legacy_backward.yaml 35.9 KB
Newer Older
1
- backward_op : add_double_grad
Z
zyfncg 已提交
2 3 4 5 6 7 8 9 10
  forward : add_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [grad_out]
  kernel :
    func : add_double_grad
  optional : grad_x_grad, grad_y_grad
11
  backward : add_triple_grad
Z
zyfncg 已提交
12
  inplace : (grad_x_grad -> grad_out_grad)
13
  composite : add_double_grad(y, grad_out, grad_x_grad, grad_y_grad, axis, grad_out_grad)
Z
zyfncg 已提交
14

15
- backward_op : add_grad
Z
zyfncg 已提交
16 17 18 19 20 21 22 23 24
  forward : add (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : add_grad
  no_need_buffer : x, y
25
  composite : add_grad(x, y, out_grad, axis, x_grad, y_grad)
Z
zyfncg 已提交
26 27 28
  backward : add_double_grad
  inplace : (out_grad -> x_grad)

29 30 31 32 33 34 35 36 37 38
- backward_op : add_triple_grad
  forward : add_double_grad (Tensor y, Tensor grad_out, Tensor grad_grad_x, Tensor grad_grad_y, int axis = -1) -> Tensor(grad_grad_out)
  args : (Tensor grad_grad_x, Tensor grad_grad_y, Tensor grad_grad_out_grad, int axis = -1)
  output : Tensor(grad_grad_x_grad), Tensor(grad_grad_y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [grad_grad_x, grad_grad_y]
  kernel :
    func : add_triple_grad
  inplace : (grad_grad_out_grad -> grad_grad_x_grad)
39
  composite : add_triple_grad (grad_grad_x, grad_grad_y, grad_grad_out_grad, axis, grad_grad_x_grad, grad_grad_y_grad )
40

41
- backward_op : amax_grad
42 43
  forward: amax (Tensor x,  int64_t[] axis={},  bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis={},  bool keepdim=false, bool reduce_all=false)
44 45 46 47 48 49 50
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : amax_grad

51
- backward_op : amin_grad
52 53
  forward: amin (Tensor x,  int64_t[] axis={},  bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis={},  bool keepdim=false, bool reduce_all=false)
54 55 56 57 58 59 60
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : amin_grad

61
- backward_op : assign_grad
Z
zyfncg 已提交
62 63 64
  forward : assign (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
65
  composite: assign_grad(out_grad, x_grad)
66
  invoke : assign(out_grad)
Z
zyfncg 已提交
67

68
- backward_op : assign_out__grad
Z
zyfncg 已提交
69 70 71 72 73 74 75 76 77
  forward : assign_out_ (Tensor x, Tensor output) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
  kernel :
    func : assign
  inplace : (out_grad -> x_grad)

78
- backward_op : batch_norm_double_grad
79 80
  forward : batch_norm_grad (Tensor x, Tensor scale, Tensor bias, Tensor out_mean, Tensor out_variance, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor grad_out, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics) -> Tensor(grad_x), Tensor(grad_scale), Tensor(grad_bias)
  args : (Tensor x, Tensor scale, Tensor out_mean, Tensor out_variance, Tensor saved_mean, Tensor saved_variance, Tensor grad_out,  Tensor grad_x_grad, Tensor grad_scale_grad, Tensor grad_bias_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics)
Z
zyfncg 已提交
81 82 83 84 85
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, scale, x]
  kernel :
86
    func : batch_norm_double_grad
Z
zyfncg 已提交
87
    data_type : x
88
  optional : out_mean, out_variance, grad_x_grad, grad_scale_grad, grad_bias_grad
Z
zyfncg 已提交
89 90
  inplace : (grad_out -> grad_out_grad)

91
- backward_op : batch_norm_grad
92 93
  forward : batch_norm (Tensor x, Tensor mean, Tensor variance, Tensor scale, Tensor bias, bool is_test, float momentum, float epsilon, str data_layout, bool use_global_stats, bool trainable_statistics) -> Tensor(out), Tensor(mean_out), Tensor(variance_out), Tensor(saved_mean), Tensor(saved_variance), Tensor(reserve_space)
  args : (Tensor x, Tensor scale, Tensor bias, Tensor mean_out, Tensor variance_out, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor out_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics)
Z
zyfncg 已提交
94 95 96 97 98 99 100 101
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, scale, bias]
  kernel :
    func : batch_norm_grad
    data_type : out_grad
  optional : mean_out, variance_out, reserve_space
102
  composite: batch_norm_grad(x, scale, bias, mean_out, variance_out, saved_mean, saved_variance, reserve_space, out_grad, momentum, epsilon, data_layout, is_test, use_global_stats, trainable_statistics)
Z
zyfncg 已提交
103 104
  backward : batch_norm_double_grad

