legacy_backward.yaml 52.1 KB
Newer Older
1
- backward_op : abs_double_grad
Z
zyfncg 已提交
2 3 4 5 6 7 8 9 10
  forward : abs_grad (Tensor x, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor x, Tensor grad_x_grad)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : abs_double_grad

11
- backward_op : abs_grad
Z
zyfncg 已提交
12 13 14 15 16 17 18 19
  forward : abs (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : abs_grad
20
  composite : abs_grad(x, out_grad, x_grad)
Z
zyfncg 已提交
21 22
  backward : abs_double_grad

23
- backward_op : add_double_grad
Z
zyfncg 已提交
24 25 26 27 28 29 30 31 32 33 34 35
  forward : add_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [grad_out]
  kernel :
    func : add_double_grad
  optional : grad_x_grad, grad_y_grad
  backward : add_triple_grad
  inplace : (grad_x_grad -> grad_out_grad)

36
- backward_op : add_grad
Z
zyfncg 已提交
37 38 39 40 41 42 43 44 45
  forward : add (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : add_grad
  no_need_buffer : x, y
46
  composite : add_grad(x, y, out_grad, axis, x_grad, y_grad)
Z
zyfncg 已提交
47 48 49
  backward : add_double_grad
  inplace : (out_grad -> x_grad)

50
- backward_op : add_triple_grad
Z
zyfncg 已提交
51 52 53 54 55 56 57 58 59 60
  forward : add_double_grad (Tensor y, Tensor grad_out, Tensor grad_grad_x, Tensor grad_grad_y, int axis = -1) -> Tensor(grad_grad_out)
  args : (Tensor grad_grad_x, Tensor grad_grad_y, Tensor grad_grad_out_grad, int axis = -1)
  output : Tensor(grad_grad_x_grad), Tensor(grad_grad_y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [grad_grad_x, grad_grad_y]
  kernel :
    func : add_triple_grad
  inplace : (grad_grad_out_grad -> grad_grad_x_grad)

61
- backward_op : affine_grid_grad
62 63
  forward : affine_grid (Tensor input, IntArray outputShape, bool align_corners=true) -> Tensor(output)
  args : (Tensor input, Tensor output_grad, IntArray outputShape, bool align_corners=true)
64 65 66 67 68 69 70
  output : Tensor(input_grad)
  infer_meta :
    func : AffineGridGradInferMeta
    param : [output_grad, outputShape, align_corners]
  kernel :
    func : affine_grid_grad
    param : [output_grad, outputShape, align_corners]
71
  no_need_buffer : input
72

73
- backward_op : amax_grad
74 75
  forward: amax (Tensor x,  int64_t[] axis={},  bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis={},  bool keepdim=false, bool reduce_all=false)
76 77 78 79 80 81 82
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : amax_grad

83
- backward_op : amin_grad
84 85
  forward: amin (Tensor x,  int64_t[] axis={},  bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis={},  bool keepdim=false, bool reduce_all=false)
86 87 88 89 90 91 92
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : amin_grad

93
- backward_op : assign_grad
Z
zyfncg 已提交
94 95 96
  forward : assign (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
97
  composite: assign_grad(out_grad, x_grad)
98
  invoke : assign(out_grad)
Z
zyfncg 已提交
99

100
- backward_op : assign_out__grad
Z
zyfncg 已提交
101 102 103 104 105 106 107 108 109
  forward : assign_out_ (Tensor x, Tensor output) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
  kernel :
    func : assign
  inplace : (out_grad -> x_grad)

110
- backward_op : batch_norm_double_grad
111 112
  forward : batch_norm_grad (Tensor x, Tensor scale, Tensor bias, Tensor out_mean, Tensor out_variance, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor grad_out, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics) -> Tensor(grad_x), Tensor(grad_scale), Tensor(grad_bias)
  args : (Tensor x, Tensor scale, Tensor out_mean, Tensor out_variance, Tensor saved_mean, Tensor saved_variance, Tensor grad_out,  Tensor grad_x_grad, Tensor grad_scale_grad, Tensor grad_bias_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics)
Z
zyfncg 已提交
113 114 115 116 117 118 119
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, scale, x]
  kernel :
    func : batch_norm_grad_grad
    data_type : x
120
  optional : out_mean, out_variance, grad_x_grad, grad_scale_grad, grad_bias_grad
Z
zyfncg 已提交
121 122
  inplace : (grad_out -> grad_out_grad)

123
- backward_op : batch_norm_grad
124 125
  forward : batch_norm (Tensor x, Tensor mean, Tensor variance, Tensor scale, Tensor bias, bool is_test, float momentum, float epsilon, str data_layout, bool use_global_stats, bool trainable_statistics) -> Tensor(out), Tensor(mean_out), Tensor(variance_out), Tensor(saved_mean), Tensor(saved_variance), Tensor(reserve_space)
  args : (Tensor x, Tensor scale, Tensor bias, Tensor mean_out, Tensor variance_out, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor out_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics)
Z
zyfncg 已提交
126 127 128 129 130 131 132 133
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, scale, bias]
  kernel :
    func : batch_norm_grad
    data_type : out_grad
  optional : mean_out, variance_out, reserve_space
134
  composite: batch_norm_grad(x, scale, bias, mean_out, variance_out, saved_mean, saved_variance, reserve_space, out_grad, momentum, epsilon, data_layout, is_test, use_global_stats, trainable_statistics)
Z
zyfncg 已提交
135 136
  backward : batch_norm_double_grad

137
- backward_op : bce_loss_grad
Z
zyfncg 已提交
138 139 140 141 142 143 144 145 146 147
  forward : bce_loss (Tensor input, Tensor label) -> Tensor(out)
  args : (Tensor input, Tensor label, Tensor out_grad)
  output : Tensor(input_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [input]
  kernel :
    func : bce_loss_grad
  inplace : (out_grad -> input_grad)

