nn.py 188.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17 18 19 20
"""

from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
21
from ..param_attr import ParamAttr
Y
yuyang18 已提交
22
from layer_function_generator import autodoc, templatedoc
Y
yangyaming 已提交
23
from tensor import concat
C
chengduoZH 已提交
24
import utils
Y
yuyang18 已提交
25
import random
F
fengjiayi 已提交
26
from .. import unique_name
Y
Yu Yang 已提交
27 28

__all__ = [
Y
ying 已提交
29 30 31
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
32
    'dynamic_lstmp',
G
guosheng 已提交
33
    'dynamic_gru',
Y
ying 已提交
34 35 36 37 38 39 40 41 42
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
Y
yuyang18 已提交
43
    'conv3d',
Y
ying 已提交
44
    'sequence_pool',
45 46
    'sequence_softmax',
    'softmax',
Y
ying 已提交
47
    'pool2d',
Y
yuyang18 已提交
48
    'pool3d',
Y
ying 已提交
49 50 51
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
Y
yuyang18 已提交
52
    'conv3d_transpose',
Y
ying 已提交
53 54 55 56 57 58
    'sequence_expand',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
59
    'reduce_prod',
Y
ying 已提交
60 61 62 63
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
64 65
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
66 67
    'l2_normalize',
    'matmul',
Q
qingqing01 已提交
68
    'topk',
Y
ying 已提交
69 70
    'warpctc',
    'sequence_reshape',
71
    'transpose',
72
    'im2sequence',
73
    'nce',
Q
Qiao Longfei 已提交
74
    'beam_search',
75
    'row_conv',
76
    'multiplex',
G
guosheng 已提交
77
    'layer_norm',
78 79
    'softmax_with_cross_entropy',
    'smooth_l1',
80
    'one_hot',
Y
Yu Yang 已提交
81
    'autoincreased_step_counter',
C
caoying03 已提交
82
    'reshape',
Y
yangyaming 已提交
83
    'lod_reset',
D
dragonwarrior 已提交
84
    'lrn',
G
guosheng 已提交
85
    'pad',
86
    'label_smooth',
87
    'roi_pool',
W
whs 已提交
88
    'dice_loss',
F
fengjiayi 已提交
89 90
    'image_resize',
    'image_resize_short',
B
baiyf 已提交
91
    'resize_bilinear',
W
whs 已提交
92
    'gather',
93
    'random_crop',
Y
yuyang18 已提交
94 95 96
    'mean_iou',
    'relu',
    'log',
97
    'crop',
Y
Yu Yang 已提交
98 99 100 101 102 103 104 105
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
106
       use_mkldnn=False,
Y
Yu Yang 已提交
107
       act=None,
J
Jacek Czaja 已提交
108
       is_test=False,
109
       name=None):
Y
Yu Yang 已提交
110
    """
111
    **Fully Connected Layer**
Y
Yu Yang 已提交
112

113 114 115 116 117 118 119 120
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
121
    to the output as well.
C
caoying03 已提交
122

C
caoying03 已提交
123
    This process can be formulated as follows:
124 125 126

    .. math::

127
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
128 129 130

    In the above equation:

C
caoying03 已提交
131 132 133 134
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
135
    * :math:`Act`: The activation function.
C
caoying03 已提交
136
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
137 138

    Args:
R
ranqiu 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
            of this layer. If it is set to None, no bias will be added to the output units.
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
156
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
157 158
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
159
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
160

161
    Returns:
F
fengjiayi 已提交
162
        Variable: The transformation result.
163 164

    Raises:
C
caoying03 已提交
165
        ValueError: If rank of the input tensor is less than 2.
166 167 168 169

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
170
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
171
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
172
    """
C
caoying03 已提交
173

C
caoying03 已提交
174
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
175 176 177 178

    dtype = helper.input_dtype()

    mul_results = []
179 180
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
181 182 183
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
184

Y
Yu Yang 已提交
185
        w = helper.create_parameter(
186 187
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
188
        helper.append_op(
189 190 191
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
192
            outputs={"Out": tmp},
M
mozga-intel 已提交
193 194
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
195 196 197 198
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
199
    else:
200 201
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
202 203 204 205
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": use_mkldnn})
206 207 208 209
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
210 211


212 213 214
def embedding(input,
              size,
              is_sparse=False,
215
              is_distributed=False,
216 217 218
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
219
    """
220 221
    **Embedding Layer**

222
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
223 224
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
225 226 227

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
228 229

    Args:
230 231 232 233 234
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
235
        is_distributed(bool): Whether to run lookup table from remote parameter server.
236 237
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
238
            with zeros whenever lookup encounters it in :attr:`input`. If
239
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
240 241
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
242
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
243

244 245 246
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
247

248 249
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
250

C
chengduoZH 已提交
251
          dict_size = len(dataset.ids)
252
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
253
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
254 255 256 257 258 259
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
260 261
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
262 263 264 265 266
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
267 268 269 270 271
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
272 273 274
    return tmp


Y
yi.wu 已提交
275
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
276 277
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
278 279
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
280 281 282 283 284 285 286
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
287 288
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
289
    """
Y
yi.wu 已提交
290
    ${comment}
Y
Yibing Liu 已提交
291 292

    Args:
Y
yi.wu 已提交
293 294
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
295 296 297 298 299 300 301
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

302
        param_attr(ParamAttr|None): The parameter attribute for the learnable
303
                               hidden-hidden weights.
Y
Yibing Liu 已提交
304 305 306

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
307 308
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
309
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
310 311 312
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
313

314
                              1. `use_peepholes = False`
Y
yi.wu 已提交
315 316
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
317
                              2. `use_peepholes = True`
Y
yi.wu 已提交
318
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
319
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
320
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
321 322 323 324 325 326 327 328
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
329 330

    Returns:
Y
Yibing Liu 已提交
331 332
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
333

Y
Yibing Liu 已提交
334
    Examples:
Y
Yibing Liu 已提交
335 336
        .. code-block:: python

Y
Yibing Liu 已提交
337 338
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
339
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
340 341
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
342
    """
343

Y
Yu Yang 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
358 359 360 361 362 363 364 365 366 367
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
368 369 370

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
371
        inputs=inputs,
Y
Yu Yang 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
388 389 390 391 392 393 394 395 396 397 398
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
399 400
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
401 402 403
    """
    **Dynamic LSTMP Layer**

404 405 406 407 408 409
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
410 411 412 413 414

    The formula is as follows:

    .. math::

415
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
416

417
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
418

419
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
420

421
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
422

423
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
424

425
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
426

427
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
428

Y
Yibing Liu 已提交
429 430 431 432 433 434
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
435
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
436
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
437
          bias vector).
Y
Yibing Liu 已提交
438 439 440
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
441
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
442
    * :math:`h`: The hidden state.
443
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
444 445
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
446
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
447
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
448
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
449 450
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
451 452 453 454

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
455

Y
Yibing Liu 已提交
456 457 458 459 460 461 462 463 464 465 466 467
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
468
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
469 470
                               hidden-hidden weight and projection weight.

