dist_context.py 41.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import copy
from collections import defaultdict
17
import paddle.fluid
18
from paddle.fluid import framework
19
from paddle.fluid.framework import get_flags, set_flags
20
from paddle.fluid import core
21
from paddle.distributed.passes import PassContext
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
from .dist_attribute import TensorDistributedAttribute
from .dist_attribute import OperatorDistributedAttribute
from .dist_tensor import DistributedTensor
from .dist_op import DistributedOperator
from .process_mesh import ProcessMesh

# There always exists a default context for user. And user can set it to another one.
_g_default_distributed_context = None


def get_default_distributed_context():
    global _g_default_distributed_context
    if _g_default_distributed_context is None:
        dist_context = DistributedContext()
        set_default_distributed_context(dist_context)
    return _g_default_distributed_context


def set_default_distributed_context(dist_context):
    global _g_default_distributed_context
    _g_default_distributed_context = dist_context


45 46 47 48
def _node_id(node):
    return (node.node.graph_id(), node.node.id())


49 50 51 52 53 54
class DistributedContext:
    """
    DistributedContext is used to collect related distributed information for program and graph.
    One auto-parallel run should use its own DistributedContext to avoid interfering other run.
    """

55 56 57
    def __init__(self,
                 serial_main_prog=None,
                 serial_startup_prog=None,
58
                 serial_optimizer=None,
59
                 serial_loss=None,
60 61 62
                 feed_vars={},
                 fetch_vars={},
                 cluster=None,
63 64 65 66
                 strategy=None):
        # Data members related to original programs (unchanged)
        self._original_serial_main_program = serial_main_prog
        self._original_serial_startup_program = serial_startup_prog
67
        self._original_serial_optimizer = serial_optimizer
68
        self._original_serial_loss = serial_loss
69 70
        self._original_serial_feed_vars = feed_vars
        self._original_serial_fetch_vars = fetch_vars
71 72 73 74 75
        self._original_serial_optimizer = serial_optimizer

        # Data members related to programs (changed)
        self._serial_main_program = None
        self._serial_startup_program = None
76 77 78 79
        self._serial_loss = None
        self._serial_optimizer = None
        self._serial_feed_vars = {}
        self._serial_fetch_vars = {}
80 81

        # Data members related to the program
82 83
        self._dist_tensors_for_program = {}
        self._dist_ops_for_program = {}
84 85

        # Data members related to the graph
86
        self._serial_graph = None
87 88
        self._dist_tensors_for_graph = {}
        self._dist_ops_for_graph = {}
89 90
        self._node_id_to_tensor_id = {}
        self._node_id_to_op_id = {}
91

92
        # Data members related to the distributed programs
93
        # Distributed programs
94 95
        self._dist_main_programs = {}
        self._dist_startup_programs = {}
96 97
        self._dist_op_context = DistributedOperatorContext()
        self._process_meshes = []
98

99
        self._cluster = cluster
100 101 102 103
        self._strategy = strategy

        # Pass Context
        self._pass_context = PassContext()
104
        self._block_state = BlockState()
105 106 107 108 109 110 111 112

        # Other data members
        self._serial_ordered_tensor_nodes = []
        self._serial_ordered_op_nodes = []
        self._serial_ordered_nodes = []
        # self._tensor_id_to_tensor_node_ids = {}

        self._is_initialized = False
113
        #TODO: need a better way to remove the following flag
114 115 116 117 118 119 120
        self._need_copy_dist_attr_to_graph = False
        self._backup_pass_context_stack = []
        self._backup_block_state_stack = []
        self._backup_dist_tensors_for_program_stack = []
        self._backup_dist_ops_for_program_stack = []
        self._backup_serial_main_program_stack = []
        self._backup_serial_startup_program_stack = []
121

122 123 124
        # flag whether scale gradient with dp size
        self._gradient_scale = True

125 126 127
        # A flag indicates whether the used parallelism is data parallel
        self._data_parallel = False

128 129 130
        # flag whether using `to_static`
        self._dygraph_mode = True

131
    @property
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    def serial_main_program(self):
        return self._serial_main_program

    @property
    def serial_startup_program(self):
        return self._serial_startup_program

    @property
    def serial_loss(self):
        return self._serial_loss

    @property
    def serial_optimizer(self):
        return self._serial_optimizer

147 148 149 150 151 152 153
    @property
    def serial_feed_vars(self):
        return self._serial_feed_vars

    @property
    def serial_fetch_vars(self):
        return self._serial_fetch_vars
154

155 156 157 158 159 160 161 162 163 164 165 166
    @property
    def dist_main_programs(self):
        return self._dist_main_programs

    @property
    def dist_startup_programs(self):
        return self._dist_startup_programs

    @property
    def cluster(self):
        return self._cluster

167 168 169 170
    @property
    def strategy(self):
        return self._strategy

171 172 173 174
    @property
    def serial_graph(self):
        return self._serial_graph

