Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6891a4fe
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6891a4fe
编写于
9月 14, 2022
作者:
C
Chen Weihang
提交者:
GitHub
9月 14, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
normize yaml backward op label (#46028)
上级
6bd2762c
变更
8
展开全部
隐藏空白更改
内联
并排
Showing
8 changed file
with
322 addition
and
323 deletion
+322
-323
paddle/fluid/eager/auto_code_generator/generator/codegen_utils.py
...luid/eager/auto_code_generator/generator/codegen_utils.py
+4
-4
paddle/fluid/eager/auto_code_generator/generator/eager_gen.py
...le/fluid/eager/auto_code_generator/generator/eager_gen.py
+2
-3
paddle/phi/api/yaml/backward.yaml
paddle/phi/api/yaml/backward.yaml
+21
-21
paddle/phi/api/yaml/generator/backward_api_gen.py
paddle/phi/api/yaml/generator/backward_api_gen.py
+1
-1
paddle/phi/api/yaml/generator/parse_api.py
paddle/phi/api/yaml/generator/parse_api.py
+1
-1
paddle/phi/api/yaml/generator/parse_utils.py
paddle/phi/api/yaml/generator/parse_utils.py
+1
-1
paddle/phi/api/yaml/legacy_backward.yaml
paddle/phi/api/yaml/legacy_backward.yaml
+254
-254
paddle/phi/api/yaml/sparse_backward.yaml
paddle/phi/api/yaml/sparse_backward.yaml
+38
-38
未找到文件。
paddle/fluid/eager/auto_code_generator/generator/codegen_utils.py
浏览文件 @
6891a4fe
...
...
@@ -83,10 +83,10 @@ def ReadBwdFile(filepath):
ret
=
{}
if
contents
is
not
None
:
for
content
in
contents
:
assert
'backward_
api
'
in
content
.
keys
(),
AssertMessage
(
'backward_
api
'
,
content
.
keys
())
if
'backward_
api
'
in
content
.
keys
():
api_name
=
content
[
'backward_
api
'
]
assert
'backward_
op
'
in
content
.
keys
(),
AssertMessage
(
'backward_
op
'
,
content
.
keys
())
if
'backward_
op
'
in
content
.
keys
():
api_name
=
content
[
'backward_
op
'
]
ret
[
api_name
]
=
content
f
.
close
()
...
...
paddle/fluid/eager/auto_code_generator/generator/eager_gen.py
浏览文件 @
6891a4fe
...
...
@@ -1485,7 +1485,7 @@ class DygraphNodeGenerator(DygraphFunctionGeneratorBase):
if
next_grad_api_contents
:
# Fake forward_api_contents and backward_api_contents
forward_api_contents
=
grad_api_contents
forward_api_contents
[
'op'
]
=
forward_api_contents
[
'backward_
api
'
]
forward_api_contents
[
'op'
]
=
forward_api_contents
[
'backward_
op
'
]
backward_api_contents
=
next_grad_api_contents
next_node_generator
=
DygraphFunctionGeneratorBase
(
...
...
@@ -1959,8 +1959,7 @@ class DygraphForwardAndNodesGenerator(GeneratorBase):
forward_api_contents
=
backward_api_contents
# Fake forward_api_content
forward_api_contents
[
'op'
]
=
forward_api_contents
[
'backward_api'
]
forward_api_contents
[
'op'
]
=
forward_api_contents
[
'backward_op'
]
backward_api_contents
=
next_grad_api_contents
if
len
(
namespace
)
>
0
:
...
...
paddle/phi/api/yaml/backward.yaml
浏览文件 @
6891a4fe
-
backward_
api
:
atan2_grad
-
backward_
op
:
atan2_grad
forward
:
atan2 (Tensor x, Tensor y) -> Tensor(out)
args
:
(Tensor x, Tensor y, Tensor out_grad)
output
:
Tensor(x_grad), Tensor(y_grad)
...
...
