dist_context.py 27.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import copy
from collections import defaultdict
from paddle.fluid import framework
from paddle.fluid import core
from .dist_attribute import TensorDistributedAttribute
from .dist_attribute import OperatorDistributedAttribute
from .dist_tensor import DistributedTensor
from .dist_op import DistributedOperator
from .process_mesh import ProcessMesh

# There always exists a default context for user. And user can set it to another one.
_g_default_distributed_context = None


def get_default_distributed_context():
    global _g_default_distributed_context
    if _g_default_distributed_context is None:
        dist_context = DistributedContext()
        set_default_distributed_context(dist_context)
    return _g_default_distributed_context


def set_default_distributed_context(dist_context):
    global _g_default_distributed_context
    _g_default_distributed_context = dist_context


class DistributedContext:
    """
    DistributedContext is used to collect related distributed information for program and graph.
    One auto-parallel run should use its own DistributedContext to avoid interfering other run.
    """

48 49 50 51 52
    def __init__(self,
                 serial_main_prog=None,
                 serial_startup_prog=None,
                 dist_main_progs=None,
                 dist_startup_progs=None):
53
        # Program related data members
54
        self._serial_program = serial_main_prog
55 56 57
        self._is_initialized_for_program = False
        self._dist_tensors_for_program = {}
        self._dist_ops_for_program = {}
58
        self._block_state = BlockState()
59 60 61
        # Graph related data members
        self._is_initialized_for_graph = False
        self._serial_graph = None
62 63
        self._dist_tensors_for_graph = {}
        self._dist_ops_for_graph = {}
64 65 66
        self._node_id_to_tensor_id = {}
        self._node_id_to_op_id = {}
        # Other data members
67 68
        self._dist_op_context = DistributedOperatorContext()
        self._process_meshes = []
69 70
        self._serial_ordered_nodes = []
        self._tensor_id_to_tensor_node_ids = {}
71

72
        # Distributed programs
73 74 75 76 77 78
        self._dist_main_programs = dist_main_progs
        if not self._dist_main_programs:
            self._dist_main_programs = {}
        self._dist_startup_programs = dist_startup_progs
        if not self._dist_startup_programs:
            self._dist_startup_programs = {}
79

80 81 82 83 84 85 86 87 88 89
    @property
    def serial_program(self):
        return self._serial_program

    @property
    def serial_graph(self):
        return self._serial_graph

    @serial_program.setter
    def serial_program(self, program):
90 91
        # assert self._serial_program is None, \
        #     "This distributed context has already been realted to a serial program"
92 93
        self._serial_program = program

94 95 96 97
    @property
    def serial_ordered_nodes(self):
        return self._serial_ordered_nodes

98 99 100 101 102 103 104 105
    @property
    def process_meshes(self):
        return self._process_meshes

    @property
    def dist_op_context(self):
        return self._dist_op_context

106 107 108 109
    @property
    def block_state(self):
        return self._block_state

110 111 112 113 114 115 116 117
    @property
    def dist_main_programs(self):
        return self._dist_main_programs

    @property
    def dist_startup_programs(self):
        return self._dist_startup_programs

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    def add_process_mesh(self, process_mesh):
        assert isinstance(process_mesh, ProcessMesh), \
            'The type of dim_mapping must be ProcessMesh.'
        if process_mesh not in self.process_meshes:
            self._process_meshes.append(process_mesh)

    def add_dist_tensor_for_program(self, dist_tensor):
        inner_serial_tensor = dist_tensor.serial_tensor
        inner_serial_tensor_id = inner_serial_tensor.desc.id()
        self._dist_tensors_for_program[inner_serial_tensor_id] = dist_tensor

    def add_dist_op_for_program(self, dist_op):
        inner_serial_op = dist_op.serial_op
        inner_serial_op_id = inner_serial_op.desc.id()
        self._dist_ops_for_program[inner_serial_op_id] = dist_op

    def get_dist_tensor_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
136 137 138 139 140 141 142 143 144 145 146
        dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id, None)
        if dist_tensor:
            return dist_tensor
        else:
            serial_tensor_id = serial_tensor.desc.original_id()
            dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id,
                                                             None)
            if dist_tensor:
                return dist_tensor
            else:
                return None
147 148 149 150 151

    def get_dist_tensor_for_graph(self, serial_tensor_node):
        serial_tensor_node_id = serial_tensor_node.id()
        return self._dist_tensors_for_graph.get(serial_tensor_node_id, None)