105
- backward_op : cast_grad
106
  forward : cast (Tensor x, DataType dtype) -> Tensor(out)
Z
zyfncg 已提交
107 108
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
109
  invoke : cast (out_grad, x.dtype())
110
  composite: cast_grad(x, out_grad, x_grad)
Z
zyfncg 已提交
111 112
  no_need_buffer : x

113 114 115 116 117 118 119 120 121
- backward_op : channel_shuffle_grad
  forward : channel_shuffle (Tensor x, int groups, str data_format="NCHW") -> Tensor(out)
  args : (Tensor out_grad, int groups, str data_format="NCHW")
  output : Tensor(x_grad)
  infer_meta :
    func : ChannelShuffleGradInferMeta
  kernel :
    func : channel_shuffle_grad

122
- backward_op : concat_double_grad
Z
zyfncg 已提交
123 124 125
  forward : concat_grad (Tensor[] x, Tensor grad_out, Scalar axis) -> Tensor[](grad_x)
  args : (Tensor[] grad_x_grad, Scalar axis = 0)
  output : Tensor(grad_out_grad)
126
  invoke : concat(grad_x_grad, axis)
Z
zyfncg 已提交
127

128
- backward_op : concat_grad
Z
zyfncg 已提交
129 130 131 132 133 134 135 136
  forward : concat (Tensor[] x, Scalar axis) -> Tensor(out)
  args : (Tensor[] x, Tensor out_grad, Scalar axis = 0)
  output : Tensor[](x_grad){x.size()}
  infer_meta :
    func : UnchangedMultiInferMeta
    param : [x]
  kernel :
    func : concat_grad
W
wangzhen38 已提交
137
  composite : concat_grad(x, out_grad, axis, x_grad)
Z
zyfncg 已提交
138 139 140
  no_need_buffer : x
  backward : concat_double_grad

141
- backward_op : conv2d_transpose_double_grad
142 143
  forward : conv2d_transpose_grad(Tensor x, Tensor filter, Tensor grad_out, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(grad_x), Tensor(grad_filter)
  args : (Tensor x, Tensor filter, Tensor grad_out, Tensor grad_x_grad, Tensor grad_filter_grad, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
Z
zyfncg 已提交
144 145 146 147
  output : Tensor(x_grad), Tensor(filter_grad), Tensor(grad_out_grad)
  infer_meta :
    func : Conv2dTransposeDoubleGradInferMeta
  kernel :
148
    func : conv2d_transpose_double_grad
149
    data_type : x
Z
zyfncg 已提交
150

151
- backward_op : conv2d_transpose_grad
152
  forward : conv2d_transpose(Tensor x, Tensor filter, int[] strides={1, 1}, int[] paddings={0, 0}, int[] output_padding={}, IntArray output_size={}, str padding_algorithm="EXPLICIT", int groups=1, int[] dilations={1, 1}, str data_format="NCHW") -> Tensor(out)
153
  args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
Z
zyfncg 已提交
154 155
  output : Tensor(x_grad), Tensor(filter_grad)
  infer_meta :
156
    func : Conv2dTransposeGradInferMeta
Z
zyfncg 已提交
157 158
  kernel :
    func : conv2d_transpose_grad
159
    data_type : x
Z
zyfncg 已提交
160 161
  backward : conv2d_transpose_double_grad

162
- backward_op : cumsum_grad
W
WangZhen 已提交
163
  forward : cumsum(Tensor x, Scalar axis, bool flatten, bool exclusive, bool reverse) -> Tensor(out)
164
  args : (Tensor x, Tensor out_grad, Scalar axis, bool flatten, bool exclusive, bool reverse)
Z
zyfncg 已提交
165
  output : Tensor(x_grad)
166 167 168 169 170 171
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : cumsum_grad
    data_type: x
G
GGBond8488 已提交
172
  composite: cumsum_grad(x, out_grad, axis, flatten, exclusive, reverse, x_grad)
Z
zyfncg 已提交
173

174
- backward_op : deformable_conv_grad
Z
zyfncg 已提交
175 176 177 178 179 180 181 182 183 184
  forward : deformable_conv(Tensor x, Tensor offset, Tensor filter, Tensor mask, int[] strides, int[] paddings, int[] dilations, int deformable_groups, int groups, int im2col_step) -> Tensor(out)
  args : (Tensor x, Tensor offset, Tensor filter, Tensor mask, Tensor out_grad, int[] strides, int[] paddings, int[] dilations, int deformable_groups, int groups, int im2col_step)
  output : Tensor(x_grad), Tensor(offset_grad), Tensor(filter_grad), Tensor(mask_grad)
  infer_meta :
    func : DeformableConvGradInferMeta
  kernel :
    func : deformable_conv_grad
    data_type : x
  optional : mask

