dist_context.py 29.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import copy
from collections import defaultdict
from paddle.fluid import framework
18
from paddle.fluid.framework import get_flags, set_flags
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
from paddle.fluid import core
from .dist_attribute import TensorDistributedAttribute
from .dist_attribute import OperatorDistributedAttribute
from .dist_tensor import DistributedTensor
from .dist_op import DistributedOperator
from .process_mesh import ProcessMesh

# There always exists a default context for user. And user can set it to another one.
_g_default_distributed_context = None


def get_default_distributed_context():
    global _g_default_distributed_context
    if _g_default_distributed_context is None:
        dist_context = DistributedContext()
        set_default_distributed_context(dist_context)
    return _g_default_distributed_context


def set_default_distributed_context(dist_context):
    global _g_default_distributed_context
    _g_default_distributed_context = dist_context


43 44 45 46
def _node_id(node):
    return (node.node.graph_id(), node.node.id())


47 48 49 50 51 52
class DistributedContext:
    """
    DistributedContext is used to collect related distributed information for program and graph.
    One auto-parallel run should use its own DistributedContext to avoid interfering other run.
    """

53 54 55 56 57
    def __init__(self,
                 serial_main_prog=None,
                 serial_startup_prog=None,
                 dist_main_progs=None,
                 dist_startup_progs=None):
58
        # Program related data members
59
        self._serial_program = serial_main_prog
60 61 62
        self._is_initialized_for_program = False
        self._dist_tensors_for_program = {}
        self._dist_ops_for_program = {}
63
        self._block_state = BlockState()
64 65 66
        # Graph related data members
        self._is_initialized_for_graph = False
        self._serial_graph = None
67 68
        self._dist_tensors_for_graph = {}
        self._dist_ops_for_graph = {}
69 70 71
        self._node_id_to_tensor_id = {}
        self._node_id_to_op_id = {}
        # Other data members
72 73
        self._dist_op_context = DistributedOperatorContext()
        self._process_meshes = []
74 75
        self._serial_ordered_nodes = []
        self._tensor_id_to_tensor_node_ids = {}
76

77
        # Distributed programs
78 79 80 81 82 83
        self._dist_main_programs = dist_main_progs
        if not self._dist_main_programs:
            self._dist_main_programs = {}
        self._dist_startup_programs = dist_startup_progs
        if not self._dist_startup_programs:
            self._dist_startup_programs = {}
84

85 86 87 88 89 90 91 92 93 94
    @property
    def serial_program(self):
        return self._serial_program

    @property
    def serial_graph(self):
        return self._serial_graph

    @serial_program.setter
    def serial_program(self, program):
95 96
        # assert self._serial_program is None, \
        #     "This distributed context has already been realted to a serial program"
97 98
        self._serial_program = program

99 100 101 102
    @property
    def serial_ordered_nodes(self):
        return self._serial_ordered_nodes

103 104 105 106 107 108 109 110
    @property
    def process_meshes(self):
        return self._process_meshes

    @property
    def dist_op_context(self):
        return self._dist_op_context

111 112 113 114
    @property
    def block_state(self):
        return self._block_state

115 116 117 118 119 120 121 122
    @property
    def dist_main_programs(self):
        return self._dist_main_programs

    @property
    def dist_startup_programs(self):
        return self._dist_startup_programs

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    def add_process_mesh(self, process_mesh):
        assert isinstance(process_mesh, ProcessMesh), \
            'The type of dim_mapping must be ProcessMesh.'
        if process_mesh not in self.process_meshes:
            self._process_meshes.append(process_mesh)

    def add_dist_tensor_for_program(self, dist_tensor):
        inner_serial_tensor = dist_tensor.serial_tensor
        inner_serial_tensor_id = inner_serial_tensor.desc.id()
        self._dist_tensors_for_program[inner_serial_tensor_id] = dist_tensor