152 153 154 155 156 157 158 159 160 161 162 163
    def get_dist_op_for_program(self, serial_op):
        serial_op_id = serial_op.desc.id()
        dist_op = self._dist_ops_for_program.get(serial_op_id, None)
        if dist_op:
            return dist_op
        else:
            serial_op_id = serial_op.desc.original_id()
            dist_op = self._dist_ops_for_program.get(serial_op_id, None)
            if dist_op:
                return dist_op
            else:
                return None
164

165 166 167 168 169
    def del_dist_op_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
        if self._dist_ops_for_program.get(serial_tensor_id, None):
            del self._dist_ops_for_program[serial_tensor_id]

170 171 172
    def get_dist_op_for_graph(self, serial_op_node):
        serial_op_node_id = serial_op_node.id()
        return self._dist_ops_for_graph.get(serial_op_node_id, None)
173 174 175 176 177 178 179

    def get_tensor_dist_attr_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
        dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id, None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
180 181 182 183 184 185 186
            serial_tensor_id = serial_tensor.desc.original_id()
            dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id,
                                                             None)
            if dist_tensor:
                return dist_tensor.dist_attr
            else:
                return None
187

188 189 190 191 192 193 194
    def get_tensor_dist_attr_for_program_with_id(self, tensor_id):
        dist_tensor = self._dist_tensors_for_program.get(tensor_id, None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
            return None

195 196 197 198 199 200 201 202 203 204 205 206 207
    def set_tensor_dist_attr_for_program(self, serial_tensor, dist_attr):
        dist_tensor = DistributedTensor(serial_tensor, dist_attr)
        self.add_dist_tensor_for_program(dist_tensor)

    def get_tensor_dist_attr_for_graph(self, serial_tensor_node):
        serial_tensor_node_id = serial_tensor_node.id()
        dist_tensor = self._dist_tensors_for_graph.get(serial_tensor_node_id,
                                                       None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
            return None

208 209 210 211 212 213 214 215 216 217 218 219
    # def set_tensor_dist_attr_for_graph(self, serial_tensor_node, dist_attr):
    #     assert serial_tensor_node.is_var() and \
    #         serial_tensor_node.var() is not None
    #     serial_tensor_id = serial_tensor_node.node.original_desc_id()
    #     dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id, None)
    #     assert dist_tensor is not None, \
    #         "The distributed tensor of the program has not been added to this context."
    #     serial_tensor_node_id = serial_tensor_node.id()
    #     new_dist_tensor = DistributedTensor(dist_tensor.serial_tensor,
    #                                         dist_attr)
    #     self._dist_tensors_for_graph[serial_tensor_node_id] = new_dist_tensor

220 221 222 223 224 225
    def get_op_dist_attr_for_program(self, serial_op):
        serial_op_id = serial_op.desc.id()
        dist_op = self._dist_ops_for_program.get(serial_op_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
226 227 228 229 230 231
            serial_op_id = serial_op.desc.original_id()
            dist_op = self._dist_ops_for_program.get(serial_op_id, None)
            if dist_op:
                return dist_op.dist_attr
            else:
                return None
232

233 234 235 236 237 238 239
    def get_op_dist_attr_for_program_with_id(self, op_id):
        dist_op = self._dist_ops_for_program.get(op_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
            return None

240 241 242 243 244 245 246 247 248 249 250 251
    def set_op_dist_attr_for_program(self, serial_op, dist_attr):
        dist_op = DistributedOperator(serial_op, dist_attr)
        self.add_dist_op_for_program(dist_op)

    def get_op_dist_attr_for_graph(self, serial_op_node):
        serial_op_node_id = serial_op_node.id()
        dist_op = self._dist_ops_for_graph.get(serial_op_node_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
            return None

