dist_context.py 34.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import copy
from collections import defaultdict
17
import paddle.fluid
18
from paddle.fluid import framework
19
from paddle.fluid.framework import get_flags, set_flags
20
from paddle.fluid import core
21
from paddle.distributed.passes import PassContext
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
from .dist_attribute import TensorDistributedAttribute
from .dist_attribute import OperatorDistributedAttribute
from .dist_tensor import DistributedTensor
from .dist_op import DistributedOperator
from .process_mesh import ProcessMesh

# There always exists a default context for user. And user can set it to another one.
_g_default_distributed_context = None


def get_default_distributed_context():
    global _g_default_distributed_context
    if _g_default_distributed_context is None:
        dist_context = DistributedContext()
        set_default_distributed_context(dist_context)
    return _g_default_distributed_context


def set_default_distributed_context(dist_context):
    global _g_default_distributed_context
    _g_default_distributed_context = dist_context


45 46 47 48
def _node_id(node):
    return (node.node.graph_id(), node.node.id())


49 50 51 52 53 54
class DistributedContext:
    """
    DistributedContext is used to collect related distributed information for program and graph.
    One auto-parallel run should use its own DistributedContext to avoid interfering other run.
    """

55 56 57
    def __init__(self,
                 serial_main_prog=None,
                 serial_startup_prog=None,
58
                 serial_optimizer=None,
59 60 61
                 serial_loss=None,
                 feed_vars=None,
                 fetch_vars=None,
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
                 strategy=None):
        # Data members related to original programs (unchanged)
        self._original_serial_main_program = serial_main_prog
        self._original_serial_startup_program = serial_startup_prog
        self._original_serial_loss = serial_loss
        self._original_serial_optimizer = serial_optimizer
        if self._original_serial_main_program is None:
            self._original_serial_main_program = paddle.fluid.default_main_program(
            )
        if self._original_serial_startup_program is None:
            self._original_serial_startup_program = paddle.fluid.default_startup_program(
            )

        # Data members related to programs (changed)
        self._serial_main_program = None
        self._serial_startup_program = None
78 79 80 81
        self._serial_loss = serial_loss
        self._serial_optimizer = serial_optimizer
        self._serial_feed_vars = feed_vars
        self._serial_fetch_vars = fetch_vars
82 83

        # Data members related to the program
84 85
        self._dist_tensors_for_program = {}
        self._dist_ops_for_program = {}
86
        self._block_state = BlockState()
87 88

        # Data members related to the graph
89
        self._serial_graph = None
90 91
        self._dist_tensors_for_graph = {}
        self._dist_ops_for_graph = {}
92 93
        self._node_id_to_tensor_id = {}
        self._node_id_to_op_id = {}
94

95
        # Data members related to the distributed programs
96
        # Distributed programs
97 98
        self._dist_main_programs = {}
        self._dist_startup_programs = {}
99

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
        # Distributed Strategy
        self._strategy = strategy

        # Pass Context
        self._pass_context = PassContext()

        # Distributed Operator Context
        self._dist_op_context = DistributedOperatorContext()

        # Other data members
        self._process_meshes = []
        self._serial_ordered_tensor_nodes = []
        self._serial_ordered_op_nodes = []
        self._serial_ordered_nodes = []
        # self._tensor_id_to_tensor_node_ids = {}

        self._is_initialized = False

118 119 120
        # flag whether scale gradient with dp size
        self._gradient_scale = True

121
    @property
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    def serial_main_program(self):
        return self._serial_main_program

    @serial_main_program.setter
    def serial_main_program(self, program):
        # if self._serial_main_program:
        #     print("WARNING: The program attached to this distributed context will be replaced by the new one.")
        self._original_serial_main_program = program
        self._serial_main_program = program

    @property
    def serial_startup_program(self):
        return self._serial_startup_program

    @property
    def serial_loss(self):
        return self._serial_loss

    @property
    def serial_optimizer(self):
        return self._serial_optimizer

144 145 146 147 148 149 150
    @property
    def serial_feed_vars(self):
        return self._serial_feed_vars