175 176 177 178
    @property
    def serial_ordered_nodes(self):
        return self._serial_ordered_nodes

179 180 181 182
    @property
    def process_meshes(self):
        return self._process_meshes

183 184 185 186
    @property
    def pass_context(self):
        return self._pass_context

187 188 189 190
    @property
    def dist_op_context(self):
        return self._dist_op_context

191 192 193 194
    @property
    def block_state(self):
        return self._block_state

195
    @property
196
    def has_annotation(self):
197 198 199
        return len(self._dist_tensors_for_program) or len(
            self._dist_ops_for_program)

200 201 202 203 204 205 206 207
    @property
    def gradient_scale(self):
        return self._gradient_scale

    @gradient_scale.setter
    def gradient_scale(self, gs):
        self._gradient_scale = gs

208 209 210 211 212 213 214 215
    @property
    def data_parallel(self):
        return self._data_parallel

    @data_parallel.setter
    def data_parallel(self, dp):
        self._data_parallel = dp

216 217 218 219 220
    def _backup_serial_info(self, mode):
        self._backup_serial_main_program_stack.append(
            self._serial_main_program.clone())
        self._backup_serial_startup_program_stack.append(
            self._serial_startup_program.clone())
221 222
        self._backup_pass_context_stack.append(copy.deepcopy(
            self._pass_context))
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
        self._backup_block_state_stack.append(copy.deepcopy(self._block_state))

    def _backup_dist_info(self, mode):
        self._backup_dist_tensors_for_program_stack.append(
            copy.deepcopy(self._dist_tensors_for_program))
        self._backup_dist_ops_for_program_stack.append(
            copy.deepcopy(self._dist_ops_for_program))

    def _backup(self, serial=True, serial_mode=None, dist=True, dist_mode=None):
        # Use this function carefully
        if serial:
            self._backup_serial_info(serial_mode)
        if dist:
            self._backup_dist_info(dist_mode)

    def _restore_serial_info(self, mode="to_backup"):
        if mode == "to_backup":
            self._serial_main_program = self._backup_serial_main_program_stack.pop(
            )
            self._serial_startup_program = self._backup_serial_startup_program_stack.pop(
            )
        elif mode == "to_original":
            assert self._original_serial_main_program is not None
            assert self._original_serial_startup_program is not None
247 248 249 250
            self._serial_main_program = self._original_serial_main_program.clone(
            )
            self._serial_startup_program = self._original_serial_startup_program.clone(
            )
251 252 253 254 255 256 257 258 259 260 261 262

        self._serial_optimizer = self._original_serial_optimizer

        if self._original_serial_loss:
            if isinstance(self._original_serial_loss, list):
                assert len(self._original_serial_loss) == 1
                loss = self._original_serial_loss[0]
                block_idx = loss.block.idx
                var_name = loss.name
                var = self._serial_main_program.blocks[
                    block_idx]._var_recursive(var_name)
                self._serial_loss = var
263
            else:
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
                block_idx = self._original_serial_loss.block.idx
                var_name = self._original_serial_loss.name
                var = self._serial_main_program.blocks[
                    block_idx]._var_recursive(var_name)
                self._serial_loss = var

        for key, var_list in self._original_serial_feed_vars.items():
            new_var_list = []
            for var in var_list:
                block_idx = var.block.idx
                var_name = var.name
                var = self._serial_main_program.blocks[
                    block_idx]._var_recursive(var_name)
                new_var_list.append(var)
            self._serial_feed_vars[key] = new_var_list

        for key, var_list in self._original_serial_fetch_vars.items():
            new_var_list = []
            for var in var_list:
                block_idx = var.block.idx
                var_name = var.name
                var = self._serial_main_program.blocks[
                    block_idx]._var_recursive(var_name)
                new_var_list.append(var)
            self._serial_fetch_vars[key] = new_var_list

        self._pass_context = self._backup_pass_context_stack.pop()
        self._block_state = self._backup_block_state_stack.pop()

