_program_order(self):
568

569 570
        def _contains(nodes, target_node):
            for node in nodes:
571
                if _node_id(node) == _node_id(target_node):
572 573 574
                    return True
            return False

575 576 577 578 579 580
        serial_ordered_tensor_nodes = []
        serial_ordered_op_nodes = []
        all_nodes = []
        for idx, graph in enumerate(self._serial_graph.all_sub_graphs()):
            for node in graph.all_nodes():
                all_nodes.append(node)
581 582
        for node in all_nodes:
            if node.is_var() and node.var() is not None:
583
                serial_ordered_tensor_nodes.append(node)
584
            if node.is_op() and node.op() is not None:
585 586 587 588 589 590 591 592 593 594
                serial_ordered_op_nodes.append(node)
        serial_ordered_tensor_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        serial_ordered_op_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        num_nodes_before = len(serial_ordered_tensor_nodes) + len(
            serial_ordered_op_nodes)

        new_serial_ordered_tensor_nodes = []
        new_serial_ordered_op_nodes = []
595
        new_serial_ordered_nodes = []
596
        for op_node in serial_ordered_op_nodes:
597 598 599 600
            tensor_nodes = []
            for tensor_node in op_node.inputs:
                if tensor_node.is_var() \
                    and tensor_node.var() is not None \
601
                    and not _contains(new_serial_ordered_nodes, tensor_node):
602
                    tensor_nodes.append(tensor_node)
603
                    new_serial_ordered_tensor_nodes.append(tensor_node)
604
            tensor_nodes.sort(key=lambda node: node.node.original_desc_id())
605 606
            new_serial_ordered_nodes.extend(tensor_nodes)
            new_serial_ordered_nodes.append(op_node)
607
            new_serial_ordered_op_nodes.append(op_node)
608 609 610 611
            tensor_nodes = []
            for tensor_node in op_node.outputs:
                if tensor_node.is_var() \
                    and tensor_node.var() is not None \
612
                    and not _contains(new_serial_ordered_nodes, tensor_node):
613
                    tensor_nodes.append(tensor_node)
614 615
                    new_serial_ordered_tensor_nodes.append(tensor_node)
            tensor_nodes.sort(key=lambda node: node.node.original_desc_id())
616
            new_serial_ordered_nodes.extend(tensor_nodes)
617 618 619 620 621 622
        new_serial_ordered_tensor_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        new_serial_ordered_op_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        self._serial_ordered_tensor_nodes = new_serial_ordered_tensor_nodes
        self._serial_ordered_op_nodes = new_serial_ordered_op_nodes
623
        self._serial_ordered_nodes = new_serial_ordered_nodes
624 625 626 627 628 629 630 631 632 633 634
        assert len(self._serial_ordered_nodes) == len(
            self._serial_ordered_tensor_nodes) + len(
                self._serial_ordered_op_nodes)
        self._serial_orphan_tensor_nodes = []
        for tensor_node in serial_ordered_tensor_nodes:
            if not _contains(self._serial_ordered_tensor_nodes, tensor_node):
                self._serial_orphan_tensor_nodes.append(tensor_node)
        if len(self._serial_ordered_nodes) != num_nodes_before:
            print(
                "WARNING: there are some orphan tensors or ops which are not used in the execution."
            )
635

636 637 638
    def _init_dist_attr_for_graph(self):
        # Convert program to graph and initialize the distributed attributes
        self._order_nodes_by_program_order()
639
        for node in self.serial_ordered_nodes:
640
            if node.is_var() and node.var() is not None:
641 642 643 644 645 646 647
                dist_tensor = None
                tensor_id = node.node.original_desc_id()
                for cur_tensor_id, cur_dist_tensor in self._dist_tensors_for_program.items(
                ):
                    if tensor_id == cur_tensor_id \
                        or tensor_id == cur_dist_tensor.serial_tensor.desc.original_id():
                        dist_tensor = cur_dist_tensor
648 649
                        self._node_id_to_tensor_id[_node_id(
                            node)] = cur_tensor_id
650 651
                assert dist_tensor is not None, \
                    "Tensor must have a distributed tensor after the initialization for program."
652
                serial_tensor_node_id = _node_id(node)
653 654 655 656
                new_dist_tensor = DistributedTensor(dist_tensor.serial_tensor,
                                                    dist_tensor.dist_attr)
                self._dist_tensors_for_graph[
                    serial_tensor_node_id] = new_dist_tensor
657
            if node.is_op() and node.op() is not None:
658 659 660 661 662 663 664
                dist_op = None
                op_id = node.node.original_desc_id()
                for cur_op_id, cur_dist_op in self._dist_ops_for_program.items(
                ):
                    if op_id == cur_op_id \
                        or op_id == cur_dist_op.serial_op.desc.original_id():
                        dist_op = cur_dist_op
665
                        self._node_id_to_op_id[_node_id(node)] = cur_op_id
666 667
                assert dist_op is not None, \
                    "Operator must have a distributed operator after the initialization for program."
668
                serial_op_node_id = _node_id(node)
669 670 671
                new_dist_op = DistributedOperator(dist_op.serial_op,
                                                  dist_op.dist_attr)
                self._dist_ops_for_graph[serial_op_node_id] = new_dist_op
672 673 674 675 676 677 678 679 680