    @property
    def serial_fetch_vars(self):
        return self._serial_fetch_vars
151 152 153 154 155

    @property
    def strategy(self):
        return self._strategy

156 157 158 159
    @property
    def serial_graph(self):
        return self._serial_graph

160 161 162 163
    @property
    def serial_ordered_nodes(self):
        return self._serial_ordered_nodes

164 165 166 167
    @property
    def process_meshes(self):
        return self._process_meshes

168 169 170 171
    @property
    def pass_context(self):
        return self._pass_context

172 173 174 175
    @property
    def dist_op_context(self):
        return self._dist_op_context

176 177 178 179
    @property
    def block_state(self):
        return self._block_state

180 181 182 183 184 185 186 187
    @property
    def dist_main_programs(self):
        return self._dist_main_programs

    @property
    def dist_startup_programs(self):
        return self._dist_startup_programs

188
    @property
189
    def has_annotation(self):
190 191 192
        return len(self._dist_tensors_for_program) or len(
            self._dist_ops_for_program)

193 194 195 196 197 198 199 200
    @property
    def gradient_scale(self):
        return self._gradient_scale

    @gradient_scale.setter
    def gradient_scale(self, gs):
        self._gradient_scale = gs

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
    def initialize(self):
        if not self._is_initialized:
            self._serial_main_program = self._original_serial_main_program.clone(
            )
            self._serial_startup_program = self._original_serial_startup_program.clone(
            )
            self._serial_main_program = self._original_serial_main_program
            self._serial_startup_program = self._original_serial_startup_program
            self._serial_loss = self._original_serial_loss
            self._serial_optimizer = self._original_serial_optimizer
            self._init_dist_attr_for_program()
            self._tensors_ids = list(self._dist_tensors_for_program.keys())
            self._ops_ids = list(self._dist_ops_for_program.keys())
            set_flags({"FLAGS_convert_all_blocks": True})
            self._serial_graph = framework.IrGraph(
                core.Graph(self._serial_main_program.desc))
            self._init_dist_attr_for_graph()
            self._is_initialized = True

    # def reset(self,
    #           skip_dist_tensors=None,
    #           skip_dist_ops=None,
    #           skip_tensor_dist_attr_fields=None,
    #           skip_op_dist_attr_fields=None):
    #     self._serial_main_program = self._original_serial_main_program.clone()
    #     self._serial_startup_program = self._original_serial_startup_program.clone()
    #     new_tensors_ids = []
    #     for tensor_id, dist_tensor in self._dist_tensors_for_program.items():
    #         if tensor_id in self._tensors_ids:
    #             dist_tensor.dist_attr.reset(skip_tensor_dist_attr_fields)
    #         else:
    #             new_tensors_ids.append(tensor_id)
    #     for tensor_id in new_tensors_ids:
    #         self._dist_tensors_for_program.pop(tensor_id)
    #     new_ops_ids = []
    #     for op_id, dist_op in self._dist_ops_for_program.items():
    #         if op_id in self._ops_ids:
    #             dist_op.dist_attr.reset(skip_op_dist_attr_fields)
    #         else:
    #             new_ops_ids.append(op_id)
    #     for op_id in new_ops_ids:
    #         self._dist_ops_for_program.pop(op_id)

    #     self.copy_dist_attr_from_program_to_graph()

    #     self._dist_main_programs = {}
    #     self._dist_startup_programs = {}

    #     self._pass_context = PassContext()

    #     self._dist_op_context = DistributedOperatorContext()

    #     self._process_meshes = []

255 256 257 258 259 260 261 262
    def add_process_mesh(self, process_mesh):
        assert isinstance(process_mesh, ProcessMesh), \
            'The type of dim_mapping must be ProcessMesh.'
        if process_mesh not in self.process_meshes:
            self._process_meshes.append(process_mesh)

    def add_dist_tensor_for_program(self, dist_tensor):
        inner_serial_tensor = dist_tensor.serial_tensor
263
        inner_serial_tensor_id = inner_serial_tensor.desc.original_id()
264 265 266 267
        self._dist_tensors_for_program[inner_serial_tensor_id] = dist_tensor