148
- backward_op : bilinear_tensor_product_grad
149 150 151 152 153 154 155 156
  forward : bilinear_tensor_product (Tensor x, Tensor y, Tensor weight, Tensor bias) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor weight, Tensor out_grad)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(weight_grad), Tensor(bias_grad)
  infer_meta :
    func : BilinearTensorProductGradInferMeta
  kernel :
    func : bilinear_tensor_product_grad

157
- backward_op : cast_grad
158
  forward : cast (Tensor x, DataType dtype) -> Tensor(out)
Z
zyfncg 已提交
159 160
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
161
  invoke : cast (out_grad, x.dtype())
162
  composite: cast_grad(x, out_grad, x_grad)
Z
zyfncg 已提交
163 164
  no_need_buffer : x

165 166 167 168 169 170 171 172 173
- backward_op : channel_shuffle_grad
  forward : channel_shuffle (Tensor x, int groups, str data_format="NCHW") -> Tensor(out)
  args : (Tensor out_grad, int groups, str data_format="NCHW")
  output : Tensor(x_grad)
  infer_meta :
    func : ChannelShuffleGradInferMeta
  kernel :
    func : channel_shuffle_grad

174
- backward_op : concat_double_grad
Z
zyfncg 已提交
175 176 177
  forward : concat_grad (Tensor[] x, Tensor grad_out, Scalar axis) -> Tensor[](grad_x)
  args : (Tensor[] grad_x_grad, Scalar axis = 0)
  output : Tensor(grad_out_grad)
178
  invoke : concat(grad_x_grad, axis)
Z
zyfncg 已提交
179

180
- backward_op : concat_grad
Z
zyfncg 已提交
181 182 183 184 185 186 187 188
  forward : concat (Tensor[] x, Scalar axis) -> Tensor(out)
  args : (Tensor[] x, Tensor out_grad, Scalar axis = 0)
  output : Tensor[](x_grad){x.size()}
  infer_meta :
    func : UnchangedMultiInferMeta
    param : [x]
  kernel :
    func : concat_grad
W
wangzhen38 已提交
189
  composite : concat_grad(x, out_grad, axis, x_grad)
Z
zyfncg 已提交
190 191 192
  no_need_buffer : x
  backward : concat_double_grad

193
- backward_op : conv2d_grad
194 195
  forward : conv2d (Tensor input, Tensor filter, int[] strides, int[] paddings, str padding_algorithm, int[] dilations, int groups, str data_format) -> Tensor(out)
  args : (Tensor input, Tensor filter, Tensor out_grad,  int[] strides, int[] paddings, str padding_algorithm, int[] dilations, int groups, str data_format)
Z
zyfncg 已提交
196
  output : Tensor(input_grad), Tensor(filter_grad)
Z
zyfncg 已提交
197 198 199 200 201
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [input, filter]
  kernel :
    func : conv2d_grad
Z
zyfncg 已提交
202 203
  backward : conv2d_grad_grad

204
- backward_op : conv2d_grad_grad
205 206
  forward : conv2d_grad (Tensor input, Tensor filter, Tensor grad_out,  int[] strides, int[] paddings, str padding_algorithm, int[] dilations, int groups, str data_format) -> Tensor(grad_input), Tensor(grad_filter)
  args : (Tensor input, Tensor filter, Tensor grad_out, Tensor grad_input_grad, Tensor grad_filter_grad, int[] strides, int[] paddings, str padding_algorithm, int[] dilations, int groups, str data_format)
Z
zyfncg 已提交
207 208 209 210 211
  output : Tensor(input_grad), Tensor(filter_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param: [input, filter, grad_out]
  kernel :
212
    func : conv2d_double_grad
Z
zyfncg 已提交
213 214
  optional : grad_input_grad, grad_filter_grad

215
- backward_op : conv2d_transpose_double_grad
216 217
  forward : conv2d_transpose_grad(Tensor x, Tensor filter, Tensor grad_out, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(grad_x), Tensor(grad_filter)
  args : (Tensor x, Tensor filter, Tensor grad_out, Tensor grad_x_grad, Tensor grad_filter_grad, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
Z
zyfncg 已提交
218 219 220 221 222 223
  output : Tensor(x_grad), Tensor(filter_grad), Tensor(grad_out_grad)
  infer_meta :
    func : Conv2dTransposeDoubleGradInferMeta
  kernel :
    func : conv2d_transpose_grad_grad

224
- backward_op : conv2d_transpose_grad
225 226
  forward : conv2d_transpose(Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out)
  args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
Z
zyfncg 已提交
227 228
  output : Tensor(x_grad), Tensor(filter_grad)
  infer_meta :
229
    func : Conv2dTransposeGradInferMeta
Z
zyfncg 已提交
230 231 232 233
  kernel :
    func : conv2d_transpose_grad
  backward : conv2d_transpose_double_grad

234 235 236 237 238 239 240 241 242 243 244
- backward_op : conv3d_double_grad
  forward : conv3d_grad (Tensor input, Tensor filter, Tensor grad_out,  int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(grad_input), Tensor(grad_filter)
  args : (Tensor input, Tensor filter, Tensor grad_out, Tensor grad_input_grad, Tensor grad_filter_grad, int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format)
  output : Tensor(input_grad), Tensor(filter_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param: [input, filter, grad_out]
  kernel :
    func : conv3d_double_grad
  optional : grad_input_grad, grad_filter_grad

245
- backward_op : conv3d_grad
246 247
  forward : conv3d (Tensor input, Tensor filter, int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out)
  args : (Tensor input, Tensor filter, Tensor out_grad,  int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format)
Z
zyfncg 已提交
248
  output : Tensor(input_grad), Tensor(filter_grad)
Z
zyfncg 已提交
249 250 251 252 253
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [input, filter]
  kernel :
    func : conv3d_grad
254
  backward : conv3d_double_grad
Z
zyfncg 已提交
255

256
- backward_op : conv3d_transpose_grad
Z
zyfncg 已提交
257 258 259 260 261 262 263 264
  forward : conv3d_transpose(Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out)
  args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
  output : Tensor(x_grad), Tensor(filter_grad)
  infer_meta :
    func : ConvTransposeGradInferMeta
  kernel :
    func : conv3d_transpose_grad