    def add_dist_op_for_program(self, dist_op):
        inner_serial_op = dist_op.serial_op
        inner_serial_op_id = inner_serial_op.desc.id()
        self._dist_ops_for_program[inner_serial_op_id] = dist_op

    def get_dist_tensor_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
141 142 143 144 145 146 147 148 149 150 151
        dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id, None)
        if dist_tensor:
            return dist_tensor
        else:
            serial_tensor_id = serial_tensor.desc.original_id()
            dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id,
                                                             None)
            if dist_tensor:
                return dist_tensor
            else:
                return None
152 153

    def get_dist_tensor_for_graph(self, serial_tensor_node):
154
        serial_tensor_node_id = _node_id(serial_tensor_node)
155 156
        return self._dist_tensors_for_graph.get(serial_tensor_node_id, None)

157 158 159 160 161 162 163 164 165 166 167 168
    def get_dist_op_for_program(self, serial_op):
        serial_op_id = serial_op.desc.id()
        dist_op = self._dist_ops_for_program.get(serial_op_id, None)
        if dist_op:
            return dist_op
        else:
            serial_op_id = serial_op.desc.original_id()
            dist_op = self._dist_ops_for_program.get(serial_op_id, None)
            if dist_op:
                return dist_op
            else:
                return None
169

170 171 172 173 174
    def del_dist_op_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
        if self._dist_ops_for_program.get(serial_tensor_id, None):
            del self._dist_ops_for_program[serial_tensor_id]

175
    def get_dist_op_for_graph(self, serial_op_node):
176
        serial_op_node_id = _node_id(serial_op_node)
177
        return self._dist_ops_for_graph.get(serial_op_node_id, None)
178 179 180 181 182 183 184

    def get_tensor_dist_attr_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
        dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id, None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
185 186 187 188 189 190 191
            serial_tensor_id = serial_tensor.desc.original_id()
            dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id,
                                                             None)
            if dist_tensor:
                return dist_tensor.dist_attr
            else:
                return None
192

193 194 195 196 197 198 199
    def get_tensor_dist_attr_for_program_with_id(self, tensor_id):
        dist_tensor = self._dist_tensors_for_program.get(tensor_id, None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
            return None

200 201 202 203 204
    def set_tensor_dist_attr_for_program(self, serial_tensor, dist_attr):
        dist_tensor = DistributedTensor(serial_tensor, dist_attr)
        self.add_dist_tensor_for_program(dist_tensor)

    def get_tensor_dist_attr_for_graph(self, serial_tensor_node):
205
        serial_tensor_node_id = _node_id(serial_tensor_node)
206 207 208 209 210 211 212
        dist_tensor = self._dist_tensors_for_graph.get(serial_tensor_node_id,
                                                       None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
            return None

213 214 215 216 217 218 219 220 221 222 223 224
    # def set_tensor_dist_attr_for_graph(self, serial_tensor_node, dist_attr):
    #     assert serial_tensor_node.is_var() and \
    #         serial_tensor_node.var() is not None
    #     serial_tensor_id = serial_tensor_node.node.original_desc_id()
    #     dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id, None)
    #     assert dist_tensor is not None, \
    #         "The distributed tensor of the program has not been added to this context."
    #     serial_tensor_node_id = serial_tensor_node.id()
    #     new_dist_tensor = DistributedTensor(dist_tensor.serial_tensor,
    #                                         dist_attr)
    #     self._dist_tensors_for_graph[serial_tensor_node_id] = new_dist_tensor

225 226 227 228 229 230
    def get_op_dist_attr_for_program(self, serial_op):
        serial_op_id = serial_op.desc.id()
        dist_op = self._dist_ops_for_program.get(serial_op_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
231 232 233 234 235 236
            serial_op_id = serial_op.desc.original_id()
            dist_op = self._dist_ops_for_program.get(serial_op_id, None)
            if dist_op:
                return dist_op.dist_attr
            else:
                return None
237