185
- backward_op : depthwise_conv2d_transpose_grad
186
  forward : depthwise_conv2d_transpose(Tensor x, Tensor filter, int[] strides={1, 1}, int[] paddings={0, 0}, int[] output_padding={}, IntArray output_size={}, str padding_algorithm="EXPLICIT", int groups=1, int[] dilations={1, 1}, str data_format="NCHW") -> Tensor(out)
187
  args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
Z
zyfncg 已提交
188 189
  output : Tensor(x_grad), Tensor(filter_grad)
  infer_meta :
190
    func : Conv2dTransposeGradInferMeta
Z
zyfncg 已提交
191 192
  kernel :
    func : depthwise_conv2d_transpose_grad
193
    data_type : x
Z
zyfncg 已提交
194

195
- backward_op : divide_double_grad
Z
zyfncg 已提交
196 197 198 199 200 201 202 203 204 205 206 207
  forward : divide_grad (Tensor x, Tensor y, Tensor out, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor y, Tensor out, Tensor grad_x, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(y_grad), Tensor(out_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [y, grad_x, grad_x]
  kernel :
    func : divide_double_grad
    data_type : out
  optional : grad_x_grad, grad_y_grad
  inplace : (grad_x_grad -> grad_out_grad)

208
- backward_op : divide_grad
Z
zyfncg 已提交
209 210 211 212 213 214 215 216
  forward : divide (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : divide_grad
217
  composite : divide_grad(x, y, out, out_grad, axis, x_grad, y_grad)
Z
zyfncg 已提交
218 219
  backward : divide_double_grad

220
- backward_op : dropout_grad
221 222
  forward : dropout (Tensor x, Tensor seed_tensor, Scalar p, bool is_test, str mode, int seed, bool fix_seed) -> Tensor(out), Tensor(mask)
  args : (Tensor mask, Tensor out_grad, Scalar p, bool is_test, str mode)
Z
zyfncg 已提交
223 224 225 226 227 228 229
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : dropout_grad

230
- backward_op : einsum_grad
Z
zyfncg 已提交
231 232
  forward : einsum (Tensor[] x, str equation) -> Tensor(out), Tensor[](inner_cache), Tensor[](x_shape)
  args : (Tensor[] x_shape, Tensor[] inner_cache, Tensor out_grad, str equation)
233
  output : Tensor[](x_grad){x_shape.size()}
Z
zyfncg 已提交
234 235 236 237 238 239
  infer_meta :
    func : UnchangedMultiInferMeta
    param : [x_shape]
  kernel :
    func : einsum_grad

240
- backward_op : elementwise_pow_grad
Z
zyfncg 已提交
241
  forward : elementwise_pow(Tensor x, Tensor y) -> Tensor(out)
242
  args : (Tensor x, Tensor y, Tensor out_grad)
Z
zyfncg 已提交
243 244 245 246
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
247
  composite : elementwise_pow_grad(x, y, out_grad, axis, x_grad, y_grad)
Z
zyfncg 已提交
248 249 250
  kernel :
    func : elementwise_pow_grad

251
- backward_op : embedding_grad
Z
zyfncg 已提交
252 253 254 255
  forward : embedding (Tensor x, Tensor weight, int64_t padding_idx=-1, bool sparse=false) -> Tensor(out)
  args : (Tensor x, Tensor weight, Tensor out_grad, int64_t padding_idx=-1, bool sparse=false)
  output : Tensor(weight_grad)
  invoke : embedding_grad_impl(x, weight, out_grad, padding_idx, sparse, weight_grad)
W
wanghuancoder 已提交
256
  no_need_buffer : weight
Z
zyfncg 已提交
257

258
- backward_op : expand_double_grad
Z
zyfncg 已提交
259 260 261
  forward : expand_grad (Tensor x, Tensor grad_out, IntArray shape) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray shape)
  output : Tensor(grad_out_grad)
262
  invoke : expand(grad_x_grad, shape)
Z
zyfncg 已提交
263

264
- backward_op : expand_grad
Z
zyfncg 已提交
265 266 267 268 269 270 271 272 273 274
  forward : expand (Tensor x, IntArray shape) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray shape)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : expand_grad
  no_need_buffer : x
  backward : expand_double_grad
275
  composite: expand_grad(x, out_grad, shape, x_grad)
Z
zyfncg 已提交
276

277
- backward_op : exponential__grad
278
  forward : exponential_ (Tensor x, float lam) -> Tensor(out)
279 280 281 282
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
283
  invoke : zeros_like(out_grad)
284

285
- backward_op : fmin_grad
286
  forward : fmin(Tensor x, Tensor y) -> Tensor(out)
Z
zyfncg 已提交
287
  args : (Tensor x, Tensor y, Tensor out_grad)
Z
zyfncg 已提交
288 289 290 291 292 293 294
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : fmin_grad