265
- backward_op : cross_entropy_with_softmax_grad
Z
zyfncg 已提交
266 267 268 269 270 271 272 273 274 275
  forward : cross_entropy_with_softmax (Tensor input, Tensor label, bool soft_label, bool use_softmax, bool numeric_stable_mode, int ignore_index, int axis) -> Tensor(softmax), Tensor(loss)
  args : (Tensor label, Tensor softmax, Tensor loss_grad, bool soft_label, bool use_softmax, bool numeric_stable_mode, int ignore_index, int axis)
  output : Tensor(input_grad)
  infer_meta :
    func : CrossEntropyWithSoftmaxGradInferMeta
  kernel :
    func : cross_entropy_with_softmax_grad
    data_type : softmax
  inplace : (softmax -> input_grad)

276
- backward_op : cumsum_grad
W
WangZhen 已提交
277
  forward : cumsum(Tensor x, Scalar axis, bool flatten, bool exclusive, bool reverse) -> Tensor(out)
278
  args : (Tensor x, Tensor out_grad, Scalar axis, bool flatten, bool exclusive, bool reverse)
Z
zyfncg 已提交
279
  output : Tensor(x_grad)
280 281 282 283 284 285
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : cumsum_grad
    data_type: x
G
GGBond8488 已提交
286
  composite: cumsum_grad(x, out_grad, axis, flatten, exclusive, reverse, x_grad)
Z
zyfncg 已提交
287

288
- backward_op : deformable_conv_grad
Z
zyfncg 已提交
289 290 291 292 293 294 295 296 297 298
  forward : deformable_conv(Tensor x, Tensor offset, Tensor filter, Tensor mask, int[] strides, int[] paddings, int[] dilations, int deformable_groups, int groups, int im2col_step) -> Tensor(out)
  args : (Tensor x, Tensor offset, Tensor filter, Tensor mask, Tensor out_grad, int[] strides, int[] paddings, int[] dilations, int deformable_groups, int groups, int im2col_step)
  output : Tensor(x_grad), Tensor(offset_grad), Tensor(filter_grad), Tensor(mask_grad)
  infer_meta :
    func : DeformableConvGradInferMeta
  kernel :
    func : deformable_conv_grad
    data_type : x
  optional : mask

299
- backward_op : depthwise_conv2d_double_grad
300
  forward : depthwise_conv2d_grad (Tensor input, Tensor filter, Tensor grad_out, int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(grad_input), Tensor(grad_filter)
301 302 303 304 305 306 307 308 309
  args : (Tensor input, Tensor filter, Tensor grad_out, Tensor grad_input_grad, Tensor grad_filter_grad, int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format)
  output : Tensor(input_grad), Tensor(filter_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param: [input, filter, grad_out]
  kernel :
    func : depthwise_conv2d_double_grad
  optional : grad_input_grad, grad_filter_grad

310
- backward_op : depthwise_conv2d_grad
311 312
  forward : depthwise_conv2d (Tensor input, Tensor filter, int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out)
  args : (Tensor input, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format)
Z
zyfncg 已提交
313 314 315 316 317 318
  output : Tensor(input_grad), Tensor(filter_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [input, filter]
  kernel :
    func : depthwise_conv2d_grad
319 320
    param : [input, filter, out_grad, strides, paddings, padding_algorithm, groups, dilations, data_format]
  backward : depthwise_conv2d_double_grad
Z
zyfncg 已提交
321

322
- backward_op : depthwise_conv2d_transpose_grad
323 324
  forward : depthwise_conv2d_transpose(Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out)
  args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
Z
zyfncg 已提交
325 326
  output : Tensor(x_grad), Tensor(filter_grad)
  infer_meta :
327
    func : Conv2dTransposeGradInferMeta
Z
zyfncg 已提交
328 329 330
  kernel :
    func : depthwise_conv2d_transpose_grad

331
- backward_op : divide_double_grad
Z
zyfncg 已提交
332 333 334 335 336 337 338 339 340 341 342 343
  forward : divide_grad (Tensor x, Tensor y, Tensor out, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor y, Tensor out, Tensor grad_x, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(y_grad), Tensor(out_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [y, grad_x, grad_x]
  kernel :
    func : divide_double_grad
    data_type : out
  optional : grad_x_grad, grad_y_grad
  inplace : (grad_x_grad -> grad_out_grad)

344
- backward_op : divide_grad
Z
zyfncg 已提交
345 346 347 348 349 350 351 352
  forward : divide (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : divide_grad
353
  composite : divide_grad(x, y, out, out_grad, axis, x_grad, y_grad)
Z
zyfncg 已提交
354 355
  backward : divide_double_grad

356
- backward_op : dropout_grad
357 358
  forward : dropout (Tensor x, Tensor seed_tensor, Scalar p, bool is_test, str mode, int seed, bool fix_seed) -> Tensor(out), Tensor(mask)
  args : (Tensor mask, Tensor out_grad, Scalar p, bool is_test, str mode)
Z
zyfncg 已提交
359 360 361 362 363 364 365
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : dropout_grad

366
- backward_op : eigvalsh_grad
367 368 369 370 371 372 373 374 375 376 377
  forward : eigvalsh (Tensor x, str uplo, bool is_test) -> Tensor(eigenvalues), Tensor(eigenvectors)
  args : (Tensor eigenvectors, Tensor eigenvalues_grad, str uplo, bool is_test)
  output : Tensor(x_grad)
  infer_meta :
    func : EigvalshGradInferMeta
  kernel :
    func : eigvalsh_grad
    data_type : eigenvectors
  data_transform :
    skip_transform : eigenvalues_grad