    def add_dist_op_for_program(self, dist_op):
        inner_serial_op = dist_op.serial_op
268
        inner_serial_op_id = inner_serial_op.desc.original_id()
269 270 271 272
        self._dist_ops_for_program[inner_serial_op_id] = dist_op

    def get_dist_tensor_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
273 274 275 276 277 278 279 280 281 282 283
        dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id, None)
        if dist_tensor:
            return dist_tensor
        else:
            serial_tensor_id = serial_tensor.desc.original_id()
            dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id,
                                                             None)
            if dist_tensor:
                return dist_tensor
            else:
                return None
284 285

    def get_dist_tensor_for_graph(self, serial_tensor_node):
286
        serial_tensor_node_id = _node_id(serial_tensor_node)
287 288
        return self._dist_tensors_for_graph.get(serial_tensor_node_id, None)

289 290 291 292 293 294 295 296 297 298 299 300
    def get_dist_op_for_program(self, serial_op):
        serial_op_id = serial_op.desc.id()
        dist_op = self._dist_ops_for_program.get(serial_op_id, None)
        if dist_op:
            return dist_op
        else:
            serial_op_id = serial_op.desc.original_id()
            dist_op = self._dist_ops_for_program.get(serial_op_id, None)
            if dist_op:
                return dist_op
            else:
                return None
301

302 303 304 305 306
    def del_dist_op_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
        if self._dist_ops_for_program.get(serial_tensor_id, None):
            del self._dist_ops_for_program[serial_tensor_id]

307
    def get_dist_op_for_graph(self, serial_op_node):
308
        serial_op_node_id = _node_id(serial_op_node)
309
        return self._dist_ops_for_graph.get(serial_op_node_id, None)
310 311 312 313 314 315 316

    def get_tensor_dist_attr_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
        dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id, None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
317 318 319 320 321 322 323
            serial_tensor_id = serial_tensor.desc.original_id()
            dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id,
                                                             None)
            if dist_tensor:
                return dist_tensor.dist_attr
            else:
                return None
324

325 326 327 328 329 330 331
    def get_tensor_dist_attr_for_program_with_id(self, tensor_id):
        dist_tensor = self._dist_tensors_for_program.get(tensor_id, None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
            return None

332 333 334 335 336
    def set_tensor_dist_attr_for_program(self, serial_tensor, dist_attr):
        dist_tensor = DistributedTensor(serial_tensor, dist_attr)
        self.add_dist_tensor_for_program(dist_tensor)

    def get_tensor_dist_attr_for_graph(self, serial_tensor_node):
337
        serial_tensor_node_id = _node_id(serial_tensor_node)
338 339 340 341 342 343 344 345 346 347 348 349 350
        dist_tensor = self._dist_tensors_for_graph.get(serial_tensor_node_id,
                                                       None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
            return None

    def get_op_dist_attr_for_program(self, serial_op):
        serial_op_id = serial_op.desc.id()
        dist_op = self._dist_ops_for_program.get(serial_op_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
351 352 353 354 355 356
            serial_op_id = serial_op.desc.original_id()
            dist_op = self._dist_ops_for_program.get(serial_op_id, None)
            if dist_op:
                return dist_op.dist_attr
            else:
                return None
357

358 359 360 361 362 363 364
    def get_op_dist_attr_for_program_with_id(self, op_id):
        dist_op = self._dist_ops_for_program.get(op_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
            return None

365 366 367 368 369
    def set_op_dist_attr_for_program(self, serial_op, dist_attr):
        dist_op = DistributedOperator(serial_op, dist_attr)
        self.add_dist_op_for_program(dist_op)

    def get_op_dist_attr_for_graph(self, serial_op_node):
370
        serial_op_node_id = _node_id(serial_op_node)
371 372 373 374 375 376
        dist_op = self._dist_ops_for_graph.get(serial_op_node_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
            return None