471 472
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
473 474
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
475 476
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
477 478
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
479 480 481 482 483 484
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
485
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
486 487 488
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
489
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
490 491 492 493 494 495 496 497 498
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
499
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
500 501
                              default "tanh".
        proj_activation(str): The activation for projection output.
502
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
503 504
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
505 506
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
507 508

    Returns:
509 510 511 512
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
513 514

    Examples:
515

Y
Yibing Liu 已提交
516 517
        .. code-block:: python

518 519 520 521
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
522
            hidden_dim, proj_dim = 512, 256
523
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
524
                                     act=None, bias_attr=None)
525 526 527
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
528 529 530 531
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
532
    """
533

Y
Yibing Liu 已提交
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
    helper = LayerHelper('lstmp', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
580 581 582 583 584 585 586 587 588
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
589
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
590

591
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
592
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
593

G
guosheng 已提交
594 595 596 597 598 599 600 601 602
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
603

G
guosheng 已提交
604
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
605

G
guosheng 已提交
606
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
607 608
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
609 610 611 612
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
613
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
614 615

    Args:
616 617
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
618
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
619
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
620 621
            is the hidden size.
        size(int): The dimension of the gru cell.
622
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
623 624
            hidden-hidden weight matrix. Note:

625
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
626
              :math:`D` is the hidden size.
627
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
628
              The first part are weights of the update gate and reset gate with
629
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
630
              candidate hidden state with shape :math:`(D \\times D)`.
631
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
632
            hidden-hidden bias.
633
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
634 635 636
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
637
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
638
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
639 640 641 642
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
643 644

    Returns:
G
guosheng 已提交
645
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
646
            and sequence length is the same with the input.
647

G
guosheng 已提交
648
    Examples:
649

G
guosheng 已提交
650 651
        .. code-block:: python

652 653 654 655
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
656
            hidden_dim = 512
657
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
658 659 660 661 662 663 664 665 666 667
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
668
    batch_size = input.shape[0]
G
guosheng 已提交
669 670 671
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
672 673 674
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
698 699 700
def gru_unit(input,
             hidden,
             size,
701 702
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
703
             activation='tanh',
704
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
705
    """
706
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
707

708 709
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
710

711
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
712

713
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
714

715
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
716 717

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
718 719 720
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
721 722
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

723 724
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
725 726 727
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
728 729 730 731 732

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
733 734
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
735 736 737 738
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
739

740 741 742 743 744 745
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
746

747
             # assuming we have x_t_data and prev_hidden of size=10
748
             x_t = fluid.layers.fc(input=x_t_data, size=30)
749 750
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
    size = size / 3

    # create weight
766 767
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
768

769 770 771 772
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
773
    # create bias
774
    if helper.bias_attr:
Y
Yu Yang 已提交
775 776 777
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
778
        inputs['Bias'] = bias
Y
Yu Yang 已提交
779 780 781

    helper.append_op(
        type='gru_unit',
782
        inputs=inputs,
Y
Yu Yang 已提交
783 784 785 786 787 788
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
789 790
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
791 792 793 794 795
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
796
@templatedoc()
797
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
798 799 800 801 802 803 804
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
805
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
806 807 808 809
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
810 811 812
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
813 814

    """
Y
Yu Yang 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
840
@templatedoc()
841
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
842 843 844 845 846
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
847

Y
yuyang18 已提交
848
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
849

Y
yuyang18 已提交
850 851 852
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
853
        Variable: ${viterbi_path_comment}
854

Y
yi.wu 已提交
855 856 857 858 859
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
860
    """
Y
Yu Yang 已提交
861 862 863 864 865 866 867 868 869 870 871 872 873
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
874
@templatedoc()
F
fengjiayi 已提交
875
def cos_sim(X, Y):
Y
Yu Yang 已提交
876
    """
Y
yi.wu 已提交
877 878 879
    ${comment}

    Args:
880 881
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
882

Y
yi.wu 已提交
883
    Returns:
884
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
885
    """
F
fengjiayi 已提交
886
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
887 888 889 890 891 892 893 894 895 896 897 898 899
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


900
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
901 902 903 904 905
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
906
    training. The dropout operator randomly sets (according to the given dropout
907 908 909 910
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
911 912
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
913 914 915 916 917 918 919
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
920 921

    Returns:
922
        Variable: A tensor variable is the shape with `x`.
923 924

    Examples:
925

926 927
        .. code-block:: python

928 929
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
930 931
    """

F
fengjiayi 已提交
932
    helper = LayerHelper('dropout', **locals())
933 934 935 936 937 938 939
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
940 941 942 943 944 945
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
946 947 948
    return out


F
fengjiayi 已提交
949
def cross_entropy(input, label, soft_label=False):
Y
Yu Yang 已提交
950
    """
Y
Yibing Liu 已提交
951 952
    **Cross Entropy Layer**

953 954 955
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
956 957

    1) One-hot cross-entropy:
F
fengjiayi 已提交
958
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
959

Y
Yibing Liu 已提交
960
        .. math::
Y
yangyaming 已提交
961

Y
Yibing Liu 已提交
962 963 964
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
965 966
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
967 968 969 970 971

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
972
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
973 974 975
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
976 977
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
978
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
979

Y
Yibing Liu 已提交
980
    Args:
Y
yangyaming 已提交
981
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
982 983 984 985
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
986
        label (Variable|list): the ground truth which is a 2-D tensor. When
987 988 989 990
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
991
        soft_label (bool): a flag indicating whether to
992 993
                                           interpretate the given labels as soft
                                           labels, default `False`.
Y
Yibing Liu 已提交
994 995 996 997 998

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
999 1000 1001 1002 1003
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1004 1005 1006 1007 1008 1009

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1010
    """
F
fengjiayi 已提交
1011
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1012 1013 1014 1015 1016 1017
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
F
fengjiayi 已提交
1018
        attrs={"soft_label": soft_label})
Y
Yu Yang 已提交
1019 1020 1021
    return out


F
fengjiayi 已提交
1022
def square_error_cost(input, label):
Y
Yu Yang 已提交
1023
    """
1024 1025
    **Square error cost layer**

1026 1027
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1028

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1042 1043
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1044 1045

    Returns:
G
guosheng 已提交
1046
        Variable: The tensor variable storing the element-wise squared error \
1047
                  difference of input and label.
1048 1049 1050 1051 1052 1053 1054 1055

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1056
    """
F
fengjiayi 已提交
1057
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1067 1068
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1069 1070 1071
    return square_out


Y
yi.wu 已提交
1072
@templatedoc()
Y
Yu Yang 已提交
1073 1074 1075 1076
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1077
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1078
    """
Y
yi.wu 已提交
1079
    **Chunk Evaluator**
Y
yi.wu 已提交
1080

Y
yangyaming 已提交
1081
    This function computes and outputs the precision, recall and
1082
    F1-score of chunk detection.
Y
yi.wu 已提交
1083

Y
yi.wu 已提交
1084 1085 1086 1087 1088 1089 1090 1091
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1092