    def _restore_dist_info(self, mode="to_backup"):
        if mode == "to_backup":
            self._dist_tensors_for_program = self._backup_dist_tensors_for_program_stack.pop(
            )
            self._dist_ops_for_program = self._backup_dist_ops_for_program_stack.pop(
            )
        elif mode == "to_original":
            assert self._original_dist_tensors_for_program
            assert self._original_dist_ops_for_program
            self._dist_tensors_for_program = copy.deepcopy(
                self._original_dist_tensors_for_program)
            self._dist_ops_for_program = copy.deepcopy(
                self._original_dist_ops_for_program)
        elif mode == "to_default":
            new_tensors_ids = []
            for tensor_id, dist_tensor in self._dist_tensors_for_program.items(
            ):
                if tensor_id in self._tensors_ids:
                    dist_tensor.dist_attr.reset()
                else:
                    new_tensors_ids.append(tensor_id)
            for tensor_id in new_tensors_ids:
                self._dist_tensors_for_program.pop(tensor_id)
            new_ops_ids = []
            for op_id, dist_op in self._dist_ops_for_program.items():
                if op_id in self._ops_ids:
                    dist_op.dist_attr.reset()
                else:
                    new_ops_ids.append(op_id)
            for op_id in new_ops_ids:
                self._dist_ops_for_program.pop(op_id)
        else:
            new_tensors_ids = []
            for tensor_id, dist_tensor in self._dist_tensors_for_program.items(
            ):
                new_tensors_ids.append(tensor_id)
            for tensor_id in new_tensors_ids:
                self._dist_tensors_for_program.pop(tensor_id)
            new_ops_ids = []
            for op_id, dist_op in self._dist_ops_for_program.items():
                new_ops_ids.append(op_id)
            for op_id in new_ops_ids:
                self._dist_ops_for_program.pop(op_id)
        self._dist_main_programs = {}
        self._dist_startup_programs = {}
        self._dist_op_context = DistributedOperatorContext()
        self._need_copy_dist_attr_to_graph = True
        self._process_meshes = []

    def _restore(self,
                 serial=True,
                 serial_mode="to_backup",
                 dist=True,
                 dist_mode="to_backup"):
        # Use this function carefully
        if serial:
            self._restore_serial_info(serial_mode)
        if dist:
            self._restore_dist_info(dist_mode)

353
    def initialize(self, with_graph=True):
354 355 356 357 358 359 360
        if not self._is_initialized:
            if not self._serial_main_program:
                self._serial_main_program = self._original_serial_main_program
            if not self._serial_startup_program:
                self._serial_startup_program = self._original_serial_startup_program
            if not self._serial_loss:
                if isinstance(self._original_serial_loss, list):
361 362 363 364 365 366
                    if len(self._original_serial_loss) == 1:
                        self._serial_loss = self._original_serial_loss[0]
                    elif len(self._original_serial_loss) == 0:
                        self._serial_loss = self._original_serial_loss
                    else:
                        raise ValueError("multi loss vars are not supported.")
367 368 369 370 371 372 373 374 375
                else:
                    self._serial_loss = self._original_serial_loss
            if not self._serial_optimizer:
                self._serial_optimizer = self._original_serial_optimizer
            if not self._serial_feed_vars:
                self._serial_feed_vars = self._original_serial_feed_vars
            if not self._serial_fetch_vars:
                self._serial_fetch_vars = self._original_serial_fetch_vars

376
            self._init_dist_attr_for_program()
377 378 379 380 381
            # Backup the original distributed information for later restore
            self._original_dist_tensors_for_program = copy.deepcopy(
                self._dist_tensors_for_program)
            self._original_dist_ops_for_program = copy.deepcopy(
                self._dist_ops_for_program)
382 383 384
            self._tensors_ids = list(self._dist_tensors_for_program.keys())
            self._ops_ids = list(self._dist_ops_for_program.keys())
            self._is_initialized = True
385 386 387 388 389 390 391 392 393

            if with_graph:
                set_flags({"FLAGS_convert_all_blocks": True})
                self._serial_graph = framework.IrGraph(
                    core.Graph(self._serial_main_program.desc))
                self._init_dist_attr_for_graph()
                self._need_copy_dist_attr_to_graph = False

        if self._need_copy_dist_attr_to_graph and with_graph:
394
            self.copy_dist_attr_from_program_to_graph()
395

396 397 398 399 400 401 402 403
    def add_process_mesh(self, process_mesh):
        assert isinstance(process_mesh, ProcessMesh), \
            'The type of dim_mapping must be ProcessMesh.'
        if process_mesh not in self.process_meshes:
            self._process_meshes.append(process_mesh)

    def add_dist_tensor_for_program(self, dist_tensor):
        inner_serial_tensor = dist_tensor.serial_tensor
404
        inner_serial_tensor_id = inner_serial_tensor.desc.original_id()
405 406 407 408
        self._dist_tensors_for_program[inner_serial_tensor_id] = dist_tensor

    def add_dist_op_for_program(self, dist_op):
        inner_serial_op = dist_op.serial_op
409
        inner_serial_op_id = inner_serial_op.desc.original_id()
410 411 412 413
        self._dist_ops_for_program[inner_serial_op_id] = dist_op

    def get_dist_tensor_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
414 415 416 417 418
        dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id, None)
        if dist_tensor:
            return dist_tensor
        else:
            serial_tensor_id = serial_tensor.desc.original_id()
419 420
            dist_tensor = self._dist_tensors_for_program.get(
                serial_tensor_id, None)
421 422 423 424
            if dist_tensor:
                return dist_tensor
            else:
                return None
425 426

    def get_dist_tensor_for_graph(self, serial_tensor_node):
427
        serial_tensor_node_id = _node_id(serial_tensor_node)
428 429
        return self._dist_tensors_for_graph.get(serial_tensor_node_id, None)