377 378
    def get_dist_attr_for_graph(self, serial_node):
        if serial_node.is_var() and serial_node.var() is not None:
379
            serial_tensor_node_id = _node_id(serial_node)
380 381 382 383 384 385 386
            dist_tensor = self._dist_tensors_for_graph.get(
                serial_tensor_node_id, None)
            if dist_tensor:
                return dist_tensor.dist_attr
            else:
                return None
        if serial_node.is_op() and serial_node.op() is not None:
387
            serial_op_node_id = _node_id(serial_node)
388 389 390 391 392 393
            dist_op = self._dist_ops_for_graph.get(serial_op_node_id, None)
            if dist_op:
                return dist_op.dist_attr
            else:
                return None
        return None
394

395
    def _init_dist_attr_for_program(self, no_default=False):
396
        # Copy the dist tensors and dist ops annotated by users from the default context
397 398 399 400 401 402
        if not no_default:
            default_ctx = get_default_distributed_context()
            self._process_meshes = copy.deepcopy(default_ctx.process_meshes)
        else:
            default_ctx = self
        for block in self._serial_main_program.blocks:
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
            for tensor in block.vars.values():
                # Copy the distributed tensors in the default context
                default_dist_tensor = default_ctx.get_dist_tensor_for_program(
                    tensor)
                if default_dist_tensor and default_ctx is not self:
                    self.add_dist_tensor_for_program(default_dist_tensor)
                current_dist_tensor = self.get_dist_tensor_for_program(tensor)
                if current_dist_tensor is None:
                    dist_tensor = DistributedTensor(tensor)
                    self.add_dist_tensor_for_program(dist_tensor)
            for op in block.ops:
                # Copy the distributed operators in the default context
                default_dist_op = default_ctx.get_dist_op_for_program(op)
                if default_dist_op and default_ctx is not self:
                    self.add_dist_op_for_program(default_dist_op)
                current_dist_op = self.get_dist_op_for_program(op)
                if current_dist_op is None:
                    dist_op = DistributedOperator(op)
                    self.add_dist_op_for_program(dist_op)

423
    def _order_nodes_by_program_order(self):
424 425
        def _contains(nodes, target_node):
            for node in nodes:
426
                if _node_id(node) == _node_id(target_node):
427 428 429
                    return True
            return False

430 431 432 433 434 435
        serial_ordered_tensor_nodes = []
        serial_ordered_op_nodes = []
        all_nodes = []
        for idx, graph in enumerate(self._serial_graph.all_sub_graphs()):
            for node in graph.all_nodes():
                all_nodes.append(node)
436 437
        for node in all_nodes:
            if node.is_var() and node.var() is not None:
438
                serial_ordered_tensor_nodes.append(node)
439
            if node.is_op() and node.op() is not None:
440 441 442 443 444 445 446 447 448 449
                serial_ordered_op_nodes.append(node)
        serial_ordered_tensor_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        serial_ordered_op_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        num_nodes_before = len(serial_ordered_tensor_nodes) + len(
            serial_ordered_op_nodes)