378
- backward_op : einsum_grad
Z
zyfncg 已提交
379 380 381 382 383 384 385 386 387
  forward : einsum (Tensor[] x, str equation) -> Tensor(out), Tensor[](inner_cache), Tensor[](x_shape)
  args : (Tensor[] x_shape, Tensor[] inner_cache, Tensor out_grad, str equation)
  output : Tensor[](x_grad){x.size()}
  infer_meta :
    func : UnchangedMultiInferMeta
    param : [x_shape]
  kernel :
    func : einsum_grad

388
- backward_op : elementwise_pow_grad
Z
zyfncg 已提交
389 390 391 392 393 394
  forward : elementwise_pow(Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis=-1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
395
  composite : elementwise_pow_grad(x, y, out_grad, axis, x_grad, y_grad)
Z
zyfncg 已提交
396 397 398
  kernel :
    func : elementwise_pow_grad

399
- backward_op : embedding_grad
Z
zyfncg 已提交
400 401 402 403
  forward : embedding (Tensor x, Tensor weight, int64_t padding_idx=-1, bool sparse=false) -> Tensor(out)
  args : (Tensor x, Tensor weight, Tensor out_grad, int64_t padding_idx=-1, bool sparse=false)
  output : Tensor(weight_grad)
  invoke : embedding_grad_impl(x, weight, out_grad, padding_idx, sparse, weight_grad)
W
wanghuancoder 已提交
404
  no_need_buffer : weight
Z
zyfncg 已提交
405

406
- backward_op : expand_as_grad
Z
zyfncg 已提交
407 408 409 410 411 412 413 414 415 416
  forward : expand_as (Tensor x, Tensor y, int[] target_shape) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int[] target_shape)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : expand_as_grad
  no_need_buffer : x

417
- backward_op : expand_double_grad
Z
zyfncg 已提交
418 419 420
  forward : expand_grad (Tensor x, Tensor grad_out, IntArray shape) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray shape)
  output : Tensor(grad_out_grad)
421
  invoke : expand(grad_x_grad, shape)
Z
zyfncg 已提交
422

423
- backward_op : expand_grad
Z
zyfncg 已提交
424 425 426 427 428 429 430 431 432 433
  forward : expand (Tensor x, IntArray shape) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray shape)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : expand_grad
  no_need_buffer : x
  backward : expand_double_grad
434
  composite: expand_grad(x, out_grad, shape, x_grad)
Z
zyfncg 已提交
435

436
- backward_op : exponential__grad
437
  forward : exponential_ (Tensor x, float lam) -> Tensor(out)
438 439 440 441
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
442
  invoke : zeros_like(out_grad)
443

444
- backward_op : fill_grad
445 446 447 448 449 450 451 452 453 454
  forward : fill (Tensor x, Scalar value) -> Tensor(out)
  args : (Tensor out_grad, Scalar value)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : fill_grad
  inplace : (out_grad -> x_grad)

455
- backward_op : flatten_grad
Z
zyfncg 已提交
456 457 458 459 460 461 462 463 464 465 466 467 468
  forward : flatten(Tensor x, int start_axis, int stop_axis) -> Tensor(out), Tensor(xshape)
  args : (Tensor xshape, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func :  KernelWithXShapeInferMeta
    param : [xshape]
  kernel :
    func : flatten_grad
    data_type: out_grad
    backend: out_grad
    layout: out_grad
  inplace : (out_grad -> x_grad)

469
- backward_op : fmax_grad
470
  forward : fmax(Tensor x, Tensor y) -> Tensor(out)
Z
zhangyuqin1998 已提交
471
  args : (Tensor x, Tensor y, Tensor out_grad)
Z
zyfncg 已提交
472 473 474 475 476 477 478
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : fmax_grad

479
- backward_op : fmin_grad
480
  forward : fmin(Tensor x, Tensor y) -> Tensor(out)
Z
zyfncg 已提交
481
  args : (Tensor x, Tensor y, Tensor out_grad)
Z
zyfncg 已提交
482 483 484 485 486 487 488
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : fmin_grad

489
- backward_op : frobenius_norm_grad
Z
zyfncg 已提交
490 491 492 493 494 495 496 497 498
  forward : frobenius_norm(Tensor x, int64_t[] axis,  bool keep_dim,  bool reduce_all) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis,  bool keep_dim,  bool reduce_all)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : frobenius_norm_grad

499
- backward_op : gather_grad
Z
zyfncg 已提交
500 501 502 503 504 505 506 507 508
  forward : gather(Tensor x, Tensor index, Scalar axis=0) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad, Scalar axis=0, bool overwrite=false)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    data_type: x
    func : gather_grad
509
  composite : gather_grad(x, index, out_grad, axis, overwrite, x_grad)
Z
zyfncg 已提交
510 511
  no_need_buffer : x

512
- backward_op : group_norm_grad
Z
zyfncg 已提交
513 514 515 516 517 518 519 520 521 522 523 524
  forward : group_norm (Tensor x, Tensor scale, Tensor bias, float epsilon, int groups, str data_layout) -> Tensor(y), Tensor(mean), Tensor(variance)
  args : (Tensor x, Tensor scale, Tensor bias, Tensor y, Tensor mean, Tensor variance, Tensor y_grad, float epsilon, int groups, str data_layout)
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [y, scale, bias]
  kernel :
    func : group_norm_grad
    data_type : y_grad
  optional: scale, bias
  inplace : (y_grad -> x_grad)

525
- backward_op : hardswish_grad
526
  forward : hardswish (Tensor x) -> Tensor(out)
527
  args : (Tensor x, Tensor out_grad)
Z
zyfncg 已提交
528 529 530 531 532
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
Z
zyfncg 已提交
533
    func : hardswish_grad
Z
zyfncg 已提交
534 535
  inplace : (out_grad -> x_grad)

536 537 538 539 540 541 542 543 544 545
- backward_op : heaviside_grad
  forward : heaviside (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : heaviside_grad