@@ -8,7 +8,7 @@
kernel
:
func
:
atan2_grad
-
backward_
api
:
cholesky_grad
-
backward_
op
:
cholesky_grad
forward
:
cholesky (Tensor x, bool upper) -> Tensor(out)
args
:
(Tensor out, Tensor out_grad, bool upper)
output
:
Tensor(x_grad)
...
...
@@ -18,7 +18,7 @@
kernel
:
func
:
cholesky_grad
-
backward_
api
:
cholesky_solve_grad
-
backward_
op
:
cholesky_solve_grad
forward
:
cholesky_solve (Tensor x, Tensor y, bool upper) -> Tensor(out)
args
:
(Tensor x, Tensor y, Tensor out, Tensor out_grad, bool upper)
output
:
Tensor(x_grad), Tensor(y_grad)
...
...
@@ -28,7 +28,7 @@
kernel
:
func
:
cholesky_solve_grad
-
backward_
api
:
cross_grad
-
backward_
op
:
cross_grad
forward
:
cross (Tensor x, Tensor y, int axis = 9) -> Tensor(out)
args
:
(Tensor x, Tensor y, Tensor out_grad, int axis)
output
:
Tensor(x_grad), Tensor(y_grad)
...
...
@@ -39,7 +39,7 @@
func
:
cross_grad
data_type
:
out_grad
-
backward_
api
:
diag_grad
-
backward_
op
:
diag_grad
forward
:
diag (Tensor x, int offset, float padding_value) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad, int offset)
output
:
Tensor(x_grad)
...
...
@@ -51,7 +51,7 @@
data_type
:
out_grad
no_need_buffer
:
x
-
backward_
api
:
diagonal_grad
-
backward_
op
:
diagonal_grad
forward
:
diagonal (Tensor x, int offset, int axis1, int axis2) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad, int offset = 0, int axis1 = 0, int axis2 = 1)
output
:
Tensor(x_grad)
...
...
@@ -63,7 +63,7 @@
data_type
:
out_grad
no_need_buffer
:
x
-
backward_
api
:
digamma_grad
-
backward_
op
:
digamma_grad
forward
:
digamma (Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
output
:
Tensor(x_grad)
...
...
@@ -73,7 +73,7 @@
kernel
:
func
:
digamma_grad
-
backward_
api
:
dist_grad
-
backward_
op
:
dist_grad
forward
:
dist (Tensor x, Tensor y, float p) -> Tensor(out)
args
:
(Tensor x, Tensor y, Tensor out, Tensor out_grad, float p)
output
:
Tensor(x_grad), Tensor(y_grad)
...
...
@@ -83,7 +83,7 @@
kernel
:
func
:
dist_grad
-
backward_
api
:
dot_grad
-
backward_
op
:
dot_grad
forward
:
dot (Tensor x, Tensor y) -> Tensor(out)
args
:
(Tensor x, Tensor y, Tensor out_grad)
output
:
Tensor(x_grad), Tensor(y_grad)
...
...
@@ -94,7 +94,7 @@
func
:
dot_grad
data_type
:
out_grad
-
backward_
api
:
erf_grad
-
backward_
op
:
erf_grad
forward
:
erf (Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
output
:
Tensor(x_grad)
...
...
@@ -105,7 +105,7 @@
func
:
erf_grad
data_type
:
out_grad
-
backward_
api
:
erfinv_grad
-
backward_
op
:
erfinv_grad
forward
:
erfinv (Tensor x) -> Tensor(out)
args
:
(Tensor out, Tensor out_grad)
output
:
Tensor(x_grad)
...
...
@@ -115,7 +115,7 @@
kernel
:
func
:
erfinv_grad
-
backward_
api
:
fft_c2c_grad
-
backward_
op
:
fft_c2c_grad
forward
:
fft_c2c(Tensor x, int64_t[] axes, str normalization, bool forward) -> Tensor(out)
args
:
(Tensor out_grad, int64_t[] axes, str normalization, bool forward)
output
:
Tensor(x_grad)
...