        new_serial_ordered_tensor_nodes = []
        new_serial_ordered_op_nodes = []
450
        new_serial_ordered_nodes = []
451
        for op_node in serial_ordered_op_nodes:
452 453 454 455
            tensor_nodes = []
            for tensor_node in op_node.inputs:
                if tensor_node.is_var() \
                    and tensor_node.var() is not None \
456
                    and not _contains(new_serial_ordered_nodes, tensor_node):
457
                    tensor_nodes.append(tensor_node)
458
                    new_serial_ordered_tensor_nodes.append(tensor_node)
459
            tensor_nodes.sort(key=lambda node: node.node.original_desc_id())
460 461
            new_serial_ordered_nodes.extend(tensor_nodes)
            new_serial_ordered_nodes.append(op_node)
462
            new_serial_ordered_op_nodes.append(op_node)
463 464 465 466
            tensor_nodes = []
            for tensor_node in op_node.outputs:
                if tensor_node.is_var() \
                    and tensor_node.var() is not None \
467
                    and not _contains(new_serial_ordered_nodes, tensor_node):
468
                    tensor_nodes.append(tensor_node)
469 470
                    new_serial_ordered_tensor_nodes.append(tensor_node)
            tensor_nodes.sort(key=lambda node: node.node.original_desc_id())
471
            new_serial_ordered_nodes.extend(tensor_nodes)
472 473 474 475 476 477
        new_serial_ordered_tensor_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        new_serial_ordered_op_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        self._serial_ordered_tensor_nodes = new_serial_ordered_tensor_nodes
        self._serial_ordered_op_nodes = new_serial_ordered_op_nodes
478
        self._serial_ordered_nodes = new_serial_ordered_nodes
479 480 481 482 483 484 485 486 487 488 489
        assert len(self._serial_ordered_nodes) == len(
            self._serial_ordered_tensor_nodes) + len(
                self._serial_ordered_op_nodes)
        self._serial_orphan_tensor_nodes = []
        for tensor_node in serial_ordered_tensor_nodes:
            if not _contains(self._serial_ordered_tensor_nodes, tensor_node):
                self._serial_orphan_tensor_nodes.append(tensor_node)
        if len(self._serial_ordered_nodes) != num_nodes_before:
            print(
                "WARNING: there are some orphan tensors or ops which are not used in the execution."
            )
490

491 492 493
    def _init_dist_attr_for_graph(self):
        # Convert program to graph and initialize the distributed attributes
        self._order_nodes_by_program_order()
494
        for node in self.serial_ordered_nodes:
495
            if node.is_var() and node.var() is not None:
496 497 498 499 500 501 502
                dist_tensor = None
                tensor_id = node.node.original_desc_id()
                for cur_tensor_id, cur_dist_tensor in self._dist_tensors_for_program.items(
                ):
                    if tensor_id == cur_tensor_id \
                        or tensor_id == cur_dist_tensor.serial_tensor.desc.original_id():
                        dist_tensor = cur_dist_tensor
503 504
                        self._node_id_to_tensor_id[_node_id(
                            node)] = cur_tensor_id
505 506
                assert dist_tensor is not None, \
                    "Tensor must have a distributed tensor after the initialization for program."
507
                serial_tensor_node_id = _node_id(node)
508 509 510 511
                new_dist_tensor = DistributedTensor(dist_tensor.serial_tensor,
                                                    dist_tensor.dist_attr)
                self._dist_tensors_for_graph[
                    serial_tensor_node_id] = new_dist_tensor
512
            if node.is_op() and node.op() is not None:
513 514 515 516 517 518 519
                dist_op = None
                op_id = node.node.original_desc_id()
                for cur_op_id, cur_dist_op in self._dist_ops_for_program.items(
                ):
                    if op_id == cur_op_id \
                        or op_id == cur_dist_op.serial_op.desc.original_id():
                        dist_op = cur_dist_op
520
                        self._node_id_to_op_id[_node_id(node)] = cur_op_id
521 522
                assert dist_op is not None, \
                    "Operator must have a distributed operator after the initialization for program."
523
                serial_op_node_id = _node_id(node)
524 525 526
                new_dist_op = DistributedOperator(dist_op.serial_op,
                                                  dist_op.dist_attr)
                self._dist_ops_for_graph[serial_op_node_id] = new_dist_op
527 528 529 530 531 532 533 534 535

    def clear_dist_info_for_program(self):
        self._dist_tensors_for_program.clear()
        self._dist_ops_for_program.clear()

    def clear_dist_info_for_graph(self):
        self._dist_tensors_for_graph.clear()
        self._dist_ops_for_graph.clear()