Y
yi.wu 已提交
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1118

Y
yi.wu 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1143
    Args:
1144 1145 1146 1147 1148
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1149

Y
yi.wu 已提交
1150
    Returns:
Y
update  
yi.wu 已提交
1151 1152 1153
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1154

Y
yi.wu 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1167
    """
F
fengjiayi 已提交
1168
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1169 1170 1171 1172 1173

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1174 1175 1176
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1177 1178 1179 1180 1181 1182 1183 1184

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1185 1186 1187 1188
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1189 1190 1191
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1192 1193
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1194
        })
1195 1196
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1197 1198


1199
@templatedoc()
Y
Yu Yang 已提交
1200 1201 1202 1203 1204 1205 1206
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1207
                  act=None):
Y
Yu Yang 已提交
1208 1209 1210 1211
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1222

1223 1224
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
            'contextStart': -int(filter_size / 2),
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1250
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
1251 1252 1253
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1254
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed. Default: True
1274

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1297
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
    """
    The input of the softmax layer is a 2-D tensor with shape N x K (N is the
    batch_size, K is the dimension of input feature). The output tensor has the
    same shape as the input tensor.

    For each row of the input tensor, the softmax operator squashes the
    K-dimensional vector of arbitrary real values to a K-dimensional vector of real
    values in the range [0, 1] that add up to 1.

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in Input(X), we have:

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1348 1349 1350
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1351 1352
           stride=1,
           padding=0,
1353
           dilation=1,
Y
Yu Yang 已提交
1354 1355 1356
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1357
           use_cudnn=True,
1358
           use_mkldnn=False,
1359 1360
           act=None,
           name=None):
Y
Yu Yang 已提交
1361
    """
C
chengduoZH 已提交
1362
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1363 1364
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1365
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1366 1367 1368 1369 1370 1371 1372
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1373 1374 1375
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1376

1377
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1378

C
chengduoZH 已提交
1379 1380
    .. math::

C
refine  
chengduoZH 已提交
1381
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1382

T
tensor-tang 已提交
1383
    Where:
C
chengduoZH 已提交
1384

1385 1386 1387 1388 1389
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1390
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1391 1392 1393

    Example:

1394 1395
        - Input:

W
weixing02 已提交
1396
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1397

W
weixing02 已提交
1398
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1399

1400
        - Output:
T
tensor-tang 已提交
1401

W
weixing02 已提交
1402
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1403

C
chengduoZH 已提交
1404
        Where
1405 1406

        .. math::
C
chengduoZH 已提交
1407

W
weixing02 已提交
1408 1409
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1410 1411

    Args:
1412
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1413
        num_filters(int): The number of filter. It is as same as the output
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1436 1437
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1438 1439 1440
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1441 1442

    Returns:
G
guosheng 已提交
1443
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1444 1445
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1446
    Raises:
1447 1448
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1449

C
chengduoZH 已提交
1450 1451 1452
    Examples:
        .. code-block:: python

1453 1454
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1455 1456 1457
    """

    num_channels = input.shape[1]
1458 1459

    l_type = 'conv2d'
X
xzl 已提交
1460 1461
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1462
        l_type = 'depthwise_conv2d'
1463 1464 1465 1466

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1467 1468 1469 1470 1471 1472 1473
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

C
chengduoZH 已提交
1474 1475 1476
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1477
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1478

C
chengduoZH 已提交
1479 1480
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1498
        type=l_type,
Y
Yu Yang 已提交
1499 1500 1501 1502 1503
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1504 1505 1506
        attrs={
            'strides': stride,
            'paddings': padding,
1507
            'dilations': dilation,
C
chengduoZH 已提交
1508
            'groups': groups,
1509 1510
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1511
        })
Y
Yu Yang 已提交
1512 1513 1514 1515 1516 1517

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1536 1537 1538 1539 1540 1541
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1542 1543 1544 1545 1546 1547 1548 1549 1550

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1551 1552
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1553 1554 1555
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1556
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1582
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1583 1584
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1585
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1586 1587
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1588
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1589 1590
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1591
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1618 1619
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1675
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1676 1677 1678 1679

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1680
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1681
    """
Y
yangyaming 已提交
1682 1683 1684
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1696
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1697 1698 1699 1700 1701
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1702
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1703 1704 1705 1706 1707 1708 1709

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1710 1711
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1712

L
Luo Tao 已提交
1713 1714
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1715
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1716 1717 1718 1719 1720 1721 1722 1723
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1724

Y
yangyaming 已提交
1725
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1726 1727 1728 1729 1730
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1731 1732
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1733
    """
F
fengjiayi 已提交
1734
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1746 1747 1748 1749 1750
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1751 1752 1753
    return pool_out


F
fengjiayi 已提交
1754
def sequence_first_step(input):
L
Luo Tao 已提交
1755
    """
L
Luo Tao 已提交
1756
    This function gets the first step of sequence.
L
Luo Tao 已提交
1757 1758 1759 1760

    .. code-block:: text

       x is a 1-level LoDTensor:
1761
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1762 1763 1764 1765 1766
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1767
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1768
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1769

L
Luo Tao 已提交
1770 1771 1772 1773 1774 1775 1776 1777 1778
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1779

Y
yangyaming 已提交
1780
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1781 1782 1783
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1784 1785 1786
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1787
def sequence_last_step(input):
L
Luo Tao 已提交
1788
    """
L
Luo Tao 已提交
1789
    This function gets the last step of sequence.
L
Luo Tao 已提交
1790 1791 1792 1793

    .. code-block:: text

       x is a 1-level LoDTensor:
1794
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1795 1796 1797 1798 1799
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1800
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1801
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1802

L
Luo Tao 已提交
1803 1804 1805 1806 1807 1808 1809 1810 1811
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1812

Y
yangyaming 已提交
1813
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1814 1815 1816
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1817 1818 1819
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1820
@templatedoc()
Y
Yu Yang 已提交
1821
def pool2d(input,
C
chengduoZH 已提交
1822 1823
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1824 1825
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1826
           global_pooling=False,
C
chengduoZH 已提交
1827
           use_cudnn=True,
1828
           ceil_mode=False,
1829
           use_mkldnn=False,
C
caoying03 已提交
1830
           name=None):
Y
Yu Yang 已提交
1831
    """
F
fengjiayi 已提交
1832
    ${comment}
1833 1834

    Args:
1835 1836 1837
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1838
                          feature, and W is the width of the feature.
1839
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1840
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1841
        pool_type: ${pooling_type_comment}
1842 1843
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1844 1845 1846 1847
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
1848
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1849 1850
                        layer will be named automatically.