430 431 432 433 434 435 436 437 438 439 440 441
    def get_dist_op_for_program(self, serial_op):
        serial_op_id = serial_op.desc.id()
        dist_op = self._dist_ops_for_program.get(serial_op_id, None)
        if dist_op:
            return dist_op
        else:
            serial_op_id = serial_op.desc.original_id()
            dist_op = self._dist_ops_for_program.get(serial_op_id, None)
            if dist_op:
                return dist_op
            else:
                return None
442

443 444 445 446 447
    def del_dist_op_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
        if self._dist_ops_for_program.get(serial_tensor_id, None):
            del self._dist_ops_for_program[serial_tensor_id]

448
    def get_dist_op_for_graph(self, serial_op_node):
449
        serial_op_node_id = _node_id(serial_op_node)
450
        return self._dist_ops_for_graph.get(serial_op_node_id, None)
451 452 453 454 455 456 457

    def get_tensor_dist_attr_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
        dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id, None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
458
            serial_tensor_id = serial_tensor.desc.original_id()
459 460
            dist_tensor = self._dist_tensors_for_program.get(
                serial_tensor_id, None)
461 462 463 464
            if dist_tensor:
                return dist_tensor.dist_attr
            else:
                return None
465

466 467 468 469 470 471 472
    def get_tensor_dist_attr_for_program_with_id(self, tensor_id):
        dist_tensor = self._dist_tensors_for_program.get(tensor_id, None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
            return None

473 474 475 476 477
    def set_tensor_dist_attr_for_program(self, serial_tensor, dist_attr):
        dist_tensor = DistributedTensor(serial_tensor, dist_attr)
        self.add_dist_tensor_for_program(dist_tensor)

    def get_tensor_dist_attr_for_graph(self, serial_tensor_node):
478
        serial_tensor_node_id = _node_id(serial_tensor_node)
479 480 481 482 483 484 485 486 487 488 489 490 491
        dist_tensor = self._dist_tensors_for_graph.get(serial_tensor_node_id,
                                                       None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
            return None

    def get_op_dist_attr_for_program(self, serial_op):
        serial_op_id = serial_op.desc.id()
        dist_op = self._dist_ops_for_program.get(serial_op_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
492 493 494 495 496 497
            serial_op_id = serial_op.desc.original_id()
            dist_op = self._dist_ops_for_program.get(serial_op_id, None)
            if dist_op:
                return dist_op.dist_attr
            else:
                return None
498

499 500 501 502 503 504 505
    def get_op_dist_attr_for_program_with_id(self, op_id):
        dist_op = self._dist_ops_for_program.get(op_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
            return None

506 507 508 509 510
    def set_op_dist_attr_for_program(self, serial_op, dist_attr):
        dist_op = DistributedOperator(serial_op, dist_attr)
        self.add_dist_op_for_program(dist_op)

    def get_op_dist_attr_for_graph(self, serial_op_node):
511
        serial_op_node_id = _node_id(serial_op_node)
512 513 514 515 516 517
        dist_op = self._dist_ops_for_graph.get(serial_op_node_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
            return None

518 519
    def get_dist_attr_for_graph(self, serial_node):
        if serial_node.is_var() and serial_node.var() is not None:
520
            serial_tensor_node_id = _node_id(serial_node)
521 522 523 524 525 526 527
            dist_tensor = self._dist_tensors_for_graph.get(
                serial_tensor_node_id, None)
            if dist_tensor:
                return dist_tensor.dist_attr
            else:
                return None
        if serial_node.is_op() and serial_node.op() is not None:
528
            serial_op_node_id = _node_id(serial_node)
529 530 531 532 533 534
            dist_op = self._dist_ops_for_graph.get(serial_op_node_id, None)
            if dist_op:
                return dist_op.dist_attr
            else:
                return None
        return None
535

536
    def _init_dist_attr_for_program(self, no_default=False):
537
        # Copy the dist tensors and dist ops annotated by users from the default context
538 539 540 541 542
        if not no_default:
            default_ctx = get_default_distributed_context()
            self._process_meshes = copy.deepcopy(default_ctx.process_meshes)
        else:
            default_ctx = self
543 544
        # Copy the data parallel flag from the default context
        self._data_parallel = default_ctx.data_parallel
545
        for block in self._serial_main_program.blocks:
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
            for tensor in block.vars.values():
                # Copy the distributed tensors in the default context
                default_dist_tensor = default_ctx.get_dist_tensor_for_program(
                    tensor)
                if default_dist_tensor and default_ctx is not self:
                    self.add_dist_tensor_for_program(default_dist_tensor)
                current_dist_tensor = self.get_dist_tensor_for_program(tensor)
                if current_dist_tensor is None:
                    dist_tensor = DistributedTensor(tensor)
                    self.add_dist_tensor_for_program(dist_tensor)
            for op in block.ops:
                # Copy the distributed operators in the default context
                default_dist_op = default_ctx.get_dist_op_for_program(op)
                if default_dist_op and default_ctx is not self:
                    self.add_dist_op_for_program(default_dist_op)
                current_dist_op = self.get_dist_op_for_program(op)
                if current_dist_op is None:
                    dist_op = DistributedOperator(op)
                    self.add_dist_op_for_program(dist_op)
565 566 567 568
        self._original_dist_tensors_for_program = copy.deepcopy(
            self._dist_tensors_for_program)
        self._original_dist_ops_for_program = copy.deepcopy(
            self._dist_ops_for_program)
569