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
    def copy_dist_attr_from_program_to_graph(self):
        for node in self.serial_ordered_nodes:
            if node.is_var() and node.var() is not None:
                dist_tensor = None
                tensor_id = node.node.original_desc_id()
                for cur_tensor_id, cur_dist_tensor in self._dist_tensors_for_program.items(
                ):
                    if tensor_id == cur_tensor_id \
                        or tensor_id == cur_dist_tensor.serial_tensor.desc.original_id():
                        dist_tensor = cur_dist_tensor
                assert dist_tensor is not None, \
                    "Tensor must have a distributed tensor after the initialization for program."
                serial_tensor_node_id = _node_id(node)
                new_dist_tensor = DistributedTensor(dist_tensor.serial_tensor,
                                                    dist_tensor.dist_attr)
                self._dist_tensors_for_graph[
                    serial_tensor_node_id] = new_dist_tensor
            if node.is_op() and node.op() is not None:
                dist_op = None
                op_id = node.node.original_desc_id()
                for cur_op_id, cur_dist_op in self._dist_ops_for_program.items(
                ):
                    if op_id == cur_op_id \
                        or op_id == cur_dist_op.serial_op.desc.original_id():
                        dist_op = cur_dist_op
                assert dist_op is not None, \
                    "Operator must have a distributed operator after the initialization for program."
                serial_op_node_id = _node_id(node)
                new_dist_op = DistributedOperator(dist_op.serial_op,
                                                  dist_op.dist_attr)
                self._dist_ops_for_graph[serial_op_node_id] = new_dist_op

568
    def copy_dist_attr_from_graph_to_program(self):
569
        assert self._is_initialized, \
570 571
            "Both program and graph must be initialized."
        updated_tensors = {}
572 573
        # all_nodes = self._serial_graph.all_nodes()
        all_nodes = self._serial_ordered_nodes
574 575
        for node in all_nodes:
            if node.is_var() and node.var() is not None:
576
                tensor_id = self._node_id_to_tensor_id[_node_id(node)]
577
                updated = updated_tensors.get(tensor_id, False)
578 579 580 581 582 583 584
                # If a var has multiples var nodes in graph, only use the first one for now
                if not updated:
                    tensor_dist_attr_for_graph = self.get_tensor_dist_attr_for_graph(
                        node)
                    dist_tensor_for_program = self._dist_tensors_for_program[
                        tensor_id]
                    dist_tensor_for_program.dist_attr = tensor_dist_attr_for_graph
585
                    updated_tensors[tensor_id] = True
586
            if node.is_op() and node.op() is not None:
587
                op_id = self._node_id_to_op_id[_node_id(node)]
588 589 590
                op_dist_attr_for_graph = self.get_op_dist_attr_for_graph(node)
                dist_op_for_program = self._dist_ops_for_program[op_id]
                dist_op_for_program.dist_attr = op_dist_attr_for_graph
591
        # TODO: the completion algorithm will skip orphan tensors,
592 593 594 595 596 597 598 599 600 601 602 603
        # here we just set there process_mesh to the first one.
        for orphan_node in self._serial_orphan_tensor_nodes:
            serial_tensor_id = orphan_node.var().id()
            dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id,
                                                             None)
            if dist_tensor:
                dist_tensor.dist_attr.process_mesh = self._process_meshes[0]
            else:
                serial_tensor_id = orphan_node.var().original_id()
                dist_tensor = self._dist_tensors_for_program.get(
                    serial_tensor_id, None)
                dist_tensor.dist_attr.process_mesh = self._process_meshes[0]
604 605 606 607 608

    def amend_dist_attr_for_program(self):
        for dist_tensor in self._dist_tensors_for_program.values():
            serial_tensor = dist_tensor.serial_tensor
            dist_attr = dist_tensor.dist_attr
609 610 611
            if serial_tensor.type == core.VarDesc.VarType.READER \
                or serial_tensor.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
                or serial_tensor.type == core.VarDesc.VarType.STEP_SCOPES:
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
                tensor_shape = []
            else:
                tensor_shape = serial_tensor.shape
            dims_mapping = dist_attr.dims_mapping
            process_mesh_shape = dist_attr.process_mesh.topology
            # If the dimension of tensor is less than the sharding dimension of process mesh,
            # we just amend the dimension mapping to -1. (Is this really OK?)
            for i in range(len(tensor_shape)):
                if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
                    and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]:
                    dims_mapping[i] = -1