238 239 240 241 242 243 244
    def get_op_dist_attr_for_program_with_id(self, op_id):
        dist_op = self._dist_ops_for_program.get(op_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
            return None

245 246 247 248 249
    def set_op_dist_attr_for_program(self, serial_op, dist_attr):
        dist_op = DistributedOperator(serial_op, dist_attr)
        self.add_dist_op_for_program(dist_op)

    def get_op_dist_attr_for_graph(self, serial_op_node):
250
        serial_op_node_id = _node_id(serial_op_node)
251 252 253 254 255 256
        dist_op = self._dist_ops_for_graph.get(serial_op_node_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
            return None

257 258 259 260 261 262 263 264 265 266 267
    # def set_op_dist_attr_for_graph(self, serial_op_node, dist_attr):
    #     assert serial_op_node.is_op() and \
    #         serial_op_node.op() is not None
    #     serial_op_id = serial_op_node.node.original_desc_id()
    #     dist_op = self._dist_ops_for_program.get(serial_op_id, None)
    #     assert dist_op is not None, \
    #         "The distributed operator of the program has not been added to this context."
    #     serial_op_node_id = serial_op_node.id()
    #     new_dist_op = DistributedOperator(dist_op.serial_op, dist_attr)
    #     self._dist_ops_for_graph[serial_op_node_id] = new_dist_op

268 269
    def get_dist_attr_for_graph(self, serial_node):
        if serial_node.is_var() and serial_node.var() is not None:
270
            serial_tensor_node_id = _node_id(serial_node)
271 272 273 274 275 276 277
            dist_tensor = self._dist_tensors_for_graph.get(
                serial_tensor_node_id, None)
            if dist_tensor:
                return dist_tensor.dist_attr
            else:
                return None
        if serial_node.is_op() and serial_node.op() is not None:
278
            serial_op_node_id = _node_id(serial_node)
279 280 281 282 283 284
            dist_op = self._dist_ops_for_graph.get(serial_op_node_id, None)
            if dist_op:
                return dist_op.dist_attr
            else:
                return None
        return None
285

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
    def init_dist_attr_for_program(self):
        assert self._serial_program, \
            "Please set the program of this context before initializing its distribute attributes."
        if self._is_initialized_for_program:
            return
        # Copy the dist tensors and dist ops annotated by users from the default context
        default_ctx = get_default_distributed_context()
        self._process_meshes = copy.deepcopy(default_ctx.process_meshes)
        for block in self._serial_program.blocks:
            for tensor in block.vars.values():
                # Copy the distributed tensors in the default context
                default_dist_tensor = default_ctx.get_dist_tensor_for_program(
                    tensor)
                if default_dist_tensor and default_ctx is not self:
                    self.add_dist_tensor_for_program(default_dist_tensor)
                current_dist_tensor = self.get_dist_tensor_for_program(tensor)
                if current_dist_tensor is None:
                    dist_tensor = DistributedTensor(tensor)
                    self.add_dist_tensor_for_program(dist_tensor)
            for op in block.ops:
                # Copy the distributed operators in the default context
                default_dist_op = default_ctx.get_dist_op_for_program(op)
                if default_dist_op and default_ctx is not self:
                    self.add_dist_op_for_program(default_dist_op)
                current_dist_op = self.get_dist_op_for_program(op)
                if current_dist_op is None:
                    dist_op = DistributedOperator(op)
                    self.add_dist_op_for_program(dist_op)
        self._is_initialized_for_program = True

316 317 318
    def order_nodes_by_program_order(self):
        def _contains(nodes, target_node):
            for node in nodes:
319
                if _node_id(node) == _node_id(target_node):
320 321 322
                    return True
            return False