252 253 254 255 256 257 258 259 260 261 262
    # def set_op_dist_attr_for_graph(self, serial_op_node, dist_attr):
    #     assert serial_op_node.is_op() and \
    #         serial_op_node.op() is not None
    #     serial_op_id = serial_op_node.node.original_desc_id()
    #     dist_op = self._dist_ops_for_program.get(serial_op_id, None)
    #     assert dist_op is not None, \
    #         "The distributed operator of the program has not been added to this context."
    #     serial_op_node_id = serial_op_node.id()
    #     new_dist_op = DistributedOperator(dist_op.serial_op, dist_attr)
    #     self._dist_ops_for_graph[serial_op_node_id] = new_dist_op

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
    def get_dist_attr_for_graph(self, serial_node):
        if serial_node.is_var() and serial_node.var() is not None:
            serial_tensor_node_id = serial_node.id()
            dist_tensor = self._dist_tensors_for_graph.get(
                serial_tensor_node_id, None)
            if dist_tensor:
                return dist_tensor.dist_attr
            else:
                return None
        if serial_node.is_op() and serial_node.op() is not None:
            serial_op_node_id = serial_node.id()
            dist_op = self._dist_ops_for_graph.get(serial_op_node_id, None)
            if dist_op:
                return dist_op.dist_attr
            else:
                return None
        return None
280

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
    def init_dist_attr_for_program(self):
        assert self._serial_program, \
            "Please set the program of this context before initializing its distribute attributes."
        if self._is_initialized_for_program:
            return
        # Copy the dist tensors and dist ops annotated by users from the default context
        default_ctx = get_default_distributed_context()
        self._process_meshes = copy.deepcopy(default_ctx.process_meshes)
        for block in self._serial_program.blocks:
            for tensor in block.vars.values():
                # Copy the distributed tensors in the default context
                default_dist_tensor = default_ctx.get_dist_tensor_for_program(
                    tensor)
                if default_dist_tensor and default_ctx is not self:
                    self.add_dist_tensor_for_program(default_dist_tensor)
                current_dist_tensor = self.get_dist_tensor_for_program(tensor)
                if current_dist_tensor is None:
                    dist_tensor = DistributedTensor(tensor)
                    self.add_dist_tensor_for_program(dist_tensor)
            for op in block.ops:
                # Copy the distributed operators in the default context
                default_dist_op = default_ctx.get_dist_op_for_program(op)
                if default_dist_op and default_ctx is not self:
                    self.add_dist_op_for_program(default_dist_op)
                current_dist_op = self.get_dist_op_for_program(op)
                if current_dist_op is None:
                    dist_op = DistributedOperator(op)
                    self.add_dist_op_for_program(dist_op)
        self._is_initialized_for_program = True

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
    def order_nodes_by_program_order(self):
        def _contains(nodes, target_node):
            for node in nodes:
                if node.id() == target_node.id():
                    return True
            return False

        ordered_tensor_nodes = []
        ordered_op_nodes = []
        all_nodes = self._serial_graph.all_nodes()
        for node in all_nodes:
            if node.is_var() and node.var() is not None:
                ordered_tensor_nodes.append(node)
            if node.is_op() and node.op() is not None:
                ordered_op_nodes.append(node)
        ordered_tensor_nodes.sort(key=lambda node: node.node.original_desc_id())
        ordered_op_nodes.sort(key=lambda node: node.node.original_desc_id())
        for op_node in ordered_op_nodes:
            tensor_nodes = []
            for tensor_node in op_node.inputs:
                if tensor_node.is_var() \
                    and tensor_node.var() is not None \
                    and not _contains(self._serial_ordered_nodes, tensor_node):
                    tensor_nodes.append(tensor_node)
            tensor_nodes.sort(key=lambda node: node.node.original_desc_id())
            self._serial_ordered_nodes.extend(tensor_nodes)
            self._serial_ordered_nodes.append(op_node)
            tensor_nodes = []
            for tensor_node in op_node.outputs:
                if tensor_node.is_var() \
                    and tensor_node.var() is not None \
                    and not _contains(self._serial_ordered_nodes, tensor_node):
                    tensor_nodes.append(tensor_node)
            self._serial_ordered_nodes.extend(tensor_nodes)
        num_nodes_before = len(ordered_tensor_nodes) + len(ordered_op_nodes)
        assert len(self._serial_ordered_nodes) == num_nodes_before, \
            "The number of nodes before ordering is not the same after ordering."