        for dist_op in self._dist_ops_for_program.values():
            serial_op = dist_op.serial_op
            dist_attr = dist_op.dist_attr
            for arg_name in serial_op.input_arg_names:
                if dist_op.get_serial_input(arg_name) is None:
                    tensor_shape = []
                else:
                    if dist_op.get_serial_input(arg_name).type == core.VarDesc.VarType.READER \
632
                        or dist_op.get_serial_input(arg_name).type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
633 634 635 636 637 638 639 640 641 642 643 644 645
                        or dist_op.serial_op.type == "create_py_reader":
                        tensor_shape = []
                    else:
                        tensor_shape = dist_op.get_serial_input(arg_name).shape
                dims_mapping = dist_attr.get_input_dims_mapping(arg_name)
                process_mesh_shape = dist_attr.process_mesh.topology
                # If the dimension of tensor is less than the sharding dimension of process mesh,
                # we just amend the dimension mapping to -1. (Is this really OK?)
                for i in range(len(tensor_shape)):
                    if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
                        and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]:
                        dims_mapping[i] = -1
            for arg_name in serial_op.output_arg_names:
646 647 648
                if dist_op.get_serial_output(arg_name).type == core.VarDesc.VarType.READER \
                    or dist_op.get_serial_output(arg_name).type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
                    or dist_op.get_serial_output(arg_name).type == core.VarDesc.VarType.STEP_SCOPES:
649 650 651 652 653 654 655 656 657 658 659 660 661
                    tensor_shape = []
                else:
                    tensor_shape = dist_op.get_serial_output(arg_name).shape
                dims_mapping = dist_attr.get_output_dims_mapping(arg_name)
                process_mesh_shape = dist_attr.process_mesh.topology
                # If the dimension of tensor is less than the sharding dimension of process mesh,
                # we just amend the dimension mapping to -1. (Is this really OK?)
                for i in range(len(tensor_shape)):
                    if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
                        and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]:
                        dims_mapping[i] = -1

    def validate_dist_attr_for_program(self):
662
        if not self._is_initialized:
663 664
            assert False, \
                "Program must be initialized before validating its distributed attributes"
665
        for block in self.serial_main_program.blocks:
666 667
            for tensor in block.vars.values():
                dist_tensor = self.get_dist_tensor_for_program(tensor)
668 669 670
                assert dist_tensor is not None, \
                    "Tensor {} does not have a distributed attribute.".format(
                        dist_tensor.serial_tensor.name)
671 672 673 674 675 676
                if (dist_tensor is not None) and (
                        not dist_tensor.validate_dist_attr()):
                    assert False, "Tensor {} has a wrong distributed attributes {}.".format(
                        dist_tensor.serial_tensor.name, dist_tensor.dist_attr)
            for op in block.ops:
                dist_op = self.get_dist_op_for_program(op)
677 678 679
                assert dist_op is not None, \
                    "Operator {} does not have a distributed attribute.".format(
                        dist_op.serial_op.type)
680 681
                if (dist_op is not None) and (not dist_op.validate_dist_attr()):
                    assert False, "Operator {} has a wrong distributed attributes {}.".format(
682
                        dist_op.serial_op.type, dist_op.dist_attr)
683 684
        return True

Z
zhaoyingli 已提交
685 686 687 688 689
    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
690 691 692 693 694 695
            if k in [
                "_original_serial_main_program", "_original_serial_startup_program", \
                "_serial_main_program", "_serial_startup_program", "_serial_graph", \
                "_dist_main_programs", "_dist_startup_programs", \
                "_serial_ordered_nodes", "_serial_ordered_tensor_nodes", \
                "_serial_ordered_op_nodes"]:
Z
zhaoyingli 已提交
696 697 698
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
699 700 701 702

        # update dist tensor's dist_context
        for key in result._dist_tensors_for_program.keys():
            result._dist_tensors_for_program[key]._dist_context = result
Z
zhaoyingli 已提交
703 704
        return result