323 324 325 326 327 328 329
        serial_ordered_tensor_nodes = []
        serial_ordered_op_nodes = []
        all_nodes = []
        # for idx, graph in enumerate(self._serial_graph.all_sub_graphs()):
        for idx, graph in enumerate(self._serial_graph.all_sub_graphs()):
            for node in graph.all_nodes():
                all_nodes.append(node)
330 331
        for node in all_nodes:
            if node.is_var() and node.var() is not None:
332
                serial_ordered_tensor_nodes.append(node)
333
            if node.is_op() and node.op() is not None:
334 335 336 337 338 339 340 341 342 343 344
                serial_ordered_op_nodes.append(node)
        serial_ordered_tensor_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        serial_ordered_op_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        num_nodes_before = len(serial_ordered_tensor_nodes) + len(
            serial_ordered_op_nodes)

        new_serial_ordered_tensor_nodes = []
        new_serial_ordered_op_nodes = []
        for op_node in serial_ordered_op_nodes:
345 346 347 348 349 350
            tensor_nodes = []
            for tensor_node in op_node.inputs:
                if tensor_node.is_var() \
                    and tensor_node.var() is not None \
                    and not _contains(self._serial_ordered_nodes, tensor_node):
                    tensor_nodes.append(tensor_node)
351
                    new_serial_ordered_tensor_nodes.append(tensor_node)
352 353 354
            tensor_nodes.sort(key=lambda node: node.node.original_desc_id())
            self._serial_ordered_nodes.extend(tensor_nodes)
            self._serial_ordered_nodes.append(op_node)
355
            new_serial_ordered_op_nodes.append(op_node)
356 357 358 359 360 361
            tensor_nodes = []
            for tensor_node in op_node.outputs:
                if tensor_node.is_var() \
                    and tensor_node.var() is not None \
                    and not _contains(self._serial_ordered_nodes, tensor_node):
                    tensor_nodes.append(tensor_node)
362 363
                    new_serial_ordered_tensor_nodes.append(tensor_node)
            tensor_nodes.sort(key=lambda node: node.node.original_desc_id())
364
            self._serial_ordered_nodes.extend(tensor_nodes)
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
        new_serial_ordered_tensor_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        new_serial_ordered_op_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        self._serial_ordered_tensor_nodes = new_serial_ordered_tensor_nodes
        self._serial_ordered_op_nodes = new_serial_ordered_op_nodes
        assert len(self._serial_ordered_nodes) == len(
            self._serial_ordered_tensor_nodes) + len(
                self._serial_ordered_op_nodes)
        self._serial_orphan_tensor_nodes = []
        for tensor_node in serial_ordered_tensor_nodes:
            if not _contains(self._serial_ordered_tensor_nodes, tensor_node):
                self._serial_orphan_tensor_nodes.append(tensor_node)
        if len(self._serial_ordered_nodes) != num_nodes_before:
            print(
                "WARNING: there are some orphan tensors or ops which are not used in the execution."
            )
382

383 384 385 386 387 388
    def init_dist_attr_for_graph(self):
        assert self._is_initialized_for_program, \
            "The program must be initialized before initializing the distributed attributes for its graph."
        if self._is_initialized_for_graph:
            return
        # Convert program to graph
389
        set_flags({"FLAGS_convert_all_blocks": True})
390 391
        self._serial_graph = framework.IrGraph(
            core.Graph(self._serial_program.desc))
392 393
        self.order_nodes_by_program_order()
        for node in self.serial_ordered_nodes:
394
            if node.is_var() and node.var() is not None:
395 396 397 398 399 400 401
                dist_tensor = None
                tensor_id = node.node.original_desc_id()
                for cur_tensor_id, cur_dist_tensor in self._dist_tensors_for_program.items(
                ):
                    if tensor_id == cur_tensor_id \
                        or tensor_id == cur_dist_tensor.serial_tensor.desc.original_id():
                        dist_tensor = cur_dist_tensor
402 403
                        self._node_id_to_tensor_id[_node_id(
                            node)] = cur_tensor_id
404 405
                assert dist_tensor is not None, \
                    "Tensor must have a distributed tensor after the initialization for program."
406
                serial_tensor_node_id = _node_id(node)
407 408 409 410
                new_dist_tensor = DistributedTensor(dist_tensor.serial_tensor,
                                                    dist_tensor.dist_attr)
                self._dist_tensors_for_graph[
                    serial_tensor_node_id] = new_dist_tensor
411
            if node.is_op() and node.op() is not None:
412 413 414 415 416 417 418
                dist_op = None
                op_id = node.node.original_desc_id()
                for cur_op_id, cur_dist_op in self._dist_ops_for_program.items(
                ):
                    if op_id == cur_op_id \
                        or op_id == cur_dist_op.serial_op.desc.original_id():
                        dist_op = cur_dist_op
419
                        self._node_id_to_op_id[_node_id(node)] = cur_op_id
420 421
                assert dist_op is not None, \
                    "Operator must have a distributed operator after the initialization for program."
422
                serial_op_node_id = _node_id(node)
423 424 425
                new_dist_op = DistributedOperator(dist_op.serial_op,
                                                  dist_op.dist_attr)
                self._dist_ops_for_graph[serial_op_node_id] = new_dist_op
426 427 428 429 430 431 432 433 434 435 436 437 438 439
        self._is_initialized_for_graph = True