546
- backward_op : hsigmoid_loss_grad
547 548
  forward : hsigmoid_loss (Tensor x, Tensor label, Tensor w, Tensor bias, Tensor path, Tensor code, int num_classes, bool remote_prefetch, bool is_sparse) -> Tensor(out), Tensor(pre_out), Tensor(w_out)
  args : (Tensor x, Tensor w, Tensor label, Tensor path, Tensor code, Tensor bias, Tensor pre_out, Tensor out_grad, int num_classes, bool remote_prefetch, bool is_sparse)
549 550 551 552 553 554
  output : Tensor(x_grad), Tensor(w_grad), Tensor(bias_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x ,w, bias]
  optional: path, code, bias
  kernel :
555
    func : hsigmoid_loss_grad
556

557
- backward_op : instance_norm_double_grad
Z
zyfncg 已提交
558 559 560 561 562 563 564 565 566 567
  forward : instance_norm_grad(Tensor x, Tensor fwd_scale, Tensor saved_mean, Tensor saved_variance, Tensor grad_y, float epsilon) -> Tensor(grad_x), Tensor(grad_scale), Tensor(grad_bias)
  args : (Tensor x, Tensor fwd_scale, Tensor saved_mean, Tensor saved_variance, Tensor grad_y, Tensor grad_x_grad, Tensor grad_scale_grad, Tensor grad_bias_grad, float epsilon)
  output : Tensor(x_grad), Tensor(fwd_scale_grad), Tensor(grad_y_grad)
  infer_meta :
    func : InstanceNormDoubleGradInferMeta
  kernel :
    func : instance_norm_double_grad
    data_type : x
  optional : fwd_scale, grad_x_grad, grad_scale_grad, grad_bias_grad

568
- backward_op : instance_norm_grad
Z
zyfncg 已提交
569 570 571 572 573 574 575 576 577 578 579
  forward : instance_norm(Tensor x, Tensor scale, Tensor bias, float epsilon) -> Tensor(y), Tensor(saved_mean), Tensor(saved_variance)
  args : (Tensor x, Tensor scale, Tensor saved_mean, Tensor saved_variance, Tensor y_grad, float epsilon)
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad)
  infer_meta :
    func : InstanceNormGradInferMeta
  kernel :
    func : instance_norm_grad
    data_type : x
  optional : scale
  backward : instance_norm_double_grad

580
- backward_op : layer_norm_grad
581 582
  forward : layer_norm (Tensor x, Tensor scale, Tensor bias, float epsilon, int begin_norm_axis) -> Tensor(out), Tensor(mean), Tensor(variance)
  args : (Tensor x,  Tensor scale, Tensor bias, Tensor mean, Tensor variance, Tensor out_grad, float epsilon, int begin_norm_axis)
Z
zyfncg 已提交
583 584 585 586 587 588 589
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad)
  infer_meta :
    func : LayerNormGradInferMeta
    param : [x, scale, bias]
  kernel :
    func : layer_norm_grad
    data_type : out_grad
590
  composite : layer_norm_grad(x, scale, bias, mean,varience, out_grad, epsilon, begin_norm_axis, x_grad, scale_grad, bias_grad)
Z
zyfncg 已提交
591 592 593
  no_need_buffer : bias
  optional : scale, bias

594
- backward_op : logcumsumexp_grad
Z
zyfncg 已提交
595 596 597 598 599 600 601 602 603
  forward : logcumsumexp(Tensor x, int axis, bool flatten, bool exclusive, bool reverse) -> Tensor(out)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  args : (Tensor x, Tensor out, Tensor out_grad, int axis, bool flatten, bool exclusive, bool reverse)
  output : Tensor(x_grad)
  kernel :
    func : logcumsumexp_grad

604
- backward_op : logsumexp_grad
Z
zyfncg 已提交
605 606 607 608 609 610 611 612 613
  forward : logsumexp(Tensor x, int64_t[] axis,  bool keepdim,  bool reduce_all) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis,  bool keepdim,  bool reduce_all)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : logsumexp_grad

614
- backward_op : lu_grad
L
Lin Manhui 已提交
615 616 617 618 619 620 621 622
  forward : lu (Tensor x, bool pivot) -> Tensor(out), Tensor(pivots), Tensor(infos)
  args : (Tensor x, Tensor out, Tensor pivots, Tensor out_grad, bool pivot)
  output : Tensor(x_grad)
  infer_meta :
    func : LUGradInferMeta
  kernel :
    func : lu_grad

623
- backward_op : matmul_double_grad
Z
zyfncg 已提交
624 625 626 627 628 629 630 631
  forward : matmul_grad (Tensor x, Tensor y, Tensor grad_out, bool transpose_x=false, bool transpose_y=false) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor x, Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, bool transpose_x=false, bool transpose_y=false)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, y, grad_out]
  kernel :
    func : matmul_double_grad
632
  composite : matmul_double_grad(x, y, grad_out, grad_x_grad, grad_y_grad, transpose_x=false, transpose_y=false)
Z
zyfncg 已提交
633 634
  optional : grad_x_grad, grad_y_grad

635
- backward_op : matmul_grad
Z
zyfncg 已提交
636 637 638 639 640 641 642 643 644 645
  forward : matmul (Tensor x, Tensor y, bool transpose_x=false, bool transpose_y=false) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, bool transpose_x=false, bool transpose_y=false)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : matmul_grad
  backward : matmul_double_grad

646
- backward_op : max_grad
647 648
  forward: max (Tensor x,  IntArray axis={},  bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, IntArray axis={}, bool keepdim=false, bool reduce_all=false)
Z
zyfncg 已提交
649 650 651 652 653 654
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : max_grad
655
  composite : max_grad(x, out, out_grad, axis, keepdim, reduce_all, x_grad)
Z
zyfncg 已提交
656

657
- backward_op : max_pool2d_with_index_grad
Z
zyfncg 已提交
658 659 660 661 662 663 664 665
  forward : max_pool2d_with_index(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive) -> Tensor(out), Tensor(mask)
  args : (Tensor x, Tensor mask, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive)
  output : Tensor(x_grad)
  infer_meta :
    func : MaxPoolWithIndexGradInferMeta
  kernel :
    func : max_pool2d_with_index_grad