    def clear_dist_info_for_program(self):
        self._dist_tensors_for_program.clear()
        self._dist_ops_for_program.clear()

    def clear_dist_info_for_graph(self):
        self._dist_tensors_for_graph.clear()
        self._dist_ops_for_graph.clear()

681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
    def copy_dist_attr_from_program_to_graph(self):
        for node in self.serial_ordered_nodes:
            if node.is_var() and node.var() is not None:
                dist_tensor = None
                tensor_id = node.node.original_desc_id()
                for cur_tensor_id, cur_dist_tensor in self._dist_tensors_for_program.items(
                ):
                    if tensor_id == cur_tensor_id \
                        or tensor_id == cur_dist_tensor.serial_tensor.desc.original_id():
                        dist_tensor = cur_dist_tensor
                assert dist_tensor is not None, \
                    "Tensor must have a distributed tensor after the initialization for program."
                serial_tensor_node_id = _node_id(node)
                new_dist_tensor = DistributedTensor(dist_tensor.serial_tensor,
                                                    dist_tensor.dist_attr)
                self._dist_tensors_for_graph[
                    serial_tensor_node_id] = new_dist_tensor
            if node.is_op() and node.op() is not None:
                dist_op = None
                op_id = node.node.original_desc_id()
                for cur_op_id, cur_dist_op in self._dist_ops_for_program.items(
                ):
                    if op_id == cur_op_id \
                        or op_id == cur_dist_op.serial_op.desc.original_id():
                        dist_op = cur_dist_op
                assert dist_op is not None, \
                    "Operator must have a distributed operator after the initialization for program."
                serial_op_node_id = _node_id(node)
                new_dist_op = DistributedOperator(dist_op.serial_op,
                                                  dist_op.dist_attr)
                self._dist_ops_for_graph[serial_op_node_id] = new_dist_op

713
    def copy_dist_attr_from_graph_to_program(self):
714
        assert self._is_initialized, \
715 716
            "Both program and graph must be initialized."
        updated_tensors = {}
717 718
        # all_nodes = self._serial_graph.all_nodes()
        all_nodes = self._serial_ordered_nodes
719 720
        for node in all_nodes:
            if node.is_var() and node.var() is not None:
721
                tensor_id = self._node_id_to_tensor_id[_node_id(node)]
722
                updated = updated_tensors.get(tensor_id, False)
723 724 725 726 727 728 729
                # If a var has multiples var nodes in graph, only use the first one for now
                if not updated:
                    tensor_dist_attr_for_graph = self.get_tensor_dist_attr_for_graph(
                        node)
                    dist_tensor_for_program = self._dist_tensors_for_program[
                        tensor_id]
                    dist_tensor_for_program.dist_attr = tensor_dist_attr_for_graph
730
                    updated_tensors[tensor_id] = True
731
            if node.is_op() and node.op() is not None:
732
                op_id = self._node_id_to_op_id[_node_id(node)]
733 734 735
                op_dist_attr_for_graph = self.get_op_dist_attr_for_graph(node)
                dist_op_for_program = self._dist_ops_for_program[op_id]
                dist_op_for_program.dist_attr = op_dist_attr_for_graph
736
        # TODO: the completion algorithm will skipped orphan tensors,
737 738 739
        # here we just set there process_mesh to the first one.
        for orphan_node in self._serial_orphan_tensor_nodes:
            serial_tensor_id = orphan_node.var().id()
740 741
            dist_tensor = self._dist_tensors_for_program.get(
                serial_tensor_id, None)
742 743 744 745 746 747 748
            if dist_tensor:
                dist_tensor.dist_attr.process_mesh = self._process_meshes[0]
            else:
                serial_tensor_id = orphan_node.var().original_id()
                dist_tensor = self._dist_tensors_for_program.get(
                    serial_tensor_id, None)
                dist_tensor.dist_attr.process_mesh = self._process_meshes[0]
749 750 751 752 753