349 350 351 352 353 354 355 356 357
    def init_dist_attr_for_graph(self):
        assert self._is_initialized_for_program, \
            "The program must be initialized before initializing the distributed attributes for its graph."
        if self._is_initialized_for_graph:
            return
        # Convert program to graph
        self._serial_graph = framework.IrGraph(
            core.Graph(self._serial_program.desc))
        all_nodes = self._serial_graph.all_nodes()
358 359
        self.order_nodes_by_program_order()
        for node in self.serial_ordered_nodes:
360
            if node.is_var() and node.var() is not None:
361 362 363 364 365 366 367 368
                dist_tensor = None
                tensor_id = node.node.original_desc_id()
                for cur_tensor_id, cur_dist_tensor in self._dist_tensors_for_program.items(
                ):
                    if tensor_id == cur_tensor_id \
                        or tensor_id == cur_dist_tensor.serial_tensor.desc.original_id():
                        dist_tensor = cur_dist_tensor
                        self._node_id_to_tensor_id[node.id()] = cur_tensor_id
369 370
                assert dist_tensor is not None, \
                    "Tensor must have a distributed tensor after the initialization for program."
371 372 373 374 375
                serial_tensor_node_id = node.id()
                new_dist_tensor = DistributedTensor(dist_tensor.serial_tensor,
                                                    dist_tensor.dist_attr)
                self._dist_tensors_for_graph[
                    serial_tensor_node_id] = new_dist_tensor
376
            if node.is_op() and node.op() is not None:
377 378 379 380 381 382 383 384
                dist_op = None
                op_id = node.node.original_desc_id()
                for cur_op_id, cur_dist_op in self._dist_ops_for_program.items(
                ):
                    if op_id == cur_op_id \
                        or op_id == cur_dist_op.serial_op.desc.original_id():
                        dist_op = cur_dist_op
                        self._node_id_to_op_id[node.id()] = cur_op_id
385 386
                assert dist_op is not None, \
                    "Operator must have a distributed operator after the initialization for program."
387 388 389 390
                serial_op_node_id = node.id()
                new_dist_op = DistributedOperator(dist_op.serial_op,
                                                  dist_op.dist_attr)
                self._dist_ops_for_graph[serial_op_node_id] = new_dist_op
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
        self._is_initialized_for_graph = True

    def clear_dist_info_for_program(self):
        self._dist_tensors_for_program.clear()
        self._dist_ops_for_program.clear()

    def clear_dist_info_for_graph(self):
        self._dist_tensors_for_graph.clear()
        self._dist_ops_for_graph.clear()

    def copy_dist_attr_from_graph_to_program(self):
        assert self._is_initialized_for_program and self._is_initialized_for_graph, \
            "Both program and graph must be initialized."
        updated_tensors = {}
        all_nodes = self._serial_graph.all_nodes()
        for node in all_nodes:
            if node.is_var() and node.var() is not None:
408 409
                tensor_id = self._node_id_to_tensor_id[node.id()]
                updated = updated_tensors.get(tensor_id, False)
410 411 412 413 414 415 416
                # If a var has multiples var nodes in graph, only use the first one for now
                if not updated:
                    tensor_dist_attr_for_graph = self.get_tensor_dist_attr_for_graph(
                        node)
                    dist_tensor_for_program = self._dist_tensors_for_program[
                        tensor_id]
                    dist_tensor_for_program.dist_attr = tensor_dist_attr_for_graph
417
                    updated_tensors[tensor_id] = True
418
            if node.is_op() and node.op() is not None:
419
                op_id = self._node_id_to_op_id[node.id()]
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
                op_dist_attr_for_graph = self.get_op_dist_attr_for_graph(node)
                dist_op_for_program = self._dist_ops_for_program[op_id]
                dist_op_for_program.dist_attr = op_dist_attr_for_graph