570
    def _order_nodes_by_program_order(self):
571

572 573
        def _contains(nodes, target_node):
            for node in nodes:
574
                if _node_id(node) == _node_id(target_node):
575 576 577
                    return True
            return False

578 579 580 581 582 583
        serial_ordered_tensor_nodes = []
        serial_ordered_op_nodes = []
        all_nodes = []
        for idx, graph in enumerate(self._serial_graph.all_sub_graphs()):
            for node in graph.all_nodes():
                all_nodes.append(node)
584 585
        for node in all_nodes:
            if node.is_var() and node.var() is not None:
586
                serial_ordered_tensor_nodes.append(node)
587
            if node.is_op() and node.op() is not None:
588 589 590 591 592 593 594 595 596 597
                serial_ordered_op_nodes.append(node)
        serial_ordered_tensor_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        serial_ordered_op_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        num_nodes_before = len(serial_ordered_tensor_nodes) + len(
            serial_ordered_op_nodes)

        new_serial_ordered_tensor_nodes = []
        new_serial_ordered_op_nodes = []
598
        new_serial_ordered_nodes = []
599
        for op_node in serial_ordered_op_nodes:
600 601 602 603
            tensor_nodes = []
            for tensor_node in op_node.inputs:
                if tensor_node.is_var() \
                    and tensor_node.var() is not None \
604
                    and not _contains(new_serial_ordered_nodes, tensor_node):
605
                    tensor_nodes.append(tensor_node)
606
                    new_serial_ordered_tensor_nodes.append(tensor_node)
607
            tensor_nodes.sort(key=lambda node: node.node.original_desc_id())
608 609
            new_serial_ordered_nodes.extend(tensor_nodes)
            new_serial_ordered_nodes.append(op_node)
610
            new_serial_ordered_op_nodes.append(op_node)
611 612 613 614
            tensor_nodes = []
            for tensor_node in op_node.outputs:
                if tensor_node.is_var() \
                    and tensor_node.var() is not None \
615
                    and not _contains(new_serial_ordered_nodes, tensor_node):
616
                    tensor_nodes.append(tensor_node)
617 618
                    new_serial_ordered_tensor_nodes.append(tensor_node)
            tensor_nodes.sort(key=lambda node: node.node.original_desc_id())
619
            new_serial_ordered_nodes.extend(tensor_nodes)
620 621 622 623 624 625
        new_serial_ordered_tensor_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        new_serial_ordered_op_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        self._serial_ordered_tensor_nodes = new_serial_ordered_tensor_nodes
        self._serial_ordered_op_nodes = new_serial_ordered_op_nodes
626
        self._serial_ordered_nodes = new_serial_ordered_nodes
627 628 629 630 631 632 633 634 635 636 637
        assert len(self._serial_ordered_nodes) == len(
            self._serial_ordered_tensor_nodes) + len(
                self._serial_ordered_op_nodes)
        self._serial_orphan_tensor_nodes = []
        for tensor_node in serial_ordered_tensor_nodes:
            if not _contains(self._serial_ordered_tensor_nodes, tensor_node):
                self._serial_orphan_tensor_nodes.append(tensor_node)
        if len(self._serial_ordered_nodes) != num_nodes_before:
            print(
                "WARNING: there are some orphan tensors or ops which are not used in the execution."
            )
638

639 640 641
    def _init_dist_attr_for_graph(self):
        # Convert program to graph and initialize the distributed attributes
        self._order_nodes_by_program_order()
642
        for node in self.serial_ordered_nodes:
643
            if node.is_var() and node.var() is not None:
644 645 646 647 648 649 650
                dist_tensor = None
                tensor_id = node.node.original_desc_id()
                for cur_tensor_id, cur_dist_tensor in self._dist_tensors_for_program.items(
                ):
                    if tensor_id == cur_tensor_id \
                        or tensor_id == cur_dist_tensor.serial_tensor.desc.original_id():
                        dist_tensor = cur_dist_tensor
651 652
                        self._node_id_to_tensor_id[_node_id(
                            node)] = cur_tensor_id
653 654
                assert dist_tensor is not None, \
                    "Tensor must have a distributed tensor after the initialization for program."
655
                serial_tensor_node_id = _node_id(node)
656 657 658 659
                new_dist_tensor = DistributedTensor(dist_tensor.serial_tensor,
                                                    dist_tensor.dist_attr)
                self._dist_tensors_for_graph[
                    serial_tensor_node_id] = new_dist_tensor
660
            if node.is_op() and node.op() is not None:
661 662 663 664 665 666 667
                dist_op = None
                op_id = node.node.original_desc_id()
                for cur_op_id, cur_dist_op in self._dist_ops_for_program.items(
                ):
                    if op_id == cur_op_id \
                        or op_id == cur_dist_op.serial_op.desc.original_id():
                        dist_op = cur_dist_op
668
                        self._node_id_to_op_id[_node_id(node)] = cur_op_id
669 670
                assert dist_op is not None, \
                    "Operator must have a distributed operator after the initialization for program."
671
                serial_op_node_id = _node_id(node)
672 673 674
                new_dist_op = DistributedOperator(dist_op.serial_op,
                                                  dist_op.dist_attr)
                self._dist_ops_for_graph[serial_op_node_id] = new_dist_op
675 676 677 678 679 680 681 682 683