    def amend_dist_attr_for_program(self):
        for dist_tensor in self._dist_tensors_for_program.values():
            serial_tensor = dist_tensor.serial_tensor
            dist_attr = dist_tensor.dist_attr
754 755 756
            if serial_tensor.type == core.VarDesc.VarType.READER \
                or serial_tensor.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
                or serial_tensor.type == core.VarDesc.VarType.STEP_SCOPES:
757 758 759 760 761
                tensor_shape = []
            else:
                tensor_shape = serial_tensor.shape
            dims_mapping = dist_attr.dims_mapping
            process_mesh_shape = dist_attr.process_mesh.topology
762
            process_mesh_processes = dist_attr.process_mesh.processes
763 764 765 766 767 768
            # If the dimension of tensor is less than the sharding dimension of process mesh,
            # we just amend the dimension mapping to -1. (Is this really OK?)
            for i in range(len(tensor_shape)):
                if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
                    and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]:
                    dims_mapping[i] = -1
769 770
                if dims_mapping[i] != -1 and len(process_mesh_processes) == 1:
                    dims_mapping[i] = -1
771 772 773 774

        for dist_op in self._dist_ops_for_program.values():
            serial_op = dist_op.serial_op
            dist_attr = dist_op.dist_attr
775 776
            process_mesh_shape = dist_attr.process_mesh.topology
            process_mesh_processes = dist_attr.process_mesh.processes
777 778 779 780 781
            for arg_name in serial_op.input_arg_names:
                if dist_op.get_serial_input(arg_name) is None:
                    tensor_shape = []
                else:
                    if dist_op.get_serial_input(arg_name).type == core.VarDesc.VarType.READER \
782
                        or dist_op.get_serial_input(arg_name).type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
783 784 785 786 787 788 789 790 791 792 793
                        or dist_op.serial_op.type == "create_py_reader":
                        tensor_shape = []
                    else:
                        tensor_shape = dist_op.get_serial_input(arg_name).shape
                dims_mapping = dist_attr.get_input_dims_mapping(arg_name)
                # If the dimension of tensor is less than the sharding dimension of process mesh,
                # we just amend the dimension mapping to -1. (Is this really OK?)
                for i in range(len(tensor_shape)):
                    if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
                        and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]:
                        dims_mapping[i] = -1
794 795 796
                    if dims_mapping[i] != -1 and len(
                            process_mesh_processes) == 1:
                        dims_mapping[i] = -1
797
            for arg_name in serial_op.output_arg_names:
798 799 800
                if dist_op.get_serial_output(arg_name).type == core.VarDesc.VarType.READER \
                    or dist_op.get_serial_output(arg_name).type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
                    or dist_op.get_serial_output(arg_name).type == core.VarDesc.VarType.STEP_SCOPES:
801 802 803 804 805 806 807 808 809 810
                    tensor_shape = []
                else:
                    tensor_shape = dist_op.get_serial_output(arg_name).shape
                dims_mapping = dist_attr.get_output_dims_mapping(arg_name)
                # If the dimension of tensor is less than the sharding dimension of process mesh,
                # we just amend the dimension mapping to -1. (Is this really OK?)
                for i in range(len(tensor_shape)):
                    if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
                        and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]:
                        dims_mapping[i] = -1
811 812 813 814 815 816
                    if dims_mapping[i] != -1 and len(
                            process_mesh_processes) == 1:
                        dims_mapping[i] = -1
            if len(process_mesh_processes) == 1:
                dist_op.dist_attr.impl_type = "default"
                dist_op.dist_attr.impl_idx = 0
817 818

    def validate_dist_attr_for_program(self):
819
        if not self._is_initialized:
820 821
            assert False, \
                "Program must be initialized before validating its distributed attributes"
822
        for block in self.serial_main_program.blocks:
823 824
            for tensor in block.vars.values():
                dist_tensor = self.get_dist_tensor_for_program(tensor)
825 826 827
                assert dist_tensor is not None, \
                    "Tensor {} does not have a distributed attribute.".format(
                        dist_tensor.serial_tensor.name)
828 829
                if (dist_tensor
                        is not None) and (not dist_tensor.validate_dist_attr()):
830
                    assert False, "Tensor {} (id: {}, original_id: {}) has a wrong distributed attributes {}.".format(
831
                        dist_tensor.serial_tensor.name, dist_tensor.desc.id(),
832
                        dist_tensor.desc.original_id(), dist_tensor.dist_attr)
833 834
            for op in block.ops:
                dist_op = self.get_dist_op_for_program(op)
835 836 837
                assert dist_op is not None, \
                    "Operator {} does not have a distributed attribute.".format(
                        dist_op.serial_op.type)
838
                if (dist_op is not None) and (not dist_op.validate_dist_attr()):
839
                    assert False, "Operator {} (id: {}, original_id: {}) has a wrong distributed attributes {} .".format(
840
                        dist_op.serial_op.type, dist_op.serial_op.desc.id(),
841
                        dist_op.serial_op.desc.original_id(), dist_op.dist_attr)
842 843
        return True