...
@@ -125,7 +125,7 @@
kernel
:
func
:
fft_c2c_grad
-
backward_
api
:
fft_c2r_grad
-
backward_
op
:
fft_c2r_grad
forward
:
fft_c2r(Tensor x, int64_t[] axes, str normalization, bool forward, int64_t last_dim_size) -> Tensor(out)
args
:
(Tensor out_grad, int64_t[] axes, str normalization, bool forward, int64_t last_dim_size)
output
:
Tensor(x_grad)
...
...
@@ -135,7 +135,7 @@
func
:
fft_c2r_grad
data_type
:
out_grad
-
backward_
api
:
fft_r2c_grad
-
backward_
op
:
fft_r2c_grad
forward
:
fft_r2c(Tensor x, int64_t[] axes, str normalization, bool forward, bool onesided) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad, int64_t[] axes, str normalization, bool forward, bool onesided)
output
:
Tensor(x_grad)
...
...
@@ -147,7 +147,7 @@
data_type
:
out_grad
no_need_buffer
:
x
-
backward_
api
:
graph_send_uv_grad
-
backward_
op
:
graph_send_uv_grad
forward
:
graph_send_uv (Tensor x, Tensor y, Tensor src_index, Tensor dst_index, str message_op = "ADD") -> Tensor(out)
args
:
(Tensor x, Tensor y, Tensor src_index, Tensor dst_index, Tensor out_grad, str message_op = "ADD")
output
:
Tensor(x_grad), Tensor(y_grad)
...
...
@@ -158,7 +158,7 @@
func
:
graph_send_uv_grad
data_type
:
x
-
backward_
api
:
lgamma_grad
-
backward_
op
:
lgamma_grad
forward
:
lgamma(Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
output
:
Tensor(x_grad)
...
...
@@ -168,7 +168,7 @@
kernel
:
func
:
lgamma_grad
-
backward_
api
:
mv_grad
-
backward_
op
:
mv_grad
forward
:
mv (Tensor x, Tensor vec) -> Tensor(out)
args
:
(Tensor x, Tensor vec, Tensor out_grad)
output
:
Tensor(x_grad), Tensor(vec_grad)
...
...
@@ -178,7 +178,7 @@
kernel
:
func
:
mv_grad
-
backward_
api
:
poisson_grad
-
backward_
op
:
poisson_grad
forward
:
poisson (Tensor x) -> Tensor(out)
args
:
(Tensor out_grad)
output
:
Tensor(x_grad)
...
...
@@ -188,7 +188,7 @@
kernel
:
func
:
poisson_grad
-
backward_
api
:
solve_grad
-
backward_
op
:
solve_grad
forward
:
solve (Tensor x, Tensor y) -> Tensor(out)
args
:
(Tensor x, Tensor y, Tensor out, Tensor out_grad)
output
:
Tensor(x_grad), Tensor(y_grad)
...
...
@@ -198,7 +198,7 @@
kernel
:
func
:
solve_grad
-
backward_
api
:
trace_grad
-
backward_
op
:
trace_grad
forward
:
trace (Tensor x, int offset, int axis1, int axis2) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad, int offset, int axis1, int axis2)
output
:
Tensor(x_grad)
...
...
@@ -210,7 +210,7 @@
data_type
:
out_grad
no_need_buffer
:
x
-
backward_
api
:
trunc_grad
-
backward_
op
:
trunc_grad
forward
:
trunc (Tensor x) -> Tensor(out)
args
:
(Tensor out_grad)
output
:
Tensor(x_grad)
...
...
paddle/phi/api/yaml/generator/backward_api_gen.py
浏览文件 @
6891a4fe
...
...