666
- backward_op : max_pool3d_with_index_grad
Z
zyfncg 已提交
667 668 669 670 671 672 673 674
  forward : max_pool3d_with_index(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive) -> Tensor(out), Tensor(mask)
  args : (Tensor x, Tensor mask, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive)
  output : Tensor(x_grad)
  infer_meta :
    func : MaxPoolWithIndexGradInferMeta
  kernel :
    func : max_pool3d_with_index_grad

675
- backward_op : maximum_grad
Z
zyfncg 已提交
676 677 678 679 680 681 682 683
  forward : maximum(Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis=-1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : maximum_grad
H
heyanru 已提交
684
  composite : maximum_grad(x, y, out_grad, axis, x_grad, y_grad)
Z
zyfncg 已提交
685

686
- backward_op : mean_all_grad
Z
zyfncg 已提交
687 688 689 690 691 692 693 694 695
  forward : mean_all(Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : mean_all_grad

696
- backward_op : mean_double_grad
697 698
  forward: mean_grad (Tensor x, Tensor grad_out, IntArray axis={},  bool keepdim=false, bool reduce_all = false) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray axis={},  bool keepdim=false)
Z
zyfncg 已提交
699
  output : Tensor(grad_out_grad)
700
  invoke : mean(grad_x_grad, axis, keepdim)
Z
zyfncg 已提交
701

702
- backward_op : mean_grad
703 704
  forward: mean (Tensor x,  IntArray axis={},  bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray axis={},  bool keepdim=false, bool reduce_all=false)
Z
zyfncg 已提交
705 706 707 708 709 710 711 712 713
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : mean_grad
  backward : mean_double_grad
  no_need_buffer : x

714
- backward_op : min_grad
715 716
  forward: min (Tensor x,  IntArray axis={},  bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, IntArray axis={}, bool keepdim=false, bool reduce_all=false)
Z
zyfncg 已提交
717 718 719 720 721 722 723
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : min_grad

724
- backward_op : minimum_grad
Z
zyfncg 已提交
725 726 727 728 729 730 731 732 733
  forward : minimum(Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis=-1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : minimum_grad

734
- backward_op : mish_grad
Z
zyfncg 已提交
735 736 737 738 739 740 741 742 743 744
  forward : mish (Tensor x, float threshold) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float threshold)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : mish_grad
  inplace : (out_grad -> x_grad)

745
- backward_op : multiply_double_grad
Z
zyfncg 已提交
746 747 748 749 750 751 752 753 754 755 756 757
  forward : multiply_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor x, Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, y, grad_out]
  kernel :
    func : multiply_double_grad
  optional : grad_x_grad, grad_y_grad
  backward : multiply_triple_grad
  inplace : (grad_x_grad -> grad_out_grad)

758
- backward_op : multiply_grad
Z
zyfncg 已提交
759 760 761 762 763 764 765 766
  forward : multiply (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : multiply_grad
767
  composite: multiply_grad(x, y, out_grad, axis, x_grad, y_grad)
Z
zyfncg 已提交
768 769
  backward : multiply_double_grad

770
- backward_op : multiply_triple_grad
Z
zyfncg 已提交
771 772 773 774 775
  forward : multiply_double_grad (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, int aixs = -1) -> Tensor(grad_x), Tensor(grad_y), Tensor(grad_grad_out)
  args : (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, Tensor grad_x_grad, Tensor grad_y_grad, Tensor grad_grad_out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(fwd_grad_out_grad), Tensor(fwd_grad_grad_x_grad), Tensor(fwd_grad_grad_y_grad)
  infer_meta :
    func : GeneralQuinaryGradInferMeta
776
    param : [x, y, fwd_grad_out, fwd_grad_grad_x, fwd_grad_grad_y]
Z
zyfncg 已提交
777 778
  kernel :
    func : multiply_triple_grad
779
  optional : fwd_grad_grad_x, fwd_grad_grad_y, grad_x_grad, grad_y_grad, grad_grad_out_grad
Z
zyfncg 已提交
780

781
- backward_op : norm_grad
Z
zyfncg 已提交
782 783 784 785 786 787 788 789 790
  forward : norm (Tensor x, int axis, float epsilon, bool is_test) -> Tensor(out), Tensor(norm)
  args : (Tensor x, Tensor norm, Tensor out_grad, int axis, float epsilon, bool is_test)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : norm_grad

791
- backward_op : pad3d_double_grad
Z
zyfncg 已提交
792 793 794 795 796 797 798 799
  forward : pad3d_grad(Tensor x, Tensor grad_out, IntArray paddings, str mode, float pad_value, str data_format) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray paddings, str mode, float pad_value, str data_format)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : Pad3dInferMeta
  kernel :
    func : pad3d

800
- backward_op : pad3d_grad
Z
zyfncg 已提交
801 802 803 804 805 806 807 808 809 810 811
  forward : pad3d(Tensor x, IntArray paddings, str mode,  float pad_value, str data_format) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray paddings, str mode,  float pad_value, str data_format)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : pad3d_grad
  no_need_buffer : x
  backward : pad3d_double_grad

812
- backward_op : pad_double_grad
813 814
  forward : pad_grad(Tensor x, Tensor grad_out, int[] paddings, Scalar pad_value) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, int[] paddings, Scalar pad_value)
Z
zyfncg 已提交
815 816 817 818 819 820
  output : Tensor(grad_out_grad)
  infer_meta :
    func : PadInferMeta
  kernel :
    func : pad

821
- backward_op : pad_grad
822 823
  forward : pad(Tensor x, int[] paddings, Scalar pad_value) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int[] paddings, Scalar pad_value)
Z
zyfncg 已提交
824 825 826 827 828 829 830 831 832 833
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : pad_grad
    param: [out_grad, paddings, pad_value]
  no_need_buffer : x
  backward : pad_double_grad