    def amend_dist_attr_for_program(self):
        for dist_tensor in self._dist_tensors_for_program.values():
            serial_tensor = dist_tensor.serial_tensor
            dist_attr = dist_tensor.dist_attr
            if serial_tensor.type == core.VarDesc.VarType.READER:
                tensor_shape = []
            else:
                tensor_shape = serial_tensor.shape
            dims_mapping = dist_attr.dims_mapping
            process_mesh_shape = dist_attr.process_mesh.topology
            # If the dimension of tensor is less than the sharding dimension of process mesh,
            # we just amend the dimension mapping to -1. (Is this really OK?)
            for i in range(len(tensor_shape)):
                if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
                    and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]:
                    dims_mapping[i] = -1

        for dist_op in self._dist_ops_for_program.values():
            serial_op = dist_op.serial_op
            dist_attr = dist_op.dist_attr
            for arg_name in serial_op.input_arg_names:
                if dist_op.get_serial_input(arg_name) is None:
                    tensor_shape = []
                else:
                    if dist_op.get_serial_input(arg_name).type == core.VarDesc.VarType.READER \
                        or dist_op.serial_op.type == "create_py_reader":
                        tensor_shape = []
                    else:
                        tensor_shape = dist_op.get_serial_input(arg_name).shape
                dims_mapping = dist_attr.get_input_dims_mapping(arg_name)
                process_mesh_shape = dist_attr.process_mesh.topology
                # If the dimension of tensor is less than the sharding dimension of process mesh,
                # we just amend the dimension mapping to -1. (Is this really OK?)
                for i in range(len(tensor_shape)):
                    if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
                        and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]:
                        dims_mapping[i] = -1
            for arg_name in serial_op.output_arg_names:
                if dist_op.get_serial_output(
                        arg_name).type == core.VarDesc.VarType.READER:
                    tensor_shape = []
                else:
                    tensor_shape = dist_op.get_serial_output(arg_name).shape
                dims_mapping = dist_attr.get_output_dims_mapping(arg_name)
                process_mesh_shape = dist_attr.process_mesh.topology
                # If the dimension of tensor is less than the sharding dimension of process mesh,
                # we just amend the dimension mapping to -1. (Is this really OK?)
                for i in range(len(tensor_shape)):
                    if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
                        and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]:
                        dims_mapping[i] = -1

    def validate_dist_attr_for_program(self):
        if not self._is_initialized_for_program:
            assert False, \
                "Program must be initialized before validating its distributed attributes"
        for block in self.serial_program.blocks:
            for tensor in block.vars.values():
                dist_tensor = self.get_dist_tensor_for_program(tensor)
                if (dist_tensor is not None) and (
                        not dist_tensor.validate_dist_attr()):
                    assert False, "Tensor {} has a wrong distributed attributes {}.".format(
                        dist_tensor.serial_tensor.name, dist_tensor.dist_attr)
            for op in block.ops:
                dist_op = self.get_dist_op_for_program(op)
                if (dist_op is not None) and (not dist_op.validate_dist_attr()):
                    assert False, "Operator {} has a wrong distributed attributes {}.".format(
                        dist_op.serial_op.type, dist_tensor.dist_attr)
        return True

Z
zhaoyingli 已提交
494 495 496 497 498
    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
499 500 501
            if k == "_serial_program" or k == "_serial_graph" \
                or k == "_dist_main_programs" or k == "_dist_startup_programs" \
                or k == "_serial_ordered_nodes":
Z
zhaoyingli 已提交
502 503 504
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
505 506 507 508

        # update dist tensor's dist_context
        for key in result._dist_tensors_for_program.keys():
            result._dist_tensors_for_program[key]._dist_context = result
Z
zhaoyingli 已提交
509 510
        return result