Z
zhaoyingli 已提交
844 845 846 847 848
    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
849 850 851 852 853 854
            if k in [
                "_original_serial_main_program", "_original_serial_startup_program", \
                "_serial_main_program", "_serial_startup_program", "_serial_graph", \
                "_dist_main_programs", "_dist_startup_programs", \
                "_serial_ordered_nodes", "_serial_ordered_tensor_nodes", \
                "_serial_ordered_op_nodes"]:
Z
zhaoyingli 已提交
855 856 857
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
858 859 860 861

        # update dist tensor's dist_context
        for key in result._dist_tensors_for_program.keys():
            result._dist_tensors_for_program[key]._dist_context = result
Z
zhaoyingli 已提交
862 863
        return result

864 865 866 867 868 869 870 871 872

class DistributedOperatorContext:
    """
    DistributedOperatorContext is used to create a dist op desc in Program.
    Every time to create a new dist op, the context should be updated for it accordingly.
    """

    def __init__(self):
        self._dst_main_program = None
873
        self._main_block = None
874
        self._dst_startup_program = None
875
        self._startup_block = None
876 877
        self._cur_src_op = None
        self._cur_dist_attr = None
878
        self.grad_op_id_to_op_id = {}
879
        self.grad_var_to_var = defaultdict(dict)
880
        self._work_block = None
881
        self.already_init_sync_vars = set()
882 883
        self.varname_mapping = None
        self.rank_id = None
884

Z
zhaoyingli 已提交
885 886 887 888 889
    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
890 891 892 893
            if k in [
                    "_dst_main_program", "_dst_startup_program", "_cur_src_op",
                    "_work_block", "_main_block", "_startup_block"
            ]:
Z
zhaoyingli 已提交
894 895 896 897 898
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
        return result

899 900
    @property
    def dst_main_program(self):
901 902
        return self._dst_main_program

903 904 905 906
    @dst_main_program.setter
    def dst_main_program(self, prog):
        self._dst_main_program = prog
        self._main_block = prog.blocks[0]
907

908 909 910
    @property
    def main_block(self):
        return self._main_block
911

912 913 914
    @property
    def dst_startup_program(self):
        return self._dst_startup_program
915

916 917 918 919
    @dst_startup_program.setter
    def dst_startup_program(self, prog):
        self._dst_startup_program = prog
        self._startup_block = prog.blocks[0]
920

921 922 923
    @property
    def startup_block(self):
        return self._startup_block
924

925 926 927 928
    @property
    def work_block(self):
        assert self._work_block is not None
        return self._work_block
929

930 931 932 933
    @work_block.setter
    def work_block(self, block):
        assert block is not None
        self._work_block = block
934

935 936 937
    @property
    def cur_src_op(self):
        assert self._cur_src_op is not None
938 939
        return self._cur_src_op

940
    def prepare_context(self, src_op):
941

942
        self._cur_src_op = src_op
943 944 945 946 947 948

        # build input varname mapping
        kinputs = {}
        for input_name in src_op.desc.input_names():
            varnames = []
            for varname in src_op.desc.input(input_name):
949 950
                assert varname in self.varname_mapping
                varnames.append(self.varname_mapping[varname])
951 952 953 954 955 956 957
            kinputs[input_name] = varnames

        # build output varname mapping
        koutputs = {}
        for output_name in src_op.desc.output_names():
            varnames = []
            for varname in src_op.desc.output(output_name):
958 959
                assert varname in self.varname_mapping
                varnames.append(self.varname_mapping[varname])
960 961 962
            koutputs[output_name] = varnames

        return kinputs, koutputs
963 964 965


class BlockState(object):
966

967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
    def __init__(self):
        self.nblock = 0
        self.forward_indices = []
        self.backward_indices = []
        self.backward_to_forward_index_map = {}

    def parse_forward_blocks(self, program):

        while program.current_block_idx != 0:
            program._rollback()

        assert program.current_block_idx == 0

        for idx, block in enumerate(program.blocks):

            assert idx == block.idx, "index doesn't match"
            assert block.forward_block_idx == -1, "forward_block_idx of forward block [{}] is not [{}]".format(
                idx, block.forward_block_idx)
            self.forward_indices.append(idx)
            self.nblock += 1

        assert self.nblock >= 1

    def parse_backward_blocks(self, program):

        assert 0 in self.forward_indices, "forward block idx are{}".format(
            self.forward_indices)
        self.backward_to_forward_index_map[0] = 0

        for idx, block in enumerate(program.blocks):

            if idx < len(self.forward_indices):
                continue

            assert idx == block.idx, "index doesn't match"
            assert block.forward_block_idx in self.forward_indices
            self.backward_indices.append(idx)
            self.backward_to_forward_index_map[idx] = block.forward_block_idx
            self.nblock += 1

        assert self.nblock == len(program.blocks)