    def clear_dist_info_for_program(self):
        self._dist_tensors_for_program.clear()
        self._dist_ops_for_program.clear()

    def clear_dist_info_for_graph(self):
        self._dist_tensors_for_graph.clear()
        self._dist_ops_for_graph.clear()

    def copy_dist_attr_from_graph_to_program(self):
        assert self._is_initialized_for_program and self._is_initialized_for_graph, \
            "Both program and graph must be initialized."
        updated_tensors = {}
440 441
        # all_nodes = self._serial_graph.all_nodes()
        all_nodes = self._serial_ordered_nodes
442 443
        for node in all_nodes:
            if node.is_var() and node.var() is not None:
444
                tensor_id = self._node_id_to_tensor_id[_node_id(node)]
445
                updated = updated_tensors.get(tensor_id, False)
446 447 448 449 450 451 452
                # If a var has multiples var nodes in graph, only use the first one for now
                if not updated:
                    tensor_dist_attr_for_graph = self.get_tensor_dist_attr_for_graph(
                        node)
                    dist_tensor_for_program = self._dist_tensors_for_program[
                        tensor_id]
                    dist_tensor_for_program.dist_attr = tensor_dist_attr_for_graph
453
                    updated_tensors[tensor_id] = True
454
            if node.is_op() and node.op() is not None:
455
                op_id = self._node_id_to_op_id[_node_id(node)]
456 457 458
                op_dist_attr_for_graph = self.get_op_dist_attr_for_graph(node)
                dist_op_for_program = self._dist_ops_for_program[op_id]
                dist_op_for_program.dist_attr = op_dist_attr_for_graph
459 460 461 462 463 464 465 466 467 468 469 470 471
        # TODO: the completion algorithm will skip orphan tensors, 
        # here we just set there process_mesh to the first one.
        for orphan_node in self._serial_orphan_tensor_nodes:
            serial_tensor_id = orphan_node.var().id()
            dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id,
                                                             None)
            if dist_tensor:
                dist_tensor.dist_attr.process_mesh = self._process_meshes[0]
            else:
                serial_tensor_id = orphan_node.var().original_id()
                dist_tensor = self._dist_tensors_for_program.get(
                    serial_tensor_id, None)
                dist_tensor.dist_attr.process_mesh = self._process_meshes[0]
472 473 474 475 476

    def amend_dist_attr_for_program(self):
        for dist_tensor in self._dist_tensors_for_program.values():
            serial_tensor = dist_tensor.serial_tensor
            dist_attr = dist_tensor.dist_attr
477 478 479
            if serial_tensor.type == core.VarDesc.VarType.READER \
                or serial_tensor.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
                or serial_tensor.type == core.VarDesc.VarType.STEP_SCOPES:
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
                tensor_shape = []
            else:
                tensor_shape = serial_tensor.shape
            dims_mapping = dist_attr.dims_mapping
            process_mesh_shape = dist_attr.process_mesh.topology
            # If the dimension of tensor is less than the sharding dimension of process mesh,
            # we just amend the dimension mapping to -1. (Is this really OK?)
            for i in range(len(tensor_shape)):
                if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
                    and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]:
                    dims_mapping[i] = -1