@@ -28,7 +28,7 @@ class BackwardAPI(BaseAPI):
self
.
no_need_buffer
=
self
.
parse_no_need_buffer
(
backward_item_yaml
)
def
get_api_name
(
self
,
api_item_yaml
):
return
api_item_yaml
[
'backward_
api
'
]
return
api_item_yaml
[
'backward_
op
'
]
def
parse_forward_config
(
self
,
forward_config
):
# api_name (const Tensor& input, ... , int attr, ...) -> Tensor(out)
...
...
paddle/phi/api/yaml/generator/parse_api.py
浏览文件 @
6891a4fe
...
...
@@ -27,7 +27,7 @@ def main(api_yaml_path, output_path, backward):
apis
=
[]
else
:
apis
=
[
parse_api_entry
(
api
,
"backward_
api
"
if
backward
else
"op"
)
parse_api_entry
(
api
,
"backward_
op
"
if
backward
else
"op"
)
for
api
in
apis
]
...
...
paddle/phi/api/yaml/generator/parse_utils.py
浏览文件 @
6891a4fe
...
...
@@ -334,7 +334,7 @@ def parse_api_entry(api_entry: Dict[str, Any], name_field="op"):
api
[
"backward"
]
=
backward
# forward for backward_apis
is_backward_api
=
name_field
==
"backward_
api
"
is_backward_api
=
name_field
==
"backward_
op
"
if
is_backward_api
:
if
"forward"
in
api_entry
:
forward
=
parse_forward
(
api_name
,
api_entry
[
"forward"
])
...
...
paddle/phi/api/yaml/legacy_backward.yaml
浏览文件 @
6891a4fe
此差异已折叠。
点击以展开。
paddle/phi/api/yaml/sparse_backward.yaml
浏览文件 @
6891a4fe
-
backward_
api
:
abs_grad
-
backward_
op
:
abs_grad
forward
:
tanh(Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
output
:
Tensor(x_grad)
...
...
@@ -6,7 +6,7 @@
func
:
abs_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
abs_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_
api
:
acos_grad
-
backward_
op
:
acos_grad
forward
:
acos(Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
output
:
Tensor(x_grad)
...
...
@@ -14,7 +14,7 @@
func
:
acos_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
acos_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_
api
:
acosh_grad
-
backward_
op
:
acosh_grad
forward
:
acosh(Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
output
:
Tensor(x_grad)
...
...
@@ -22,7 +22,7 @@
func
:
acosh_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
acosh_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_
api
:
add_grad
-
backward_
op
:
add_grad
forward
:
add(Tensor x, Tensor y) -> Tensor(out)
args
:
(Tensor x, Tensor y, Tensor out_grad)
output
:
Tensor(x_grad), Tensor(y_grad)
...
...
@@ -30,7 +30,7 @@
func
:
add_coo_coo_grad{sparse_coo, sparse_coo, sparse_coo -> sparse_coo, sparse_coo},
add_csr_csr_grad{sparse_csr, sparse_csr, sparse_csr -> sparse_csr, sparse_csr}
-
backward_
api
:
addmm_grad
-
backward_
op
:
addmm_grad
forward
:
addmm(Tensor input, Tensor x, Tensor y, float alpha=1.0, float beta=1.0) -> Tensor(out)
args
:
(Tensor input, Tensor x, Tensor y, Tensor out_grad, float alpha=1.0, float beta=1.0)
output
:
Tensor(input_grad), Tensor(x_grad), Tensor(y_grad)
...
...
@@ -40,7 +40,7 @@
addmm_coo_dense_grad {dense, sparse_coo, dense, dense -> dense, sparse_coo, dense},
addmm_coo_coo_grad {sparse_coo, sparse_coo, sparse_coo, sparse_coo -> sparse_coo, sparse_coo, sparse_coo}
-
backward_
api
:
asin_grad
-
backward_
op
:
asin_grad
forward
:
asin(Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
output
:
Tensor(x_grad)
...
...
@@ -48,7 +48,7 @@
func
:
asin_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
asin_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_
api
:
asinh_grad
-
backward_
op
:
asinh_grad
forward
:
asinh(Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
output
:
Tensor(x_grad)
...