1851
    Returns:
F
fengjiayi 已提交
1852
        Variable: The pooling result.
F
fengjiayi 已提交
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1866 1867 1868 1869
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1870
                            global_pooling=False)
Y
Yu Yang 已提交
1871 1872 1873 1874 1875
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1876

C
chengduoZH 已提交
1877 1878 1879 1880 1881
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1882 1883 1884 1885
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1886 1887
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1888

C
Add doc  
chengduoZH 已提交
1889
    l_type = 'pool2d'
1890 1891

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1892 1893 1894 1895
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
1925
    pooling configurations mentioned in input parameters.
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
1939

1940
    Returns:
1941
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
1942 1943 1944 1945 1946
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1947

C
chengduoZH 已提交
1948 1949 1950 1951 1952
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

1953 1954 1955
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
1956

C
chengduoZH 已提交
1957 1958
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1959

1960 1961
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1962 1963 1964 1965
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1966
        type=l_type,
Y
Yu Yang 已提交
1967 1968 1969 1970 1971 1972 1973
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1974
            "paddings": pool_padding,
1975
            "use_cudnn": use_cudnn,
1976 1977
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
1990
               data_layout='NCHW',
Y
Yang Yang 已提交
1991
               in_place=False,
1992
               use_mkldnn=False,
1993 1994
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
1995
               moving_variance_name=None,
1996 1997
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
1998
    """
Q
qiaolongfei 已提交
1999 2000 2001 2002
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2003

Q
qiaolongfei 已提交
2004
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2005

Q
qiaolongfei 已提交
2006 2007
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2008 2009 2010
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2023 2024

    Args:
Q
qiaolongfei 已提交
2025
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2026 2027 2028 2029
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2030 2031 2032
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
Q
qiaolongfei 已提交
2033
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2034 2035 2036 2037 2038
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2039
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2040
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2041 2042

    Returns:
Q
qiaolongfei 已提交
2043
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2044 2045 2046 2047 2048 2049 2050

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2074
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2075

2076 2077
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2078 2079 2080
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2081
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2082
        shape=param_shape,
2083 2084 2085 2086 2087 2088 2089
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2090
            trainable=False,
W
wanghaoshuang 已提交
2091
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2092
        shape=param_shape,
2093 2094
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2095 2096 2097 2098 2099 2100

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2101 2102
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2103

Y
Yang Yang 已提交
2104
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2122 2123 2124 2125
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2126 2127
            "use_mkldnn": use_mkldnn,
            "fuse_with_relu": fuse_with_relu
2128
        })
Y
Yu Yang 已提交
2129 2130 2131 2132

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2133
@templatedoc()
G
guosheng 已提交
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2144
    ${comment}
G
guosheng 已提交
2145 2146 2147

    The formula is as follows:

Y
yuyang18 已提交
2148
    ..  math::
G
guosheng 已提交
2149 2150 2151 2152 2153 2154 2155

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2156 2157 2158 2159 2160 2161 2162 2163
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2164

G
guosheng 已提交
2165 2166
    Args:
        input(Variable): The input tensor variable.
2167
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2168
            normalization.
2169
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2170
            normalization.
2171
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2172
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2173
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2174 2175 2176 2177 2178 2179
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2180
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2181 2182

    Returns:
Y
yuyang18 已提交
2183
        ${y_comment}
G
guosheng 已提交
2184 2185 2186

    Examples:

Y
yuyang18 已提交
2187 2188 2189
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2205
    if shift:
G
guosheng 已提交
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2230 2231 2232 2233
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2234 2235 2236
                     padding=0,
                     stride=1,
                     dilation=1,
2237
                     groups=None,
C
caoying03 已提交
2238
                     param_attr=None,
2239
                     bias_attr=None,
C
chengduoZH 已提交
2240
                     use_cudnn=True,
2241
                     act=None,
C
caoying03 已提交
2242
                     name=None):
Y
Yu Yang 已提交
2243
    """
2244 2245 2246 2247 2248 2249 2250 2251
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2252 2253
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2254 2255 2256
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2257 2258 2259 2260 2261

    For each input :math:`X`, the equation is:

    .. math::

2262
        Out = \sigma (W \\ast X + b)
2263

2264
    Where:
2265 2266 2267

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2268 2269 2270 2271
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2272

2273 2274 2275 2276
    Example:

        - Input:

2277
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2278

2279
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2280 2281 2282

        - Output:

2283
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2284 2285

        Where
Y
Yu Yang 已提交
2286

2287 2288 2289 2290
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Y
Yu Yang 已提交
2291 2292

    Args:
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2326 2327

    Returns:
2328
        Variable: The tensor variable storing the convolution transpose result.
2329 2330

    Raises:
2331 2332
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2333 2334 2335 2336

    Examples:
       .. code-block:: python

2337 2338
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2339
    """
2340 2341 2342 2343 2344 2345 2346 2347 2348

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2349 2350 2351
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2352 2353 2354
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2355

C
chengduoZH 已提交
2356 2357
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2358

Y
Yu Yang 已提交
2359 2360 2361 2362 2363
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2364

Y
Yu Yang 已提交
2365 2366
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2367

C
chengduoZH 已提交
2368 2369 2370 2371
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
                         padding[0] - 1) / dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
                         padding[1] - 1) / dilation[1] + 1
Y
Yu Yang 已提交
2372
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2373 2374 2375
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2376

2377 2378
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters / groups] + filter_size
Y
Yu Yang 已提交
2379 2380 2381
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2382
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2383
    helper.append_op(
2384
        type=op_type,
Y
Yu Yang 已提交
2385 2386
        inputs={'Input': [input],
                'Filter': [img_filter]},
2387
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2388
        attrs={
2389 2390 2391 2392 2393
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2394 2395
        })

2396 2397 2398
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2399 2400


2401
def conv3d_transpose(input,
Y
Yu Yang 已提交
2402 2403 2404
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2405 2406 2407
                     padding=0,
                     stride=1,
                     dilation=1,
2408
                     groups=None,
C
caoying03 已提交
2409
                     param_attr=None,
2410
                     bias_attr=None,
C
chengduoZH 已提交
2411
                     use_cudnn=True,
2412
                     act=None,
C
caoying03 已提交
2413
                     name=None):
Y
Yu Yang 已提交
2414
    """
2415
    **Convlution3D transpose layer**
2416

2417
    The convolution3D transpose layer calculates the output based on the input,
2418
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2419 2420 2421 2422 2423 2424
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2425 2426 2427
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2428 2429 2430 2431 2432

    For each input :math:`X`, the equation is:

    .. math::

2433
        Out = \sigma (W \\ast X + b)
2434 2435 2436

    In the above equation:

2437 2438
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2439 2440 2441 2442
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2443

2444 2445 2446 2447
    Example:

        - Input:

2448
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2449

2450
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2451 2452 2453

        - Output:

2454
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2455 2456

        Where
Y
Yu Yang 已提交
2457

2458 2459
        .. math::

2460 2461 2462
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2463 2464

    Args:
2465
        input(Variable): The input image with [N, C, D, H, W] format.
2466 2467 2468
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2469
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2470 2471
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2472
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2473 2474 2475
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2476 2477
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2478
        stride(int|tuple): The stride size. If stride is a tuple, it must
2479 2480
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2481
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2482 2483 2484
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2485 2486 2487 2488 2489
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2490 2491 2492
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2493 2494 2495 2496 2497
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2498 2499

    Returns:
2500
        Variable: The tensor variable storing the convolution transpose result.
2501 2502

    Raises:
2503 2504
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2505 2506 2507 2508