295
- backward_op : frobenius_norm_grad
Z
zyfncg 已提交
296 297 298 299 300 301 302 303 304
  forward : frobenius_norm(Tensor x, int64_t[] axis,  bool keep_dim,  bool reduce_all) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis,  bool keep_dim,  bool reduce_all)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : frobenius_norm_grad

305 306 307 308 309 310 311 312 313 314 315
- backward_op : fused_rope_grad
  forward: fused_rope (Tensor q, Tensor k, Tensor v) -> Tensor(out_q), Tensor(out_k), Tensor(out_v)
  args : (Tensor out_q_grad, Tensor out_k_grad,Tensor out_v_grad)
  output : Tensor(q_grad), Tensor(k_grad), Tensor(v_grad)
  optional : out_k_grad, out_v_grad, k_grad, v_grad
  infer_meta :
    func : FusedRopeGradInferMeta
  kernel :
    func : fused_rope_grad
    data_type : out_q_grad

316
- backward_op : hardswish_grad
317
  forward : hardswish (Tensor x) -> Tensor(out)
318
  args : (Tensor x, Tensor out_grad)
Z
zyfncg 已提交
319 320 321 322 323
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
Z
zyfncg 已提交
324
    func : hardswish_grad
Z
zyfncg 已提交
325 326
  inplace : (out_grad -> x_grad)

327 328 329 330 331 332 333 334 335 336
- backward_op : heaviside_grad
  forward : heaviside (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : heaviside_grad

337
- backward_op : hsigmoid_loss_grad
Z
zhangyuqin1998 已提交
338 339
  forward : hsigmoid_loss (Tensor x, Tensor label, Tensor w, Tensor bias, Tensor path, Tensor code, int num_classes, bool is_sparse) -> Tensor(out), Tensor(pre_out), Tensor(w_out)
  args : (Tensor x, Tensor w, Tensor label, Tensor path, Tensor code, Tensor bias, Tensor pre_out, Tensor out_grad, int num_classes, bool is_sparse)
340 341 342 343 344 345
  output : Tensor(x_grad), Tensor(w_grad), Tensor(bias_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x ,w, bias]
  optional: path, code, bias
  kernel :
346
    func : hsigmoid_loss_grad
347

348
- backward_op : logsumexp_grad
Z
zyfncg 已提交
349 350 351 352 353 354 355 356 357
  forward : logsumexp(Tensor x, int64_t[] axis,  bool keepdim,  bool reduce_all) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis,  bool keepdim,  bool reduce_all)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : logsumexp_grad

358
- backward_op : matmul_double_grad
Z
zyfncg 已提交
359 360 361 362 363 364 365 366
  forward : matmul_grad (Tensor x, Tensor y, Tensor grad_out, bool transpose_x=false, bool transpose_y=false) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor x, Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, bool transpose_x=false, bool transpose_y=false)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, y, grad_out]
  kernel :
    func : matmul_double_grad
367
  composite : matmul_double_grad(x, y, grad_out, grad_x_grad, grad_y_grad, transpose_x=false, transpose_y=false)
Z
zyfncg 已提交
368 369
  optional : grad_x_grad, grad_y_grad

370
- backward_op : matmul_grad
Z
zyfncg 已提交
371 372 373 374 375 376 377 378 379 380
  forward : matmul (Tensor x, Tensor y, bool transpose_x=false, bool transpose_y=false) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, bool transpose_x=false, bool transpose_y=false)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : matmul_grad
  backward : matmul_double_grad

381
- backward_op : max_grad
382 383
  forward: max (Tensor x,  IntArray axis={},  bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, IntArray axis={}, bool keepdim=false, bool reduce_all=false)
Z
zyfncg 已提交
384 385 386 387 388 389
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : max_grad
390
  composite : max_grad(x, out, out_grad, axis, keepdim, reduce_all, x_grad)
Z
zyfncg 已提交
391

392
- backward_op : maximum_grad
Z
zyfncg 已提交
393
  forward : maximum(Tensor x, Tensor y) -> Tensor(out)
394
  args : (Tensor x, Tensor y, Tensor out_grad)
Z
zyfncg 已提交
395 396 397 398 399 400
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : maximum_grad
H
heyanru 已提交
401
  composite : maximum_grad(x, y, out_grad, axis, x_grad, y_grad)
Z
zyfncg 已提交
402

403
- backward_op : mean_double_grad
404 405
  forward: mean_grad (Tensor x, Tensor grad_out, IntArray axis={},  bool keepdim=false, bool reduce_all = false) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray axis={},  bool keepdim=false)
Z
zyfncg 已提交
406
  output : Tensor(grad_out_grad)
407
  invoke : mean(grad_x_grad, axis, keepdim)
Z
zyfncg 已提交
408

409
- backward_op : mean_grad
410 411
  forward: mean (Tensor x,  IntArray axis={},  bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray axis={},  bool keepdim=false, bool reduce_all=false)
Z
zyfncg 已提交
412 413 414 415 416 417 418 419 420
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : mean_grad
  backward : mean_double_grad
  no_need_buffer : x