834
- backward_op : pool2d_double_grad
835 836
  forward : pool2d_grad(Tensor x, Tensor out, Tensor grad_out, IntArray kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(grad_x)
  args : (Tensor x, Tensor grad_x_grad, IntArray kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm)
Z
zyfncg 已提交
837 838
  output : Tensor(grad_out_grad)
  infer_meta :
839
    func : Pool2DInferMeta
840
    param : [grad_x_grad, kernel_size, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm]
Z
zyfncg 已提交
841 842
  kernel :
    func : pool2d_double_grad
843
    param : [grad_x_grad, kernel_size, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm]
844
  no_need_buffer : x
Z
zyfncg 已提交
845

846
- backward_op : pool2d_grad
847 848
  forward : pool2d(Tensor x, IntArray kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, IntArray kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm)
Z
zyfncg 已提交
849 850
  output : Tensor(x_grad)
  infer_meta :
851 852
    func : UnchangedInferMeta
    param: [x]
Z
zyfncg 已提交
853 854
  kernel :
    func : pool2d_grad
855
    param : [x, out, out_grad, kernel_size, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm]
Z
zyfncg 已提交
856 857
  backward : pool2d_double_grad

858
- backward_op : pool3d_grad
859 860
  forward : pool3d(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm)
Z
zyfncg 已提交
861 862
  output : Tensor(x_grad)
  infer_meta :
863 864
    func : UnchangedInferMeta
    param: [x]
Z
zyfncg 已提交
865 866
  kernel :
    func : pool3d_grad
867
    param : [x, out, out_grad, kernel_size, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm]
Z
zyfncg 已提交
868

869 870 871 872 873 874 875 876 877
- backward_op : prod_grad
  forward : prod (Tensor x, IntArray dims, bool keep_dim, bool reduce_all) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, IntArray dims,  bool keep_dim, bool reduce_all)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : prod_grad
878
  composite: prod_grad(x, out, out_grad, dims, keep_dim, reduce_all, x_grad)
879

880
- backward_op : psroi_pool_grad
Z
zyfncg 已提交
881 882 883 884 885 886 887 888 889 890 891
  forward : psroi_pool (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, int output_channels, float spatial_scale) -> Tensor(out)
  args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor out_grad, int pooled_height, int pooled_width, int output_channels, float spatial_scale)
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param : [x]
  kernel :
    func : psroi_pool_grad
    data_type : x
  optional : boxes_num

892
- backward_op : relu6_grad
893 894
  forward : relu6 (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, float threshold = 6)
895 896 897 898 899 900 901 902
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : relu6_grad
  inplace : (out_grad -> x_grad)

903
- backward_op : repeat_interleave_grad
904 905
  forward : repeat_interleave(Tensor x, int repeats, int axis) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int repeats, int axis)
S
seemingwang 已提交
906 907 908 909 910 911 912
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : repeat_interleave_grad

913
- backward_op : repeat_interleave_with_tensor_index_grad
914 915
  forward : repeat_interleave_with_tensor_index(Tensor x, Tensor repeats, int axis) -> Tensor(out)
  args : (Tensor x, Tensor repeats, Tensor out_grad, int axis)
S
seemingwang 已提交
916 917 918 919 920 921 922 923
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : repeat_interleave_with_tensor_index_grad
    data_type : x

924
- backward_op : reshape_double_grad
Z
zyfncg 已提交
925 926 927 928 929 930 931 932 933 934 935
  forward : reshape_grad (Tensor xshape, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor grad_out, Tensor grad_x_grad)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [grad_out]
  kernel :
    func : reshape_double_grad
  no_need_buffer : grad_out
  inplace : (grad_x_grad -> grad_out_grad)

936
- backward_op : reshape_grad
Z
zyfncg 已提交
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
  forward : reshape (Tensor x, IntArray shape) -> Tensor(out), Tensor(xshape)
  args : (Tensor xshape, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : KernelWithXShapeInferMeta
    param : [xshape]
  kernel :
    func : reshape_grad
    param : [out_grad]
    data_type: out_grad
    backend: out_grad
    layout: out_grad
  backward : reshape_double_grad
  inplace : (out_grad -> x_grad)

952
- backward_op : reverse_grad
953 954
  forward : reverse (Tensor x, IntArray axis) -> Tensor(out)
  args : (Tensor out_grad, IntArray axis)
W
wanghuancoder 已提交
955 956 957
  output : Tensor(x_grad)
  invoke : reverse(out_grad, axis)

Y
YuanRisheng 已提交
958 959 960 961 962 963 964 965 966 967 968 969
- backward_op : rnn_grad
  forward : rnn (Tensor x, Tensor[] pre_state, Tensor[] weight_list, Tensor sequence_length, Tensor dropout_state_in, float dropout_prob, bool is_bidirec, int input_size, int hidden_size, int num_layers, str mode, int seed, bool is_test) -> Tensor(out), Tensor(dropout_state_out), Tensor[](state), Tensor(reserve)
  args : (Tensor x, Tensor[] pre_state, Tensor[] weight_list, Tensor sequence_length, Tensor out, Tensor dropout_state_out, Tensor reserve, Tensor out_grad, Tensor[] state_grad, float dropout_prob, bool is_bidirec, int input_size, int hidden_size, int num_layers, str mode, int seed, bool is_test)
  output : Tensor(x_grad), Tensor[](pre_state_grad){pre_state.size()}, Tensor[](weight_list_grad){weight_list.size()}
  infer_meta :
    func : RnnGradInferMeta
    param : [x, pre_state, weight_list]
  kernel :
    func : rnn_grad
    data_type: out_grad
  optional : sequence_length

970
- backward_op : roi_align_grad
Z
zyfncg 已提交
971 972 973 974 975 976 977 978 979 980 981 982
  forward : roi_align (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, float spatial_scale, int sampling_ratio, bool aligned) -> Tensor(out)
  args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor out_grad, int pooled_height, int pooled_width, float spatial_scale, int sampling_ratio, bool aligned)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : roi_align_grad
    data_type : boxes
  no_need_buffer : x
  optional : boxes_num