        for dist_op in self._dist_ops_for_program.values():
            serial_op = dist_op.serial_op
            dist_attr = dist_op.dist_attr
            for arg_name in serial_op.input_arg_names:
                if dist_op.get_serial_input(arg_name) is None:
                    tensor_shape = []
                else:
                    if dist_op.get_serial_input(arg_name).type == core.VarDesc.VarType.READER \
500
                        or dist_op.get_serial_input(arg_name).type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
501 502 503 504 505 506 507 508 509 510 511 512 513
                        or dist_op.serial_op.type == "create_py_reader":
                        tensor_shape = []
                    else:
                        tensor_shape = dist_op.get_serial_input(arg_name).shape
                dims_mapping = dist_attr.get_input_dims_mapping(arg_name)
                process_mesh_shape = dist_attr.process_mesh.topology
                # If the dimension of tensor is less than the sharding dimension of process mesh,
                # we just amend the dimension mapping to -1. (Is this really OK?)
                for i in range(len(tensor_shape)):
                    if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
                        and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]:
                        dims_mapping[i] = -1
            for arg_name in serial_op.output_arg_names:
514 515 516
                if dist_op.get_serial_output(arg_name).type == core.VarDesc.VarType.READER \
                    or dist_op.get_serial_output(arg_name).type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
                    or dist_op.get_serial_output(arg_name).type == core.VarDesc.VarType.STEP_SCOPES:
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
                    tensor_shape = []
                else:
                    tensor_shape = dist_op.get_serial_output(arg_name).shape
                dims_mapping = dist_attr.get_output_dims_mapping(arg_name)
                process_mesh_shape = dist_attr.process_mesh.topology
                # If the dimension of tensor is less than the sharding dimension of process mesh,
                # we just amend the dimension mapping to -1. (Is this really OK?)
                for i in range(len(tensor_shape)):
                    if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
                        and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]:
                        dims_mapping[i] = -1

    def validate_dist_attr_for_program(self):
        if not self._is_initialized_for_program:
            assert False, \
                "Program must be initialized before validating its distributed attributes"
        for block in self.serial_program.blocks:
            for tensor in block.vars.values():
                dist_tensor = self.get_dist_tensor_for_program(tensor)
                if (dist_tensor is not None) and (
                        not dist_tensor.validate_dist_attr()):
                    assert False, "Tensor {} has a wrong distributed attributes {}.".format(
                        dist_tensor.serial_tensor.name, dist_tensor.dist_attr)
            for op in block.ops:
                dist_op = self.get_dist_op_for_program(op)
                if (dist_op is not None) and (not dist_op.validate_dist_attr()):
                    assert False, "Operator {} has a wrong distributed attributes {}.".format(
                        dist_op.serial_op.type, dist_tensor.dist_attr)
        return True

Z
zhaoyingli 已提交
547 548 549 550 551
    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
552 553
            if k == "_serial_program" or k == "_serial_graph" \
                or k == "_dist_main_programs" or k == "_dist_startup_programs" \
554 555
                or k == "_serial_ordered_nodes" or k == "_serial_ordered_tensor_nodes" \
                or k == "_serial_ordered_op_nodes":
Z
zhaoyingli 已提交
556 557 558
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
559 560 561 562

        # update dist tensor's dist_context
        for key in result._dist_tensors_for_program.keys():
            result._dist_tensors_for_program[key]._dist_context = result
Z
zhaoyingli 已提交
563 564
        return result