    Examples:
       .. code-block:: python

2509 2510
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2511
    """
2512 2513
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2514
    if not isinstance(input, Variable):
2515
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2516 2517
    input_channel = input.shape[1]

2518 2519 2520
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2521

C
chengduoZH 已提交
2522 2523 2524
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2525 2526 2527 2528 2529 2530
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2531 2532 2533
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2534

2535
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
C
chengduoZH 已提交
2536
                         padding[0] - 1) / dilation[0] + 1
2537
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
C
chengduoZH 已提交
2538
                         padding[1] - 1) / dilation[1] + 1
2539 2540 2541
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
                         padding[2] - 1) / dilation[2] + 1
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2542
    else:
2543 2544
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2545

2546 2547
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters / groups] + filter_size
Y
Yu Yang 已提交
2548 2549 2550
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2551
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2552
    helper.append_op(
2553
        type=l_type,
Y
Yu Yang 已提交
2554 2555
        inputs={'Input': [input],
                'Filter': [img_filter]},
2556
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2557 2558 2559 2560
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2561
            'groups': groups,
C
chengduoZH 已提交
2562 2563
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2564

2565 2566
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2567
    return out
Y
yangyaming 已提交
2568 2569


Y
yangyaming 已提交
2570
def sequence_expand(x, y, ref_level=-1, name=None):
2571
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2572 2573 2574 2575
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2576 2577 2578 2579 2580

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2581
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2582
                x.data = [[a], [b], [c], [d]]
2583 2584 2585
                x.dims = [4, 1]

            y is a LoDTensor:
2586 2587
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2588

Y
yangyaming 已提交
2589
            ref_level: 0
2590

Y
yangyaming 已提交
2591
            then output is a 1-level LoDTensor:
2592
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2593
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2594 2595 2596 2597
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2598
                x.data = [[a], [b], [c]]
2599 2600 2601
                x.dims = [3, 1]

            y is a LoDTensor:
2602
                y.lod = [[2, 0, 3]]
2603

Y
yangyaming 已提交
2604
            ref_level: -1
2605

Y
yangyaming 已提交
2606 2607 2608
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2609 2610 2611
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2612 2613
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2614
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2615
                        will be named automatically.
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2626
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2627
    """
Y
yangyaming 已提交
2628
    helper = LayerHelper('sequence_expand', input=x, **locals())
2629 2630 2631
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2632 2633 2634 2635 2636
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2637
    return tmp
2638 2639


2640 2641 2642 2643 2644 2645 2646 2647 2648
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2649 2650
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2651 2652 2653

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
2654 2655 2656 2657 2658 2659 2660 2661
    
    This layer does the search in beams for one time step. Specifically, it 
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
2662 2663 2664 2665 2666 2667 2668 2669 2670
 
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2671

2672
    Args:
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2698

2699
    Returns:
2700 2701
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2702 2703 2704 2705

    Examples:
        .. code-block:: python

2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2734
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2752 2753 2754 2755 2756 2757 2758
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
2759

2760 2761 2762 2763 2764 2765 2766 2767 2768
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
2769

2770 2771 2772 2773 2774 2775
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
2776

2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
2802 2803 2804 2805
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2806
              param_attr=None,
C
caoying03 已提交
2807 2808
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2809 2810 2811 2812
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2813
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2814

2815
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
2816

2817
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
2818

2819
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
2820 2821 2822

            h_t & = o_t tanh(c_t)

2823 2824 2825 2826 2827 2828
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
2829 2830 2831

        .. math::

2832
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2833 2834 2835 2836 2837 2838 2839 2840

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2841
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2842 2843

    Args:
Y
yangyaming 已提交
2844 2845 2846 2847 2848 2849
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2850
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2851 2852
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2853 2854
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2855 2856
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2857 2858

    Returns:
Y
yangyaming 已提交
2859
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
2860 2861

    Raises:
2862 2863 2864 2865
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
2866 2867 2868 2869 2870 2871

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2872
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
2873
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
2874
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
2891
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
2892 2893 2894 2895
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
2896 2897
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
2898 2899 2900
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
2901
    size = cell_t_prev.shape[1]
2902
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
2903 2904
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
2905
                param_attr=param_attr,
2906
                bias_attr=bias_attr)
Y
yangyaming 已提交
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
2919
    return h, c
G
guosheng 已提交
2920 2921


C
caoying03 已提交
2922
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2923
    """
Y
yangyaming 已提交
2924
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2925 2926 2927

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2928
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
2929 2930
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2931 2932
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2933
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
2934
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2935
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2936 2937
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2938 2939 2940

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2941

G
guosheng 已提交
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
2953 2954 2955 2956 2957 2958 2959 2960

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
2961 2962 2963
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2964 2965
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2966 2967 2968 2969 2970
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2971
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2972 2973 2974 2975
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2976 2977


C
caoying03 已提交
2978
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2979
    """
Y
Yibing Liu 已提交
2980
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
2981 2982 2983

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
2984 2985 2986
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
2987
            must be in the range :math:`[-rank(input), rank(input))`. If
2988
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
2989
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
2990 2991
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2992
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
2993
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
2994
                       will be named automatically.
G
guosheng 已提交
2995 2996

    Returns:
Y
Yibing Liu 已提交
2997
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
2998

G
guosheng 已提交
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3009 3010
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3011 3012 3013 3014 3015 3016 3017

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3018 3019 3020
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3021 3022
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3023 3024 3025 3026 3027
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3028
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3029 3030 3031 3032
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3033 3034


C
caoying03 已提交
3035
def reduce_max(input, dim=None, keep_dim=False, name=None):
3036
    """
Y
yangyaming 已提交
3037
    Computes the maximum of tensor elements over the given dimension.
3038 3039 3040

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3041
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3042 3043 3044
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3045
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3046 3047
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3048
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3049 3050
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3051 3052 3053

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3054

3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3066 3067 3068 3069 3070 3071 3072

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3073 3074 3075
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3076 3077
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3078 3079 3080 3081 3082
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3083
            'dim': dim if dim != None else [0],
3084 3085 3086 3087 3088 3089
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3090
def reduce_min(input, dim=None, keep_dim=False, name=None):
3091
    """
Y
yangyaming 已提交
3092
    Computes the minimum of tensor elements over the given dimension.
3093 3094 3095

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3096
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3097 3098 3099
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3100
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3101 3102
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3103
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3104 3105
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3106 3107 3108

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3109

3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3121 3122 3123 3124 3125 3126 3127

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3128 3129 3130
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3131 3132
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3133 3134 3135 3136 3137
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3138
            'dim': dim if dim != None else [0],
3139 3140 3141 3142
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3143 3144


3145 3146 3147 3148 3149 3150
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3151
        dim (list|int|None): The dimensions along which the product is performed. If
3152 3153
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3154 3155
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3156 3157 3158
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3159
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3160
            layer will be named automatically.
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3175
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3176
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3177 3178 3179 3180 3181 3182 3183