421
- backward_op : min_grad
422 423
  forward: min (Tensor x,  IntArray axis={},  bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, IntArray axis={}, bool keepdim=false, bool reduce_all=false)
Z
zyfncg 已提交
424 425 426 427 428 429 430
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : min_grad

431
- backward_op : minimum_grad
Z
zyfncg 已提交
432
  forward : minimum(Tensor x, Tensor y) -> Tensor(out)
433
  args : (Tensor x, Tensor y, Tensor out_grad)
Z
zyfncg 已提交
434 435 436 437 438 439
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : minimum_grad
440
  composite : minimum_grad(x, y, out_grad, axis, x_grad, y_grad)
Z
zyfncg 已提交
441

442
- backward_op : mish_grad
Z
zyfncg 已提交
443 444 445 446 447 448 449 450 451 452
  forward : mish (Tensor x, float threshold) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float threshold)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : mish_grad
  inplace : (out_grad -> x_grad)

453
- backward_op : multiply_double_grad
Z
zyfncg 已提交
454 455 456 457 458 459 460 461 462 463
  forward : multiply_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor x, Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, y, grad_out]
  kernel :
    func : multiply_double_grad
  optional : grad_x_grad, grad_y_grad
  inplace : (grad_x_grad -> grad_out_grad)
X
xiaoguoguo626807 已提交
464
  backward : multiply_triple_grad
465
  composite : multiply_double_grad(x, y, grad_out, grad_x_grad, grad_y_grad, axis, x_grad, y_grad, grad_out_grad)
Z
zyfncg 已提交
466

467
- backward_op : multiply_grad
Z
zyfncg 已提交
468 469 470 471 472 473 474 475
  forward : multiply (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : multiply_grad
476
  composite: multiply_grad(x, y, out_grad, axis, x_grad, y_grad)
Z
zyfncg 已提交
477 478
  backward : multiply_double_grad

X
xiaoguoguo626807 已提交
479 480 481 482 483 484 485 486 487 488 489
- backward_op : multiply_triple_grad
  forward : multiply_double_grad (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, int aixs = -1) -> Tensor(grad_x), Tensor(grad_y), Tensor(grad_grad_out)
  args : (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, Tensor grad_x_grad, Tensor grad_y_grad, Tensor grad_grad_out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(fwd_grad_out_grad), Tensor(fwd_grad_grad_x_grad), Tensor(fwd_grad_grad_y_grad)
  infer_meta :
    func : GeneralQuinaryGradInferMeta
    param : [x, y, fwd_grad_out, fwd_grad_grad_x, fwd_grad_grad_y]
  kernel :
    func : multiply_triple_grad
  optional : fwd_grad_grad_x, fwd_grad_grad_y, grad_x_grad, grad_y_grad, grad_grad_out_grad

490
- backward_op : norm_grad
Z
zyfncg 已提交
491 492 493 494 495 496 497 498 499
  forward : norm (Tensor x, int axis, float epsilon, bool is_test) -> Tensor(out), Tensor(norm)
  args : (Tensor x, Tensor norm, Tensor out_grad, int axis, float epsilon, bool is_test)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : norm_grad

500
- backward_op : pad_double_grad
501 502
  forward : pad_grad(Tensor x, Tensor grad_out, int[] paddings, Scalar pad_value) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, int[] paddings, Scalar pad_value)
Z
zyfncg 已提交
503 504 505 506 507 508
  output : Tensor(grad_out_grad)
  infer_meta :
    func : PadInferMeta
  kernel :
    func : pad

509
- backward_op : pad_grad
510 511
  forward : pad(Tensor x, int[] paddings, Scalar pad_value) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int[] paddings, Scalar pad_value)
Z
zyfncg 已提交
512 513 514 515 516 517 518 519
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : pad_grad
    param: [out_grad, paddings, pad_value]
  no_need_buffer : x
M
mengziheng 已提交
520
  composite : pad_grad(x, out_grad, paddings, pad_value, x_grad)
Z
zyfncg 已提交
521 522
  backward : pad_double_grad

523
- backward_op : pool2d_double_grad
524 525
  forward : pool2d_grad(Tensor x, Tensor out, Tensor grad_out, IntArray kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(grad_x)
  args : (Tensor x, Tensor grad_x_grad, IntArray kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm)
Z
zyfncg 已提交
526 527
  output : Tensor(grad_out_grad)
  infer_meta :
528
    func : Pool2DInferMeta
529
    param : [grad_x_grad, kernel_size, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm]
Z
zyfncg 已提交
530 531
  kernel :
    func : pool2d_double_grad
532
    param : [grad_x_grad, kernel_size, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm]
533
  no_need_buffer : x
Z
zyfncg 已提交
534