    def clear_dist_info_for_program(self):
        self._dist_tensors_for_program.clear()
        self._dist_ops_for_program.clear()

    def clear_dist_info_for_graph(self):
        self._dist_tensors_for_graph.clear()
        self._dist_ops_for_graph.clear()

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
    def copy_dist_attr_from_program_to_graph(self):
        for node in self.serial_ordered_nodes:
            if node.is_var() and node.var() is not None:
                dist_tensor = None
                tensor_id = node.node.original_desc_id()
                for cur_tensor_id, cur_dist_tensor in self._dist_tensors_for_program.items(
                ):
                    if tensor_id == cur_tensor_id \
                        or tensor_id == cur_dist_tensor.serial_tensor.desc.original_id():
                        dist_tensor = cur_dist_tensor
                assert dist_tensor is not None, \
                    "Tensor must have a distributed tensor after the initialization for program."
                serial_tensor_node_id = _node_id(node)
                new_dist_tensor = DistributedTensor(dist_tensor.serial_tensor,
                                                    dist_tensor.dist_attr)
                self._dist_tensors_for_graph[
                    serial_tensor_node_id] = new_dist_tensor
            if node.is_op() and node.op() is not None:
                dist_op = None
                op_id = node.node.original_desc_id()
                for cur_op_id, cur_dist_op in self._dist_ops_for_program.items(
                ):
                    if op_id == cur_op_id \
                        or op_id == cur_dist_op.serial_op.desc.original_id():
                        dist_op = cur_dist_op
                assert dist_op is not None, \
                    "Operator must have a distributed operator after the initialization for program."
                serial_op_node_id = _node_id(node)
                new_dist_op = DistributedOperator(dist_op.serial_op,
                                                  dist_op.dist_attr)
                self._dist_ops_for_graph[serial_op_node_id] = new_dist_op

716
    def copy_dist_attr_from_graph_to_program(self):
717
        assert self._is_initialized, \
718 719
            "Both program and graph must be initialized."
        updated_tensors = {}
720 721
        # all_nodes = self._serial_graph.all_nodes()
        all_nodes = self._serial_ordered_nodes
722 723
        for node in all_nodes:
            if node.is_var() and node.var() is not None:
724
                tensor_id = self._node_id_to_tensor_id[_node_id(node)]
725
                updated = updated_tensors.get(tensor_id, False)
726 727 728 729 730 731 732
                # If a var has multiples var nodes in graph, only use the first one for now
                if not updated:
                    tensor_dist_attr_for_graph = self.get_tensor_dist_attr_for_graph(
                        node)
                    dist_tensor_for_program = self._dist_tensors_for_program[
                        tensor_id]
                    dist_tensor_for_program.dist_attr = tensor_dist_attr_for_graph
733
                    updated_tensors[tensor_id] = True
734
            if node.is_op() and node.op() is not None:
735
                op_id = self._node_id_to_op_id[_node_id(node)]
736 737 738
                op_dist_attr_for_graph = self.get_op_dist_attr_for_graph(node)
                dist_op_for_program = self._dist_ops_for_program[op_id]
                dist_op_for_program.dist_attr = op_dist_attr_for_graph
739
        # TODO: the completion algorithm will skipped orphan tensors,
740 741 742
        # here we just set there process_mesh to the first one.
        for orphan_node in self._serial_orphan_tensor_nodes:
            serial_tensor_id = orphan_node.var().id()
743 744
            dist_tensor = self._dist_tensors_for_program.get(
                serial_tensor_id, None)
745 746 747 748 749 750 751
            if dist_tensor:
                dist_tensor.dist_attr.process_mesh = self._process_meshes[0]
            else:
                serial_tensor_id = orphan_node.var().original_id()
                dist_tensor = self._dist_tensors_for_program.get(
                    serial_tensor_id, None)
                dist_tensor.dist_attr.process_mesh = self._process_meshes[0]
752 753 754 755 756