705 706 707 708 709 710 711 712 713

class DistributedOperatorContext:
    """
    DistributedOperatorContext is used to create a dist op desc in Program.
    Every time to create a new dist op, the context should be updated for it accordingly.
    """

    def __init__(self):
        self._dst_main_program = None
714
        self._main_block = None
715
        self._dst_startup_program = None
716
        self._startup_block = None
717 718
        self._cur_src_op = None
        self._cur_dist_attr = None
719
        self.grad_op_id_to_op_id = {}
720
        self.grad_var_to_var = defaultdict(dict)
721
        self._work_block = None
722
        self.already_init_sync_vars = set()
723 724
        self.varname_mapping = None
        self.rank_id = None
725

Z
zhaoyingli 已提交
726 727 728 729 730
    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
731 732 733 734
            if k in [
                    "_dst_main_program", "_dst_startup_program", "_cur_src_op",
                    "_work_block", "_main_block", "_startup_block"
            ]:
Z
zhaoyingli 已提交
735 736 737 738 739
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
        return result

740 741
    @property
    def dst_main_program(self):
742 743
        return self._dst_main_program

744 745 746 747
    @dst_main_program.setter
    def dst_main_program(self, prog):
        self._dst_main_program = prog
        self._main_block = prog.blocks[0]
748

749 750 751
    @property
    def main_block(self):
        return self._main_block
752

753 754 755
    @property
    def dst_startup_program(self):
        return self._dst_startup_program
756

757 758 759 760
    @dst_startup_program.setter
    def dst_startup_program(self, prog):
        self._dst_startup_program = prog
        self._startup_block = prog.blocks[0]
761

762 763 764
    @property
    def startup_block(self):
        return self._startup_block
765

766 767 768 769
    @property
    def work_block(self):
        assert self._work_block is not None
        return self._work_block
770

771 772 773 774
    @work_block.setter
    def work_block(self, block):
        assert block is not None
        self._work_block = block
775

776 777 778
    @property
    def cur_src_op(self):
        assert self._cur_src_op is not None
779 780
        return self._cur_src_op

781
    def prepare_context(self, src_op):
782

783
        self._cur_src_op = src_op
784 785 786 787 788 789

        # build input varname mapping
        kinputs = {}
        for input_name in src_op.desc.input_names():
            varnames = []
            for varname in src_op.desc.input(input_name):
790 791
                assert varname in self.varname_mapping
                varnames.append(self.varname_mapping[varname])
792 793 794 795 796 797 798
            kinputs[input_name] = varnames

        # build output varname mapping
        koutputs = {}
        for output_name in src_op.desc.output_names():
            varnames = []
            for varname in src_op.desc.output(output_name):
799 800
                assert varname in self.varname_mapping
                varnames.append(self.varname_mapping[varname])
801 802 803
            koutputs[output_name] = varnames

        return kinputs, koutputs
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847


class BlockState(object):
    def __init__(self):
        self.nblock = 0
        self.forward_indices = []
        self.backward_indices = []
        self.backward_to_forward_index_map = {}

    def parse_forward_blocks(self, program):

        while program.current_block_idx != 0:
            program._rollback()

        assert program.current_block_idx == 0

        for idx, block in enumerate(program.blocks):

            assert idx == block.idx, "index doesn't match"
            assert block.forward_block_idx == -1, "forward_block_idx of forward block [{}] is not [{}]".format(
                idx, block.forward_block_idx)
            self.forward_indices.append(idx)
            self.nblock += 1

        assert self.nblock >= 1

    def parse_backward_blocks(self, program):

        assert 0 in self.forward_indices, "forward block idx are{}".format(
            self.forward_indices)
        self.backward_to_forward_index_map[0] = 0

        for idx, block in enumerate(program.blocks):

            if idx < len(self.forward_indices):
                continue

            assert idx == block.idx, "index doesn't match"
            assert block.forward_block_idx in self.forward_indices
            self.backward_indices.append(idx)
            self.backward_to_forward_index_map[idx] = block.forward_block_idx
            self.nblock += 1

        assert self.nblock == len(program.blocks)