...
@@ -56,7 +56,7 @@
func
:
asinh_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
asinh_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_
api
:
atan_grad
-
backward_
op
:
atan_grad
forward
:
atan(Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
output
:
Tensor(x_grad)
...
...
@@ -64,7 +64,7 @@
func
:
atan_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
atan_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_
api
:
atanh_grad
-
backward_
op
:
atanh_grad
forward
:
atanh(Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
output
:
Tensor(x_grad)
...
...
@@ -72,7 +72,7 @@
func
:
atanh_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
atanh_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_
api
:
cast_grad
-
backward_
op
:
cast_grad
forward
:
cast(Tensor x, DataType index_dtype, DataType value_dtype) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad, DataType value_dtype)
output
:
Tensor(x_grad)
...
...
@@ -81,14 +81,14 @@
cast_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
data_type
:
out_grad
-
backward_
api
:
conv3d_coo_grad
-
backward_
op
:
conv3d_coo_grad
forward
:
conv3d_coo (Tensor x, Tensor kernel, int[] paddings, int[] dilations, int[] strides, int groups, bool subm, str key) -> Tensor(out), Tensor(rulebook), Tensor(counter)
args
:
(Tensor x, Tensor kernel, Tensor out, Tensor rulebook, Tensor counter, Tensor out_grad, int[] paddings, int[] dilations, int[] strides, int groups, bool subm, str key)
output
:
Tensor(x_grad), Tensor(kernel_grad)
kernel
:
func
:
conv3d_coo_grad{sparse_coo, dense, sparse_coo, dense, dense, sparse_coo -> sparse_coo, dense}
-
backward_
api
:
divide_grad
-
backward_
op
:
divide_grad
forward
:
divide(Tensor x, Tensor y) -> Tensor(out)
args
:
(Tensor x, Tensor y, Tensor out, Tensor out_grad)
output
:
Tensor(x_grad), Tensor(y_grad)
...
...
@@ -96,13 +96,13 @@
func
:
divide_coo_coo_grad{sparse_coo, sparse_coo, sparse_coo, sparse_coo -> sparse_coo, sparse_coo},
divide_csr_csr_grad{sparse_csr, sparse_csr, sparse_csr, sparse_csr -> sparse_csr, sparse_csr}
-
backward_
api
:
divide_scalar_grad
-
backward_
op
:
divide_scalar_grad
forward
:
divide_scalar (Tensor x, float scalar) -> Tensor(out)
args
:
(Tensor out_grad, float scalar)
output
:
Tensor(x_grad)
invoke
:
divide_scalar(out_grad, scalar)
-
backward_
api
:
expm1_grad
-
backward_
op
:
expm1_grad
forward
:
expm1(Tensor x) -> Tensor(out)
args
:
(Tensor out, Tensor out_grad)
output
:
Tensor(x_grad)
...
...
@@ -110,7 +110,7 @@
func
:
expm1_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
expm1_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_
api
:
leaky_relu_grad
-
backward_
op
:
leaky_relu_grad
forward
:
leaky_relu(Tensor x, float alpha) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad, float alpha)
output
:
Tensor(x_grad)
...
...
@@ -118,7 +118,7 @@
func
:
leaky_relu_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
leaky_relu_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_
api
:
log1p_grad
-
backward_
op
:
log1p_grad
forward
:
log1p(Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
output
:
Tensor(x_grad)
...
...
@@ -126,14 +126,14 @@
func
:
log1p_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
log1p_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_
api
:
masked_matmul_grad
-
backward_
op
:
masked_matmul_grad
forward
:
masked_matmul(Tensor x, Tensor y, Tensor mask) -> Tensor(out)
args
:
(Tensor x, Tensor y, Tensor out_grad)
output
:
Tensor(x_grad), Tensor(y_grad)
kernel
:
func
:
masked_matmul_csr_grad{dense, dense, sparse_csr -> dense, dense}
-
backward_
api
:
matmul_grad
-
backward_
op
:
matmul_grad
forward
:
matmul(Tensor x, Tensor y) -> Tensor(out)
args
:
(Tensor x, Tensor y, Tensor out_grad)
output
:
Tensor(x_grad), Tensor(y_grad)
...