535
- backward_op : pool2d_grad
536 537
  forward : pool2d(Tensor x, IntArray kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, IntArray kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm)
Z
zyfncg 已提交
538 539
  output : Tensor(x_grad)
  infer_meta :
540 541
    func : UnchangedInferMeta
    param: [x]
Z
zyfncg 已提交
542 543
  kernel :
    func : pool2d_grad
544
    param : [x, out, out_grad, kernel_size, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm]
Z
zyfncg 已提交
545 546
  backward : pool2d_double_grad

547
- backward_op : pool3d_grad
548 549
  forward : pool3d(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm)
Z
zyfncg 已提交
550 551
  output : Tensor(x_grad)
  infer_meta :
552 553
    func : UnchangedInferMeta
    param: [x]
Z
zyfncg 已提交
554 555
  kernel :
    func : pool3d_grad
556
    param : [x, out, out_grad, kernel_size, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm]
Z
zyfncg 已提交
557

558 559 560 561 562 563 564 565 566
- backward_op : prod_grad
  forward : prod (Tensor x, IntArray dims, bool keep_dim, bool reduce_all) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, IntArray dims,  bool keep_dim, bool reduce_all)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : prod_grad
567
  composite: prod_grad(x, out, out_grad, dims, keep_dim, reduce_all, x_grad)
568

569
- backward_op : psroi_pool_grad
Z
zyfncg 已提交
570 571 572 573 574 575 576 577 578 579 580
  forward : psroi_pool (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, int output_channels, float spatial_scale) -> Tensor(out)
  args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor out_grad, int pooled_height, int pooled_width, int output_channels, float spatial_scale)
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param : [x]
  kernel :
    func : psroi_pool_grad
    data_type : x
  optional : boxes_num

581
- backward_op : relu6_grad
582
  forward : relu6 (Tensor x) -> Tensor(out)
583
  args : (Tensor out, Tensor out_grad)
584 585 586 587 588 589 590 591
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : relu6_grad
  inplace : (out_grad -> x_grad)

592
- backward_op : repeat_interleave_grad
593 594
  forward : repeat_interleave(Tensor x, int repeats, int axis) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int repeats, int axis)
S
seemingwang 已提交
595 596 597 598 599 600 601
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : repeat_interleave_grad

602
- backward_op : repeat_interleave_with_tensor_index_grad
603 604
  forward : repeat_interleave_with_tensor_index(Tensor x, Tensor repeats, int axis) -> Tensor(out)
  args : (Tensor x, Tensor repeats, Tensor out_grad, int axis)
S
seemingwang 已提交
605 606 607 608 609 610 611 612
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : repeat_interleave_with_tensor_index_grad
    data_type : x

613
- backward_op : reshape_double_grad
Z
zyfncg 已提交
614 615 616 617 618 619 620 621 622 623 624
  forward : reshape_grad (Tensor xshape, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor grad_out, Tensor grad_x_grad)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [grad_out]
  kernel :
    func : reshape_double_grad
  no_need_buffer : grad_out
  inplace : (grad_x_grad -> grad_out_grad)

625
- backward_op : reshape_grad
Z
zyfncg 已提交
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
  forward : reshape (Tensor x, IntArray shape) -> Tensor(out), Tensor(xshape)
  args : (Tensor xshape, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : KernelWithXShapeInferMeta
    param : [xshape]
  kernel :
    func : reshape_grad
    param : [out_grad]
    data_type: out_grad
    backend: out_grad
    layout: out_grad
  backward : reshape_double_grad
  inplace : (out_grad -> x_grad)

Y
YuanRisheng 已提交
641 642 643 644 645 646 647 648 649 650 651 652
- backward_op : rnn_grad
  forward : rnn (Tensor x, Tensor[] pre_state, Tensor[] weight_list, Tensor sequence_length, Tensor dropout_state_in, float dropout_prob, bool is_bidirec, int input_size, int hidden_size, int num_layers, str mode, int seed, bool is_test) -> Tensor(out), Tensor(dropout_state_out), Tensor[](state), Tensor(reserve)
  args : (Tensor x, Tensor[] pre_state, Tensor[] weight_list, Tensor sequence_length, Tensor out, Tensor dropout_state_out, Tensor reserve, Tensor out_grad, Tensor[] state_grad, float dropout_prob, bool is_bidirec, int input_size, int hidden_size, int num_layers, str mode, int seed, bool is_test)
  output : Tensor(x_grad), Tensor[](pre_state_grad){pre_state.size()}, Tensor[](weight_list_grad){weight_list.size()}
  infer_meta :
    func : RnnGradInferMeta
    param : [x, pre_state, weight_list]
  kernel :
    func : rnn_grad
    data_type: out_grad
  optional : sequence_length