565 566 567 568 569 570 571 572 573

class DistributedOperatorContext:
    """
    DistributedOperatorContext is used to create a dist op desc in Program.
    Every time to create a new dist op, the context should be updated for it accordingly.
    """

    def __init__(self):
        self._dst_main_program = None
574
        self._main_block = None
575
        self._dst_startup_program = None
576
        self._startup_block = None
577 578
        self._cur_src_op = None
        self._cur_dist_attr = None
579
        self.grad_op_id_to_op_id = {}
580
        self._work_block = None
581
        self.already_init_sync_vars = set()
582 583
        self.varname_mapping = None
        self.rank_id = None
584

Z
zhaoyingli 已提交
585 586 587 588 589
    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
590 591 592 593
            if k in [
                    "_dst_main_program", "_dst_startup_program", "_cur_src_op",
                    "_work_block", "_main_block", "_startup_block"
            ]:
Z
zhaoyingli 已提交
594 595 596 597 598
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
        return result

599 600
    @property
    def dst_main_program(self):
601 602
        return self._dst_main_program

603 604 605 606
    @dst_main_program.setter
    def dst_main_program(self, prog):
        self._dst_main_program = prog
        self._main_block = prog.blocks[0]
607

608 609 610
    @property
    def main_block(self):
        return self._main_block
611

612 613 614
    @property
    def dst_startup_program(self):
        return self._dst_startup_program
615

616 617 618 619
    @dst_startup_program.setter
    def dst_startup_program(self, prog):
        self._dst_startup_program = prog
        self._startup_block = prog.blocks[0]
620

621 622 623
    @property
    def startup_block(self):
        return self._startup_block
624

625 626 627 628
    @property
    def work_block(self):
        assert self._work_block is not None
        return self._work_block
629

630 631 632 633
    @work_block.setter
    def work_block(self, block):
        assert block is not None
        self._work_block = block
634

635 636 637
    @property
    def cur_src_op(self):
        assert self._cur_src_op is not None
638 639
        return self._cur_src_op

640
    def prepare_context(self, src_op):
641

642
        self._cur_src_op = src_op
643 644 645 646 647 648

        # build input varname mapping
        kinputs = {}
        for input_name in src_op.desc.input_names():
            varnames = []
            for varname in src_op.desc.input(input_name):
649 650
                assert varname in self.varname_mapping
                varnames.append(self.varname_mapping[varname])
651 652 653 654 655 656 657
            kinputs[input_name] = varnames

        # build output varname mapping
        koutputs = {}
        for output_name in src_op.desc.output_names():
            varnames = []
            for varname in src_op.desc.output(output_name):
658 659
                assert varname in self.varname_mapping
                varnames.append(self.varname_mapping[varname])
660 661 662
            koutputs[output_name] = varnames

        return kinputs, koutputs
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706


class BlockState(object):
    def __init__(self):
        self.nblock = 0
        self.forward_indices = []
        self.backward_indices = []
        self.backward_to_forward_index_map = {}

    def parse_forward_blocks(self, program):

        while program.current_block_idx != 0:
            program._rollback()

        assert program.current_block_idx == 0

        for idx, block in enumerate(program.blocks):

            assert idx == block.idx, "index doesn't match"
            assert block.forward_block_idx == -1, "forward_block_idx of forward block [{}] is not [{}]".format(
                idx, block.forward_block_idx)
            self.forward_indices.append(idx)
            self.nblock += 1

        assert self.nblock >= 1

    def parse_backward_blocks(self, program):

        assert 0 in self.forward_indices, "forward block idx are{}".format(
            self.forward_indices)
        self.backward_to_forward_index_map[0] = 0

        for idx, block in enumerate(program.blocks):

            if idx < len(self.forward_indices):
                continue

            assert idx == block.idx, "index doesn't match"
            assert block.forward_block_idx in self.forward_indices
            self.backward_indices.append(idx)
            self.backward_to_forward_index_map[idx] = block.forward_block_idx
            self.nblock += 1

        assert self.nblock == len(program.blocks)