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3184 3185 3186
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3187 3188
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3189 3190 3191 3192 3193
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3194
            'dim': dim if dim != None else [0],
3195 3196 3197 3198 3199 3200
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3201
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3202
    """
C
caoying03 已提交
3203
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3204 3205 3206

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3207 3208 3209 3210 3211
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3212
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3213
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3214
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3215 3216
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3217 3218

    Returns:
D
dzhwinter 已提交
3219
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3220 3221 3222 3223 3224 3225 3226 3227 3228

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3229 3230
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3260 3261 3262 3263 3264 3265 3266 3267 3268


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3269
    .. math::
3270 3271

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3272 3273 3274 3275 3276

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3277
        x(Variable|list): The input tensor to l2_normalize layer.
3278
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3279 3280
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3281
        epsilon(float): The epsilon value is used to avoid division by zero, \
3282
            the defalut value is 1e-10.
3283
        name(str|None): A name for this layer(optional). If set None, the layer \
3284
            will be named automatically.
C
caoying03 已提交
3285 3286

    Returns:
3287
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3288 3289

    Examples:
3290

C
caoying03 已提交
3291 3292
        .. code-block:: python

3293 3294 3295 3296
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3297 3298
    """

F
fengjiayi 已提交
3299 3300
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3301 3302
    helper = LayerHelper("l2_normalize", **locals())

3303 3304
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3305
    helper.append_op(
3306 3307 3308 3309
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3310
        attrs={
3311 3312
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3313 3314
        })
    return out
3315 3316


S
sneaxiy 已提交
3317 3318 3319 3320 3321 3322 3323
def matmul(x,
           y,
           transpose_x=False,
           transpose_y=False,
           scale=1.0,
           bias=0.0,
           name=None):
G
guosheng 已提交
3324
    """
Y
ying 已提交
3325 3326 3327 3328
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3329

C
chengduoZH 已提交
3330
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3331
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3332

3333 3334 3335 3336 3337
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3338
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3339

C
chengduoZH 已提交
3340
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3341
      performs in the following way.
G
guosheng 已提交
3342

3343
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3344
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3345
        last two dimensions and a batched matrix multiply supporting broadcast
3346
        applies on the two tensors.
G
guosheng 已提交
3347

Y
ying 已提交
3348 3349
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3350
    removed after matrix multiplication.
G
guosheng 已提交
3351 3352 3353

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3354 3355 3356
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3357 3358
        scale (float): The scale of output. Default 1.0.
        bias (float): The bias added to output. Default 0.0.
3359
        name(str|None): A name for this layer(optional). If set None, the layer
3360
            will be named automatically.
G
guosheng 已提交
3361 3362

    Returns:
3363
        Variable: The product Tensor variable.
G
guosheng 已提交
3364

G
guosheng 已提交
3365 3366 3367
    Examples:
        .. code-block:: python

3368
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3369 3370
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3371

3372 3373
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3374

3375 3376
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3377

3378 3379
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3380 3381 3382 3383

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3384 3385
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3386

Y
ying 已提交
3387
            # x: [M], y: [N]
3388
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3389
    """
Y
ying 已提交
3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3402
            y_shape = y_shape + [1]
Y
ying 已提交
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3419
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3420
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3421
    helper.append_op(
3422 3423 3424 3425
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3426 3427 3428 3429 3430 3431
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
            'scale': scale,
            'bias': bias
        })
3432
    return out
3433 3434


3435
def topk(input, k, name=None):
Q
qingqing01 已提交
3436 3437 3438 3439
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3440
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3441 3442 3443 3444 3445 3446
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3468 3469 3470
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3471
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3472
                 of input.
3473
        name(str|None): A name for this layer(optional). If set None, the layer
3474
                       will be named automatically.
F
fengjiayi 已提交
3475
                       Default: None
Q
qingqing01 已提交
3476 3477

    Returns:
3478 3479 3480
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3481
        within the last dimension of input.
Q
qingqing01 已提交
3482

F
fengjiayi 已提交
3483 3484
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3485 3486 3487 3488 3489 3490 3491

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    shape = input.shape
F
fengjiayi 已提交
3492
    if k < 1 or k >= shape[-1]:
Q
qingqing01 已提交
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
        raise ValueError("k must be greater than 0 and less than %d." %
                         (shape[-1]))

    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3510
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3511
    """
Y
ying 已提交
3512 3513 3514 3515 3516 3517 3518 3519 3520
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3521

Y
ying 已提交
3522
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3523

3524
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3525 3526
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3527
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3528

3529
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3530 3531
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3532

3533 3534 3535
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3536
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3537
                          the length of reference string.
3538
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3539
                                     calculating edit distance.
3540
        name (str): The name of this layer. It is optional.
3541

W
wanghaoshuang 已提交
3542
    Returns:
W
wanghaoshuang 已提交
3543
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3544 3545 3546 3547 3548

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3549
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3550
            cost = fluid.layers.edit_distance(input=x,label=y)
3551
    """
3552
    helper = LayerHelper("edit_distance", **locals())
3553

3554
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3555
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3556 3557 3558 3559 3560 3561 3562
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3563
            attrs={"tokens": ignored_tokens})
3564 3565 3566 3567 3568
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3569
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3570
            attrs={"tokens": ignored_tokens})
3571 3572
        label = erased_label

3573 3574
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3575
    sequence_num = helper.create_tmp_variable(dtype="int64")
3576 3577 3578 3579
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3580 3581
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3582 3583
        attrs={"normalized": normalized})

3584
    return edit_distance_out, sequence_num
3585 3586 3587 3588 3589


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3590

Y
ying 已提交
3591 3592 3593 3594
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3612
        input.lod = [[4, 4]]
3613 3614 3615 3616 3617 3618 3619

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3620
        output.lod = [[2, 1]]
3621 3622 3623

    Args:

Y
ying 已提交
3624 3625 3626 3627 3628 3629 3630 3631 3632
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3633
        name (str): The name of this layer. It is optional.
3634 3635

    Returns:
3636
        Variable: CTC greedy decode result. If all the sequences in result were
3637
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3638 3639 3640 3641 3642

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3643

3644
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3645
    """
3646
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3647
    _, topk_indices = topk(input, k=1)
3648 3649 3650 3651 3652 3653

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3654
        outputs={"Output": [ctc_out]},
3655 3656
        attrs={"merge_repeated": True,
               "blank": blank})
3657
    return ctc_out
3658 3659


F
fengjiayi 已提交
3660
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3661
    """
3662 3663
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3664
    to compute Connectionist Temporal Classification (CTC) loss.
3665 3666
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3667 3668 3669
    input tensor.