653
- backward_op : roi_align_grad
Z
zyfncg 已提交
654 655 656 657 658 659 660 661 662 663 664 665
  forward : roi_align (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, float spatial_scale, int sampling_ratio, bool aligned) -> Tensor(out)
  args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor out_grad, int pooled_height, int pooled_width, float spatial_scale, int sampling_ratio, bool aligned)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : roi_align_grad
    data_type : boxes
  no_need_buffer : x
  optional : boxes_num

666
- backward_op : roi_pool_grad
Z
zyfncg 已提交
667 668 669 670 671 672 673 674 675 676 677
  forward : roi_pool (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, float spatial_scale) -> Tensor(out), Tensor(arg_max)
  args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor arg_max, Tensor out_grad, int pooled_height, int pooled_width, float spatial_scale)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : roi_pool_grad
    data_type : x
  optional : boxes_num

W
Weilong Wu 已提交
678 679 680 681 682 683 684 685 686 687 688
- backward_op : rrelu_grad
  forward : rrelu (Tensor x, float lower, float upper, bool is_test) -> Tensor(out), Tensor(noise)
  args : (Tensor x, Tensor noise, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : RReluGradInferMeta
    param : [out_grad, noise]
  kernel :
    func : rrelu_grad
    data_type : x

689
- backward_op : slice_double_grad
690 691 692
  forward : slice_grad (Tensor input, Tensor grad_out, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) -> Tensor(grad_input)
  args : (Tensor grad_input_grad, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis)
  output : Tensor(grad_out_grad)
693
  invoke : slice(grad_input_grad, axes, starts, ends, infer_flags, decrease_axis)
694

695
- backward_op : slice_grad
Z
zyfncg 已提交
696 697 698 699 700 701 702 703
  forward : slice (Tensor input, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) -> Tensor(out)
  args : (Tensor input, Tensor out_grad, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis)
  output : Tensor(input_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [input]
  kernel :
    func : slice_grad
704
  composite: slice_grad(input, out_grad, axes, starts, ends, infer_flags, decrease_axis, input_grad)
705
  backward : slice_double_grad
Z
zyfncg 已提交
706 707
  no_need_buffer : input

708
- backward_op : softmax_grad
Z
zyfncg 已提交
709 710 711 712 713 714 715 716
  forward : softmax (Tensor x, int axis) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : softmax_grad
717
  composite : softmax_grad(out, out_grad, axis, x_grad)
Z
zyfncg 已提交
718

719
- backward_op : split_grad
Z
zyfncg 已提交
720 721 722 723
  forward : split (Tensor x, IntArray num_or_sections, Scalar axis) -> Tensor[](out)
  args : (Tensor[] out_grad, Scalar axis = -1)
  output : Tensor(x_grad)
  invoke : concat( out_grad, axis)
724
  composite : split_grad(out_grad, axis, x_grad)
C
Charles-hit 已提交
725

726
- backward_op : split_with_num_grad
C
Charles-hit 已提交
727 728 729 730
  forward : split_with_num (Tensor x, int num, Scalar axis) -> Tensor[](out)
  args : (Tensor[] out_grad, Scalar axis = -1)
  output : Tensor(x_grad)
  invoke : concat( out_grad, axis)
731
  composite : split_grad(out_grad, axis, x_grad)
Z
zyfncg 已提交
732

733
- backward_op : strided_slice_grad
Z
zyfncg 已提交
734 735 736 737 738 739 740 741 742 743
  forward : strided_slice (Tensor x, int[] axes, IntArray starts, IntArray ends, IntArray strides) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int[] axes, IntArray starts, IntArray ends, IntArray strides)
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param : [x]
  kernel :
    func : strided_slice_grad
  no_need_buffer : x

744
- backward_op : subtract_double_grad
Z
zyfncg 已提交
745 746 747 748 749 750 751 752 753 754 755
  forward : subtract_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [grad_out]
  kernel :
    func : subtract_double_grad
  optional : grad_x_grad, grad_y_grad
  no_need_buffer : y, grad_out
  inplace : (grad_x_grad -> grad_out_grad)
756
  composite : subtract_double_grad(y, grad_out, grad_x_grad, grad_y_grad, axis, grad_out_grad)
Z
zyfncg 已提交
757

758
- backward_op : subtract_grad
Z
zyfncg 已提交
759 760 761 762 763 764 765 766 767
  forward : subtract (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : subtract_grad
  no_need_buffer : x, y
768
  composite : subtract_grad(x, y, out_grad, axis, x_grad, y_grad)
Z
zyfncg 已提交
769 770 771
  backward : subtract_double_grad
  inplace : (out_grad -> x_grad)

772
- backward_op : sum_double_grad
773 774
  forward : sum_grad (Tensor x, Tensor grad_out, IntArray axis, bool keepdim, bool reduce_all=false) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray axis={}, bool keepdim=false)
Z
zyfncg 已提交
775
  output : Tensor(grad_out_grad)
776
  invoke : sum(grad_x_grad, axis, grad_x_grad.dtype(), keepdim)
Z
zyfncg 已提交
777