511 512 513 514 515 516 517 518 519

class DistributedOperatorContext:
    """
    DistributedOperatorContext is used to create a dist op desc in Program.
    Every time to create a new dist op, the context should be updated for it accordingly.
    """

    def __init__(self):
        self._dst_main_program = None
520
        self._main_block = None
521
        self._dst_startup_program = None
522
        self._startup_block = None
523 524
        self._cur_src_op = None
        self._cur_dist_attr = None
525
        self.grad_op_id_to_op_id = {}
526
        self._work_block = None
527
        self.already_init_sync_vars = set()
528 529
        self.varname_mapping = None
        self.rank_id = None
530

Z
zhaoyingli 已提交
531 532 533 534 535
    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
536 537 538 539
            if k in [
                    "_dst_main_program", "_dst_startup_program", "_cur_src_op",
                    "_work_block", "_main_block", "_startup_block"
            ]:
Z
zhaoyingli 已提交
540 541 542 543 544
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
        return result

545 546
    @property
    def dst_main_program(self):
547 548
        return self._dst_main_program

549 550 551 552
    @dst_main_program.setter
    def dst_main_program(self, prog):
        self._dst_main_program = prog
        self._main_block = prog.blocks[0]
553

554 555 556
    @property
    def main_block(self):
        return self._main_block
557

558 559 560
    @property
    def dst_startup_program(self):
        return self._dst_startup_program
561

562 563 564 565
    @dst_startup_program.setter
    def dst_startup_program(self, prog):
        self._dst_startup_program = prog
        self._startup_block = prog.blocks[0]
566

567 568 569
    @property
    def startup_block(self):
        return self._startup_block
570

571 572 573 574
    @property
    def work_block(self):
        assert self._work_block is not None
        return self._work_block
575

576 577 578 579
    @work_block.setter
    def work_block(self, block):
        assert block is not None
        self._work_block = block
580

581 582 583
    @property
    def cur_src_op(self):
        assert self._cur_src_op is not None
584 585
        return self._cur_src_op

586
    def prepare_context(self, src_op):
587

588
        self._cur_src_op = src_op
589 590 591 592 593 594

        # build input varname mapping
        kinputs = {}
        for input_name in src_op.desc.input_names():
            varnames = []
            for varname in src_op.desc.input(input_name):
595 596
                assert varname in self.varname_mapping
                varnames.append(self.varname_mapping[varname])
597 598 599 600 601 602 603
            kinputs[input_name] = varnames

        # build output varname mapping
        koutputs = {}
        for output_name in src_op.desc.output_names():
            varnames = []
            for varname in src_op.desc.output(output_name):
604 605
                assert varname in self.varname_mapping
                varnames.append(self.varname_mapping[varname])
606 607 608
            koutputs[output_name] = varnames

        return kinputs, koutputs
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652


class BlockState(object):
    def __init__(self):
        self.nblock = 0
        self.forward_indices = []
        self.backward_indices = []
        self.backward_to_forward_index_map = {}

    def parse_forward_blocks(self, program):

        while program.current_block_idx != 0:
            program._rollback()

        assert program.current_block_idx == 0

        for idx, block in enumerate(program.blocks):

            assert idx == block.idx, "index doesn't match"
            assert block.forward_block_idx == -1, "forward_block_idx of forward block [{}] is not [{}]".format(
                idx, block.forward_block_idx)
            self.forward_indices.append(idx)
            self.nblock += 1

        assert self.nblock >= 1

    def parse_backward_blocks(self, program):

        assert 0 in self.forward_indices, "forward block idx are{}".format(
            self.forward_indices)
        self.backward_to_forward_index_map[0] = 0

        for idx, block in enumerate(program.blocks):

            if idx < len(self.forward_indices):
                continue

            assert idx == block.idx, "index doesn't match"
            assert block.forward_block_idx in self.forward_indices
            self.backward_indices.append(idx)
            self.backward_to_forward_index_map[idx] = block.forward_block_idx
            self.nblock += 1

        assert self.nblock == len(program.blocks)