    Args:
3670
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3671 3672 3673 3674
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3675
       label (Variable): The ground truth of variable-length sequence,
3676 3677 3678
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3679 3680
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3681 3682 3683
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3684
         follewed by a mean_op.
W
wanghaoshuang 已提交
3685 3686

    Returns:
3687 3688
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3689 3690

    Examples:
3691

W
wanghaoshuang 已提交
3692
        .. code-block:: python
3693

3694 3695 3696
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3697 3698

    """
F
fengjiayi 已提交
3699
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3726 3727 3728
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3729 3730 3731 3732 3733
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3734

3735
            out.lod  = [[0, 1, 3]]
3736 3737 3738 3739

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3740 3741 3742 3743 3744 3745 3746
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3747 3748 3749

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3750 3751

    Returns:
3752

3753 3754 3755 3756 3757
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3758
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3759
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3760 3761 3762 3763 3764 3765 3766 3767 3768
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3769 3770


3771 3772 3773 3774
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3775 3776 3777 3778 3779 3780 3781
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3782 3783 3784 3785 3786 3787 3788
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3789 3790
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
3791
            sample is 1.0.
3792 3793 3794
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3795

3796
    Returns:
Y
Yibing Liu 已提交
3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
3824
    """
Y
Yang Yu 已提交
3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3844 3845 3846 3847 3848 3849 3850 3851 3852
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
3869
    return cost / (num_neg_samples + 1)
3870 3871


Y
fix ci.  
ying 已提交
3872
def transpose(x, perm, name=None):
Y
ying 已提交
3873 3874 3875 3876 3877 3878 3879
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
3880 3881 3882
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
3883 3884 3885 3886 3887 3888 3889 3890

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
3891
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
3892 3893
    """

Y
fix ci.  
ying 已提交
3894
    if len(perm) != len(x.shape):
Y
ying 已提交
3895 3896 3897
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
3898 3899 3900 3901 3902 3903
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
3904 3905

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
3906
    out = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
3907 3908
    helper.append_op(
        type='transpose',
Y
fix ci.  
ying 已提交
3909
        inputs={'X': [x]},
Y
ying 已提交
3910 3911 3912
        outputs={'Out': [out]},
        attrs={'axis': perm})
    return out
3913 3914


3915
def im2sequence(input, filter_size=1, stride=1, padding=0, name=None):
3916
    """
3917 3918 3919 3920 3921 3922 3923
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

3952 3953 3954
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
3955 3956 3957 3958 3959
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
3987 3988 3989
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

            output.dims = {8, 9}

4004
            output.lod = [[4, 4]]
4005

D
dzhwinter 已提交
4006
     Examples:
4007 4008 4009

        .. code-block:: python

4010 4011
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4012 4013

    """
W
wanghaoshuang 已提交
4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])

4025
    helper = LayerHelper('im2sequence', **locals())
4026 4027
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4028
        type='im2sequence',
4029 4030 4031
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
wanghaoshuang 已提交
4032 4033 4034
            'kernels': filter_size,
            'strides': stride,
            'paddings': padding,
4035 4036
        })
    return out
4037 4038


Y
yuyang18 已提交
4039
@templatedoc()
4040
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4041 4042
    """
    ${comment}
4043 4044

    Args:
Y
yuyang18 已提交
4045
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4046 4047
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4048 4049 4050 4051 4052
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4053
        ${out_comment}.
4054 4055

    Examples:
Y
yuyang18 已提交
4056 4057 4058 4059
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4072
    return helper.append_activation(out)
4073 4074


Y
yuyang18 已提交
4075
@templatedoc()
4076 4077
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4078 4079 4080 4081 4082 4083 4084
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4085 4086

    Args:
Y
yuyang18 已提交
4087 4088
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4089 4090

    Returns:
Y
yuyang18 已提交
4091
        ${out_comment}.
4092 4093
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4094 4095 4096 4097 4098 4099

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4100 4101 4102 4103 4104 4105
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4106 4107 4108 4109 4110


def softmax_with_cross_entropy(logits, label, soft_label=False):
    """
    **Softmax With Cross Entropy Operator.**
4111

4112 4113 4114 4115
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4116

4117 4118 4119
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4120

4121 4122 4123
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4124

4125
    The equation is as follows:
4126

4127
    1) Hard label (one-hot label, so every sample has exactly one class)
4128

4129 4130 4131 4132
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4133

4134 4135 4136
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4137

4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4159 4160
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={'soft_label': soft_label})
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4177 4178
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4179
    For each instance, it computes the smooth L1 loss element by element first
4180
    and then sums all the losses. So the shape of ouput Variable is
4181
    [batch_size, 1].
4182

4183 4184
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4185
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4186
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4187
            L1 loss op with same shape as :attr:`x`.
4188
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4189 4190
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4191
            by this tensor element by element.
4192
        outside_weight (Variable|None): A tensor with rank at least 2. This
4193 4194
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4195
            element by element.
4196
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4197 4198
           scalar with default value 1.0.

4199
    Returns:
4200
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4201 4202 4203 4204 4205

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4206 4207
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4208
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4209
            out = fluid.layers.smooth_l1(x=fc, y=label)
4210
    """
4211

4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4227 4228 4229 4230


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4231
    This layer creates the one-hot representations for input indices.
4232 4233

    Args:
Y
Yibing Liu 已提交
4234 4235
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4236 4237

    Returns:
Y
Yibing Liu 已提交
4238
        Variable: The one-hot representations of input.
4239 4240

    Examples:
C
caoying03 已提交
4241
        .. code-block:: python
4242

Y
Yibing Liu 已提交
4243 4244
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4245 4246 4247 4248 4249 4250 4251 4252 4253
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4254 4255


Y
Yu Yang 已提交
4256
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4257
    """
Y
yi.wu 已提交
4258 4259 4260
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4261 4262 4263 4264 4265 4266

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4267 4268
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4269 4270 4271 4272 4273 4274

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4275 4276
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4277 4278
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4279 4280 4281 4282 4283
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4284
                value=begin - 1, force_cpu=True))
Y
Yu Yang 已提交
4285 4286 4287
        helper.main_program.global_block().prepend_op(
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4288 4289
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4290 4291 4292
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4293 4294


4295
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4296
    """
C
caoying03 已提交
4297 4298
    Gives a new shape to the input Tensor without changing its data.

4299 4300 4301 4302 4303
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4304

4305
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4306

4307 4308 4309 4310
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4311
    2. 0 means the actual dimension value is going to be copied from the
4312 4313 4314 4315
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4316 4317

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4318
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4319
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4320

4321
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4322 4323
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4324 4325
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4326
    dimensions.
C
caoying03 已提交
4327

4328
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4329 4330 4331 4332
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4333 4334

    Args:
4335
        x(variable): The input tensor.
C
caoying03 已提交
4336 4337
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4338 4339 4340 4341 4342
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4343
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4344 4345 4346 4347
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4348
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4349

4350 4351
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4352

X
Xin Pan 已提交
4353 4354 4355
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4356 4357
    Examples:
        .. code-block:: python
G
guosheng 已提交
4358

4359
            data = fluid.layers.data(
4360
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4361
            reshaped = fluid.layers.reshape(
4362
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4363 4364 4365 4366
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
        raise ValueError("Input shape must be a python lsit or tuple.")
X
Xin Pan 已提交
4367 4368 4369 4370 4371
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4372