...
@@ -143,14 +143,14 @@
matmul_coo_dense_grad {sparse_coo, dense, dense -> sparse_coo, dense},
matmul_coo_coo_grad {sparse_coo, sparse_coo, sparse_coo -> sparse_coo, sparse_coo}
-
backward_
api
:
maxpool_grad
-
backward_
op
:
maxpool_grad
forward
:
maxpool(Tensor x, int[] kernel_sizes, int[] paddings, int[] dilations, int[] strides) -> Tensor(out), Tensor(rulebook), Tensor(counter)
args
:
(Tensor x, Tensor rulebook, Tensor counter, Tensor out, Tensor out_grad, int[] kernel_sizes)
output
:
Tensor(x_grad)
kernel
:
func
:
maxpool_coo_grad {sparse_coo, dense, dense, sparse_coo, sparse_coo -> sparse_coo}
-
backward_
api
:
multiply_grad
-
backward_
op
:
multiply_grad
forward
:
multiply(Tensor x, Tensor y) -> Tensor(out)
args
:
(Tensor x, Tensor y, Tensor out_grad)
output
:
Tensor(x_grad), Tensor(y_grad)
...
...
@@ -158,7 +158,7 @@
func
:
multiply_coo_coo_grad{sparse_coo, sparse_coo, sparse_coo -> sparse_coo, sparse_coo},
multiply_csr_csr_grad{sparse_csr, sparse_csr, sparse_csr -> sparse_csr, sparse_csr}
-
backward_
api
:
mv_grad
-
backward_
op
:
mv_grad
forward
:
mv(Tensor x, Tensor vec) -> Tensor(out)
args
:
(Tensor x, Tensor vec, Tensor out_grad)
output
:
Tensor(x_grad), Tensor(vec_grad)
...
...
@@ -166,7 +166,7 @@
func
:
mv_coo_grad{sparse_coo, dense, dense -> sparse_coo, dense},
mv_csr_grad{sparse_csr, dense, dense -> sparse_csr, dense}
-
backward_
api
:
pow_grad
-
backward_
op
:
pow_grad
forward
:
pow(Tensor x, float factor) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad, float factor)
output
:
Tensor(x_grad)
...
...
@@ -174,7 +174,7 @@
func
:
pow_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
pow_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_
api
:
relu6_grad
-
backward_
op
:
relu6_grad
forward
:
relu6(Tensor x, float threshold) -> Tensor(out)
args
:
(Tensor out, Tensor out_grad, float threshold)
output
:
Tensor(x_grad)
...
...
@@ -182,7 +182,7 @@
func
:
relu6_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
relu6_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_
api
:
relu_grad
-
backward_
op
:
relu_grad
forward
:
relu(Tensor x) -> Tensor(out)
args
:
(Tensor out, Tensor out_grad)
output
:
Tensor(x_grad)
...
...
@@ -190,13 +190,13 @@
func
:
relu_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
relu_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_
api
:
scale_grad
-
backward_
op
:
scale_grad
forward
:
scale(Tensor x, float scale, float bias, bool bias_after_scale) -> Tensor(out)
args
:
(Tensor out_grad, float scale)
output
:
Tensor(x_grad)
invoke
:
scale(out_grad, scale, 0.0,
true
)
-
backward_
api
:
sin_grad
-
backward_
op
:
sin_grad
forward
:
sin(Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
output
:
Tensor(x_grad)
...
...
@@ -204,7 +204,7 @@
func
:
sin_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
sin_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_
api
:
sinh_grad
-
backward_
op
:
sinh_grad
forward
:
sinh(Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
output
:
Tensor(x_grad)
...