    def amend_dist_attr_for_program(self):
        for dist_tensor in self._dist_tensors_for_program.values():
            serial_tensor = dist_tensor.serial_tensor
            dist_attr = dist_tensor.dist_attr
757 758 759
            if serial_tensor.type == core.VarDesc.VarType.READER \
                or serial_tensor.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
                or serial_tensor.type == core.VarDesc.VarType.STEP_SCOPES:
760 761 762 763 764
                tensor_shape = []
            else:
                tensor_shape = serial_tensor.shape
            dims_mapping = dist_attr.dims_mapping
            process_mesh_shape = dist_attr.process_mesh.topology
765
            process_mesh_processes = dist_attr.process_mesh.processes
766 767 768 769 770 771
            # If the dimension of tensor is less than the sharding dimension of process mesh,
            # we just amend the dimension mapping to -1. (Is this really OK?)
            for i in range(len(tensor_shape)):
                if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
                    and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]:
                    dims_mapping[i] = -1
772 773
                if dims_mapping[i] != -1 and len(process_mesh_processes) == 1:
                    dims_mapping[i] = -1
774 775 776 777

        for dist_op in self._dist_ops_for_program.values():
            serial_op = dist_op.serial_op
            dist_attr = dist_op.dist_attr
778 779
            process_mesh_shape = dist_attr.process_mesh.topology
            process_mesh_processes = dist_attr.process_mesh.processes
780 781 782 783 784
            for arg_name in serial_op.input_arg_names:
                if dist_op.get_serial_input(arg_name) is None:
                    tensor_shape = []
                else:
                    if dist_op.get_serial_input(arg_name).type == core.VarDesc.VarType.READER \
785
                        or dist_op.get_serial_input(arg_name).type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
786 787 788 789 790 791 792 793 794 795 796
                        or dist_op.serial_op.type == "create_py_reader":
                        tensor_shape = []
                    else:
                        tensor_shape = dist_op.get_serial_input(arg_name).shape
                dims_mapping = dist_attr.get_input_dims_mapping(arg_name)
                # If the dimension of tensor is less than the sharding dimension of process mesh,
                # we just amend the dimension mapping to -1. (Is this really OK?)
                for i in range(len(tensor_shape)):
                    if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
                        and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]:
                        dims_mapping[i] = -1
797 798 799
                    if dims_mapping[i] != -1 and len(
                            process_mesh_processes) == 1:
                        dims_mapping[i] = -1
800
            for arg_name in serial_op.output_arg_names:
801 802 803
                if dist_op.get_serial_output(arg_name).type == core.VarDesc.VarType.READER \
                    or dist_op.get_serial_output(arg_name).type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
                    or dist_op.get_serial_output(arg_name).type == core.VarDesc.VarType.STEP_SCOPES:
804 805 806 807 808 809 810 811 812 813
                    tensor_shape = []
                else:
                    tensor_shape = dist_op.get_serial_output(arg_name).shape
                dims_mapping = dist_attr.get_output_dims_mapping(arg_name)
                # If the dimension of tensor is less than the sharding dimension of process mesh,
                # we just amend the dimension mapping to -1. (Is this really OK?)
                for i in range(len(tensor_shape)):
                    if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
                        and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]:
                        dims_mapping[i] = -1
814 815 816 817 818 819
                    if dims_mapping[i] != -1 and len(
                            process_mesh_processes) == 1:
                        dims_mapping[i] = -1
            if len(process_mesh_processes) == 1:
                dist_op.dist_attr.impl_type = "default"
                dist_op.dist_attr.impl_idx = 0
820 821

    def validate_dist_attr_for_program(self):
822
        if not self._is_initialized:
823 824
            assert False, \
                "Program must be initialized before validating its distributed attributes"
825
        for block in self.serial_main_program.blocks:
826 827
            for tensor in block.vars.values():
                dist_tensor = self.get_dist_tensor_for_program(tensor)
828 829 830
                assert dist_tensor is not None, \
                    "Tensor {} does not have a distributed attribute.".format(
                        dist_tensor.serial_tensor.name)
831 832
                if (dist_tensor
                        is not None) and (not dist_tensor.validate_dist_attr()):
833
                    assert False, "Tensor {} (id: {}, original_id: {}) has a wrong distributed attributes {}.".format(
834
                        dist_tensor.serial_tensor.name, dist_tensor.desc.id(),
835
                        dist_tensor.desc.original_id(), dist_tensor.dist_attr)
836 837
            for op in block.ops:
                dist_op = self.get_dist_op_for_program(op)
838 839 840
                assert dist_op is not None, \
                    "Operator {} does not have a distributed attribute.".format(
                        dist_op.serial_op.type)
841
                if (dist_op is not None) and (not dist_op.validate_dist_attr()):
842
                    assert False, "Operator {} (id: {}, original_id: {}) has a wrong distributed attributes {} .".format(
843
                        dist_op.serial_op.type, dist_op.serial_op.desc.id(),
844
                        dist_op.serial_op.desc.original_id(), dist_op.dist_attr)
845 846
        return True