4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

C
caoying03 已提交
4388 4389 4390 4391
    helper = LayerHelper("reshape", **locals())
    reshaped = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reshape",
X
Xin Pan 已提交
4392
        inputs=inputs,
C
caoying03 已提交
4393 4394 4395 4396 4397
        attrs={"shape": shape,
               "inplace": inplace},
        outputs={"Out": reshaped})

    return helper.append_activation(reshaped)
4398 4399


Y
yangyaming 已提交
4400
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4401
    """
Y
Yibing Liu 已提交
4402
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4403 4404 4405 4406
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4407
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4408 4409 4410 4411 4412 4413

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4414
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4415 4416 4417
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4418
            target_lod: [4, 2]
Y
yangyaming 已提交
4419 4420

            then we get a 1-level LoDTensor:
4421
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4422 4423 4424 4425 4426 4427
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4428
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4429 4430 4431 4432
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4433
                y.data = [[2, 4]]
Y
yangyaming 已提交
4434 4435 4436
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4437
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4438 4439 4440 4441 4442 4443
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4444
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4445 4446 4447 4448
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4449
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4450 4451 4452 4453
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4454
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4455 4456 4457 4458 4459
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4460
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4461
                           from :attr:`y`.
Y
yangyaming 已提交
4462
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4463
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4464 4465

    Returns:
Y
Yibing Liu 已提交
4466
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4467 4468

    Raises:
Y
Yibing Liu 已提交
4469
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4505
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4534 4535
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4563 4564 4565 4566


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4567
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4568
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4569

G
guosheng 已提交
4570 4571 4572 4573
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4596
                         The length of :attr:paddings must be
G
guosheng 已提交
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4607

G
guosheng 已提交
4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4622 4623 4624 4625 4626 4627 4628 4629 4630


def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
4631 4632
    called label-smoothing regularization (LSR).

4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
4656
                              be :math:`(1, class\_num)`.
4657 4658
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
4659
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
4687 4688


Y
yi.wu 已提交
4689
@templatedoc()
4690 4691
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
4692
    ${comment}
4693 4694

    Args:
Y
yi.wu 已提交
4695 4696
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
4697 4698 4699
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
4700 4701

    Returns:
Y
update  
yi.wu 已提交
4702
        Variable: ${out_comment}.
4703 4704

    Examples:
4705 4706
        .. code-block:: python

4707
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
4753 4754
        .. code-block:: python

W
whs 已提交
4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
    reduce_dim = range(1, len(input.shape))
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
4766 4767


4768 4769 4770 4771 4772
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
4773
    """
Q
qiaolongfei 已提交
4774
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
4775

4776
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
4777 4778 4779
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
4780

4781
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
4782

4783
    Args:
4784
        input (Variable): The input tensor of image resize layer,
4785 4786
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
4787
        out_shape(list|tuple|Variable|None): Output shape of image resize
4788 4789
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
4790
        scale(float|None): The multiplier for the input height or width.
4791 4792 4793
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
4794 4795
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4796 4797
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
4798 4799

    Returns:
Q
update  
qiaolongfei 已提交
4800 4801
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
4802

4803 4804 4805
    Examples:
        .. code-block:: python

4806
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
4807
    """
4808 4809 4810 4811
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
4812 4813
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
4814 4815
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
4816 4817 4818 4819

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

4820 4821 4822
    out_h = 0
    out_w = 0
    inputs = {"X": input}
4823
    if out_shape is not None:
B
baiyf 已提交
4824 4825 4826
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
4827 4828 4829 4830 4831 4832
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
4833 4834 4835 4836
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

4837 4838
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
4839
        type=resample_methods[resample],
4840
        inputs=inputs,
4841 4842 4843 4844
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
4845 4846


Y
yuyang18 已提交
4847
@templatedoc(op_type="bilinear_interp")
4848 4849
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
4850 4851 4852 4853 4854 4855
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
4856

Y
yuyang18 已提交
4857 4858 4859 4860 4861 4862 4863 4864
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
4865 4866 4867 4868 4869 4870 4871
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
4872 4873 4874
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
4875 4876 4877 4878 4879 4880 4881
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
4882
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
4883

4884
    Returns:
Q
update  
qiaolongfei 已提交
4885
        Variable: The output is a 4-D tensor of the shape
4886
        (num_batches, channls, out_h, out_w).
4887 4888 4889 4890 4891 4892 4893 4894 4895 4896
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
4897 4898 4899
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
4900 4901 4902
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
4903 4904
def gather(input, index):
    """
Q
qiaolongfei 已提交
4905 4906
    **Gather Layer**

4907
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
4908 4909 4910 4911
    of X indexed by `index` and concatenate them together.

    .. math::

4912
        Out = X[Index]
W
whs 已提交
4913 4914 4915 4916 4917 4918 4919


    .. code-block:: text


                Given:

4920 4921
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
4922 4923 4924 4925 4926 4927 4928 4929 4930 4931
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
4932
        input (Variable): The source input with rank>=1.
W
whs 已提交
4933 4934 4935 4936 4937 4938
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
4939

W
whs 已提交
4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
4968

4969 4970 4971
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
4972
    """
F
stash  
fengjiayi 已提交
4973
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
4974
    dtype = x.dtype
F
stash  
fengjiayi 已提交
4975
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
4976 4977
    if seed is None:
        seed = random.randint(-65536, 65535)
F
fengjiayi 已提交
4978
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
4979
    if isinstance(seed, int):
F
fengjiayi 已提交
4980 4981 4982 4983 4984
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
4985 4986 4987 4988
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
4989
        inputs={"X": x,
F
stash  
fengjiayi 已提交
4990 4991
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
4992 4993
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
4994
    return out
W
whs 已提交
4995 4996


4997
def log(x):
W
wanghaoshuang 已提交
4998 4999 5000 5001 5002
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5003
        Out = \\ln(x)
W
wanghaoshuang 已提交
5004 5005

    Args:
5006
        x (Variable): Input tensor.
W
wanghaoshuang 已提交
5007 5008 5009 5010 5011 5012 5013 5014

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5015
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5016 5017
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5018
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5019
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5020
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5021 5022 5023
    return out


5024
def relu(x):
W
wanghaoshuang 已提交
5025 5026
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5027
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5028 5029 5030 5031
    the tensor elementwise.

    .. math::

5032
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5033 5034

    Args:
5035
        x (Variable): The input tensor.
W
wanghaoshuang 已提交
5036 5037 5038 5039 5040 5041 5042 5043

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5044
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5045 5046
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5047
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5048
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5049
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5050
    return out
5051 5052


W
whs 已提交
5053 5054 5055
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5056 5057 5058 5059
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5060
    .. math::
5061 5062

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5063

5064
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5065 5066 5067 5068 5069
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5070
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5071
                           Its shape should be the same as input.
5072
        num_classes (int): The possible number of labels.
W
whs 已提交
5073 5074 5075 5076

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5077
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5078 5079 5080 5081

    Examples:

        .. code-block:: python
5082

W
whs 已提交
5083 5084 5085 5086 5087 5088 5089 5090 5091
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5092 5093
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5094
        outputs={
W
whs 已提交
5095 5096 5097
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5098 5099 5100
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
        isinstance(shape, Variable)):
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out