...
@@ -212,21 +212,21 @@
func
:
sinh_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
sinh_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_
api
:
softmax_grad
-
backward_
op
:
softmax_grad
forward
:
softmax(Tensor x, int axis=-1) -> Tensor(out)
args
:
(Tensor out, Tensor out_grad, int axis)
output
:
Tensor(x_grad)
kernel
:
func
:
softmax_csr_grad{sparse_csr, sparse_csr -> sparse_csr}
-
backward_
api
:
sparse_coo_tensor_grad
-
backward_
op
:
sparse_coo_tensor_grad
forward
:
sparse_coo_tensor(Tensor values, Tensor indices, IntArray dense_shape) -> Tensor(out)
args
:
(Tensor indices, Tensor out_grad)
output
:
Tensor(values_grad)
kernel
:
func
:
sparse_coo_tensor_grad{dense, sparse_coo -> dense}
-
backward_
api
:
sqrt_grad
-
backward_
op
:
sqrt_grad
forward
:
sqrt(Tensor x) -> Tensor(out)
args
:
(Tensor out, Tensor out_grad)
output
:
Tensor(x_grad)
...
...
@@ -234,7 +234,7 @@
func
:
sqrt_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
sqrt_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_
api
:
square_grad
-
backward_
op
:
square_grad
forward
:
square(Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
output
:
Tensor(x_grad)
...
...
@@ -242,7 +242,7 @@
func
:
square_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
square_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_
api
:
subtract_grad
-
backward_
op
:
subtract_grad
forward
:
subtract(Tensor x, Tensor y) -> Tensor(out)
args
:
(Tensor x, Tensor y, Tensor out_grad)
output
:
Tensor(x_grad), Tensor(y_grad)
...
...
@@ -250,7 +250,7 @@
func
:
subtract_coo_coo_grad{sparse_coo, sparse_coo, sparse_coo -> sparse_coo, sparse_coo},
subtract_csr_csr_grad{sparse_csr, sparse_csr, sparse_csr -> sparse_csr, sparse_csr}
-
backward_
api
:
tan_grad
-
backward_
op
:
tan_grad
forward
:
tan(Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
output
:
Tensor(x_grad)
...
...
@@ -258,7 +258,7 @@
func
:
tan_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
tan_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_
api
:
tanh_grad
-
backward_
op
:
tanh_grad
forward
:
tanh(Tensor x) -> Tensor(out)
args
:
(Tensor out, Tensor out_grad)
output
:
Tensor(x_grad)
...
...
@@ -266,28 +266,28 @@
func
:
tanh_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
tanh_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_
api
:
to_dense_grad
-
backward_
op
:
to_dense_grad
forward
:
to_dense(Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
output
:
Tensor(x_grad)
kernel
:
func
:
coo_to_dense_grad{sparse_coo, dense -> sparse_coo}
-
backward_
api
:
to_sparse_coo_grad
-
backward_
op
:
to_sparse_coo_grad
forward
:
to_sparse_coo(Tensor x, int64_t sparse_dim) -> Tensor(out)
args
:
(Tensor out_grad)
output
:
Tensor(x_grad)
kernel
:
func
:
coo_to_dense { sparse_coo -> dense }
-
backward_
api
:
values_grad
-
backward_
op
:
values_grad
forward
:
values_coo(Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
output
:
Tensor(x_grad)
kernel
:
func
:
values_coo_grad{sparse_coo, dense-> sparse_coo}
-
backward_
api
:
fused_attention_grad
-
backward_
op
:
fused_attention_grad
forward
:
fused_attention_csr(Tensor query, Tensor key, Tensor value, Tensor sparse_mask, Tensor key_padding_mask, Tensor attn_mask) -> Tensor(out), Tensor(softmax)
args
:
(Tensor query, Tensor key, Tensor value, Tensor softmax, Tensor out_grad)
output
:
Tensor(query_grad), Tensor(key_grad), Tensor(value_grad)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录