778
- backward_op : sum_grad
779 780
  forward : sum (Tensor x, IntArray axis={}, DataType dtype=DataType::UNDEFINED, bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray axis, bool keepdim, bool reduce_all=false)
Z
zyfncg 已提交
781 782 783 784 785 786
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : sum_grad
787
  composite : sum_grad(x, out_grad, axis, keepdim, reduce_all, x_grad)
Z
zyfncg 已提交
788 789 790
  no_need_buffer : x
  backward : sum_double_grad

791
- backward_op : swish_grad
792
  forward : swish (Tensor x) -> Tensor(out)
793
  args : (Tensor x, Tensor out_grad)
Z
zyfncg 已提交
794 795 796 797 798 799 800 801
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param : [x]
  kernel :
    func : swish_grad
  inplace : (out_grad -> x_grad)

802
- backward_op : sync_batch_norm_grad
803 804
  forward : sync_batch_norm_ (Tensor x, Tensor mean, Tensor variance, Tensor scale, Tensor bias, bool is_test, float momentum, float epsilon, str data_layout, bool use_global_stats, bool trainable_statistics) -> Tensor(out), Tensor(mean_out), Tensor(variance_out), Tensor(saved_mean), Tensor(saved_variance), Tensor(reserve_space)
  args : (Tensor x, Tensor scale, Tensor bias, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor out_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics)
805 806 807 808 809 810 811
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, scale, bias]
  kernel :
    func : sync_batch_norm_grad
    data_type : out_grad
812
  optional : reserve_space
813

814
- backward_op : tile_double_grad
Z
zyfncg 已提交
815 816 817
  forward : tile_grad (Tensor x, Tensor grad_out, IntArray repeat_times) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray repeat_times)
  output : Tensor(grad_out_grad)
818
  invoke : tile(grad_x_grad, repeat_times)
Z
zyfncg 已提交
819

820
- backward_op : tile_grad
Z
zyfncg 已提交
821 822 823 824 825 826 827 828 829
  forward : tile (Tensor x, IntArray repeat_times) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray repeat_times)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : tile_grad
  no_need_buffer : x
C
ccrrong 已提交
830
  composite : tile_grad(x, outgrad, repeat_times, x_grad)
Z
zyfncg 已提交
831 832
  backward : tile_double_grad

N
niuliling123 已提交
833 834 835 836 837 838 839 840 841
- backward_op : trans_layout_grad
  forward : trans_layout (Tensor x, int[] perm) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int[] perm)
  output : Tensor(x_grad)
  infer_meta :
    func : TransLayoutGradInferMeta
  kernel :
    func : trans_layout_grad

842
- backward_op : transpose_double_grad
843 844
  forward : transpose_grad (Tensor grad_out, int[] perm) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, int[] perm)
Z
zyfncg 已提交
845
  output : Tensor(grad_out_grad)
846
  invoke : transpose(grad_x_grad, perm)
Z
zyfncg 已提交
847

848
- backward_op : transpose_grad
849 850
  forward : transpose (Tensor x, int[] perm) -> Tensor(out)
  args : (Tensor out_grad, int[] perm)
Z
zyfncg 已提交
851 852 853
  output : Tensor(x_grad)
  infer_meta :
    func : TransposeGradInferMeta
854
    param : [out_grad, perm]
Z
zyfncg 已提交
855 856 857
  kernel :
    func : transpose_grad
  backward : transpose_double_grad
858
  composite: transpose_grad(out_grad, perm, x_grad)
Z
zyfncg 已提交
859

860
- backward_op : tril_grad
861 862
  forward : tril(Tensor x,  int diagonal) -> Tensor(out)
  args : (Tensor out_grad,  int diagonal)
Z
zyfncg 已提交
863 864 865 866 867
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
868
    func : tril_grad
Z
zyfncg 已提交
869

870 871 872 873 874 875 876 877 878
- backward_op : triu_grad
  forward : triu(Tensor x,  int diagonal) -> Tensor(out)
  args : (Tensor out_grad,  int diagonal)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : triu_grad
879 880 881 882 883 884 885 886 887 888 889

- backward_op: unpool_grad
  forward: unpool (Tensor x, Tensor indices, int[] ksize, int[] strides, int[] padding,  IntArray output_size, str data_format) -> Tensor(out)
  args: (Tensor x, Tensor indices, Tensor out, Tensor out_grad, int[] ksize, int[] strides, int[] padding, IntArray output_size, str data_format)
  output: Tensor(x_grad)
  infer_meta:
    func: UnchangedInferMeta
    param : [x]
  kernel:
    func: unpool_grad
    data_type: x