Z
zhaoyingli 已提交
847 848 849 850 851
    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
852 853 854 855 856 857
            if k in [
                "_original_serial_main_program", "_original_serial_startup_program", \
                "_serial_main_program", "_serial_startup_program", "_serial_graph", \
                "_dist_main_programs", "_dist_startup_programs", \
                "_serial_ordered_nodes", "_serial_ordered_tensor_nodes", \
                "_serial_ordered_op_nodes"]:
Z
zhaoyingli 已提交
858 859 860
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
861 862 863 864

        # update dist tensor's dist_context
        for key in result._dist_tensors_for_program.keys():
            result._dist_tensors_for_program[key]._dist_context = result
Z
zhaoyingli 已提交
865 866
        return result

867 868 869 870 871 872 873 874 875

class DistributedOperatorContext:
    """
    DistributedOperatorContext is used to create a dist op desc in Program.
    Every time to create a new dist op, the context should be updated for it accordingly.
    """

    def __init__(self):
        self._dst_main_program = None
876
        self._main_block = None
877
        self._dst_startup_program = None
878
        self._startup_block = None
879 880
        self._cur_src_op = None
        self._cur_dist_attr = None
881
        self.grad_op_id_to_op_id = {}
882
        self.grad_var_to_var = defaultdict(dict)
883
        self._work_block = None
884
        self.already_init_sync_vars = set()
885 886
        self.varname_mapping = None
        self.rank_id = None
887

Z
zhaoyingli 已提交
888 889 890 891 892
    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
893 894 895 896
            if k in [
                    "_dst_main_program", "_dst_startup_program", "_cur_src_op",
                    "_work_block", "_main_block", "_startup_block"
            ]:
Z
zhaoyingli 已提交
897 898 899 900 901
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
        return result

902 903
    @property
    def dst_main_program(self):
904 905
        return self._dst_main_program

906 907 908 909
    @dst_main_program.setter
    def dst_main_program(self, prog):
        self._dst_main_program = prog
        self._main_block = prog.blocks[0]
910

911 912 913
    @property
    def main_block(self):
        return self._main_block
914

915 916 917
    @property
    def dst_startup_program(self):
        return self._dst_startup_program
918

919 920 921 922
    @dst_startup_program.setter
    def dst_startup_program(self, prog):
        self._dst_startup_program = prog
        self._startup_block = prog.blocks[0]
923

924 925 926
    @property
    def startup_block(self):
        return self._startup_block
927

928 929 930 931
    @property
    def work_block(self):
        assert self._work_block is not None
        return self._work_block
932

933 934 935 936
    @work_block.setter
    def work_block(self, block):
        assert block is not None
        self._work_block = block
937

938 939 940
    @property
    def cur_src_op(self):
        assert self._cur_src_op is not None
941 942
        return self._cur_src_op

943
    def prepare_context(self, src_op):
944

945
        self._cur_src_op = src_op
946 947 948 949 950 951

        # build input varname mapping
        kinputs = {}
        for input_name in src_op.desc.input_names():
            varnames = []
            for varname in src_op.desc.input(input_name):
952 953
                assert varname in self.varname_mapping
                varnames.append(self.varname_mapping[varname])
954 955 956 957 958 959 960
            kinputs[input_name] = varnames

        # build output varname mapping
        koutputs = {}
        for output_name in src_op.desc.output_names():
            varnames = []
            for varname in src_op.desc.output(output_name):
961 962
                assert varname in self.varname_mapping
                varnames.append(self.varname_mapping[varname])
963 964 965
            koutputs[output_name] = varnames

        return kinputs, koutputs
966 967 968


class BlockState(object):
969

970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
    def __init__(self):
        self.nblock = 0
        self.forward_indices = []
        self.backward_indices = []
        self.backward_to_forward_index_map = {}

    def parse_forward_blocks(self, program):

        while program.current_block_idx != 0:
            program._rollback()

        assert program.current_block_idx == 0

        for idx, block in enumerate(program.blocks):

            assert idx == block.idx, "index doesn't match"
            assert block.forward_block_idx == -1, "forward_block_idx of forward block [{}] is not [{}]".format(
                idx, block.forward_block_idx)
            self.forward_indices.append(idx)
            self.nblock += 1

        assert self.nblock >= 1

    def parse_backward_blocks(self, program):

        assert 0 in self.forward_indices, "forward block idx are{}".format(
            self.forward_indices)
        self.backward_to_forward_index_map[0] = 0

        for idx, block in enumerate(program.blocks):

            if idx < len(self.forward_indices):
                continue

            assert idx == block.idx, "index doesn't match"
            assert block.forward_block_idx in self.forward_indices
            self.backward_indices.append(idx)
            self.backward_to_forward_index_map[idx] = block.forward_block_idx
            self.nblock += 1

        assert self.nblock == len(program.blocks)