983
- backward_op : roi_pool_grad
Z
zyfncg 已提交
984 985 986 987 988 989 990 991 992 993 994
  forward : roi_pool (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, float spatial_scale) -> Tensor(out), Tensor(arg_max)
  args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor arg_max, Tensor out_grad, int pooled_height, int pooled_width, float spatial_scale)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : roi_pool_grad
    data_type : x
  optional : boxes_num

W
Weilong Wu 已提交
995 996 997 998 999 1000 1001 1002 1003 1004 1005
- backward_op : rrelu_grad
  forward : rrelu (Tensor x, float lower, float upper, bool is_test) -> Tensor(out), Tensor(noise)
  args : (Tensor x, Tensor noise, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : RReluGradInferMeta
    param : [out_grad, noise]
  kernel :
    func : rrelu_grad
    data_type : x

1006
- backward_op : segment_pool_grad
Z
zyfncg 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
  forward : segment_pool (Tensor x, Tensor segment_ids, str pooltype) -> Tensor(out), Tensor(summed_ids)
  args : (Tensor x, Tensor segment_ids, Tensor out, Tensor summed_ids, Tensor out_grad, str pooltype)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : segment_pool_grad
    data_type : x
  optional : summed_ids

1018
- backward_op : slice_double_grad
1019 1020 1021
  forward : slice_grad (Tensor input, Tensor grad_out, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) -> Tensor(grad_input)
  args : (Tensor grad_input_grad, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis)
  output : Tensor(grad_out_grad)
1022
  invoke : slice(grad_input_grad, axes, starts, ends, infer_flags, decrease_axis)
1023

1024
- backward_op : slice_grad
Z
zyfncg 已提交
1025 1026 1027 1028 1029 1030 1031 1032
  forward : slice (Tensor input, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) -> Tensor(out)
  args : (Tensor input, Tensor out_grad, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis)
  output : Tensor(input_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [input]
  kernel :
    func : slice_grad
1033
  composite: slice_grad(input, out_grad, axes, starts, ends, infer_flags, decrease_axis, input_grad)
1034
  backward : slice_double_grad
Z
zyfncg 已提交
1035 1036
  no_need_buffer : input

1037
- backward_op : softmax_grad
Z
zyfncg 已提交
1038 1039 1040 1041 1042 1043 1044 1045
  forward : softmax (Tensor x, int axis) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : softmax_grad
1046
  composite : softmax_grad(out, out_grad, axis, x_grad)
Z
zyfncg 已提交
1047

1048
- backward_op : split_grad
Z
zyfncg 已提交
1049 1050 1051 1052
  forward : split (Tensor x, IntArray num_or_sections, Scalar axis) -> Tensor[](out)
  args : (Tensor[] out_grad, Scalar axis = -1)
  output : Tensor(x_grad)
  invoke : concat( out_grad, axis)
1053
  composite : split_grad(out_grad, axis, x_grad)
C
Charles-hit 已提交
1054

1055
- backward_op : split_with_num_grad
C
Charles-hit 已提交
1056 1057 1058 1059
  forward : split_with_num (Tensor x, int num, Scalar axis) -> Tensor[](out)
  args : (Tensor[] out_grad, Scalar axis = -1)
  output : Tensor(x_grad)
  invoke : concat( out_grad, axis)
1060
  composite : split_grad(out_grad, axis, x_grad)
Z
zyfncg 已提交
1061

1062
- backward_op : squared_l2_norm_grad
1063 1064 1065 1066 1067 1068 1069 1070 1071
  forward : squared_l2_norm(Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : squared_l2_norm_grad

1072
- backward_op : strided_slice_grad
Z
zyfncg 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
  forward : strided_slice (Tensor x, int[] axes, IntArray starts, IntArray ends, IntArray strides) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int[] axes, IntArray starts, IntArray ends, IntArray strides)
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param : [x]
  kernel :
    func : strided_slice_grad
  no_need_buffer : x

1083
- backward_op : subtract_double_grad
Z
zyfncg 已提交
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
  forward : subtract_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [grad_out]
  kernel :
    func : subtract_double_grad
  optional : grad_x_grad, grad_y_grad
  no_need_buffer : y, grad_out
  inplace : (grad_x_grad -> grad_out_grad)

1096
- backward_op : subtract_grad
Z
zyfncg 已提交
1097 1098 1099 1100 1101 1102 1103 1104 1105
  forward : subtract (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : subtract_grad
  no_need_buffer : x, y
1106
  composite : subtract_grad(x, y, out_grad, axis, x_grad, y_grad)
Z
zyfncg 已提交
1107 1108 1109
  backward : subtract_double_grad
  inplace : (out_grad -> x_grad)

1110
- backward_op : sum_double_grad
1111 1112
  forward : sum_grad (Tensor x, Tensor grad_out, IntArray axis, bool keepdim, bool reduce_all=false) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray axis={}, bool keepdim=false)
Z
zyfncg 已提交
1113
  output : Tensor(grad_out_grad)
1114
  invoke : sum(grad_x_grad, axis, grad_x_grad.dtype(), keepdim)
Z
zyfncg 已提交
1115

1116
- backward_op : sum_grad
1117 1118
  forward : sum (Tensor x, IntArray axis={}, DataType dtype=DataType::UNDEFINED, bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray axis, bool keepdim, bool reduce_all=false)
Z
zyfncg 已提交
1119 1120 1121 1122 1123 1124
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : sum_grad
1125
  composite : sum_grad(x, out_grad, axis, keepdim, reduce_all, x_grad)
Z
zyfncg 已提交
1126 1127 1128
  no_need_buffer : x
  backward : sum_double_grad

1129
- backward_op : swish_grad
1130
  forward : swish (Tensor x) -> Tensor(out)
Z
zyfncg 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139
  args : (Tensor x, Tensor out_grad, float bete=1.0)
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param : [x]
  kernel :
    func : swish_grad
  inplace : (out_grad -> x_grad)

1140
- backward_op : sync_batch_norm_grad
1141 1142
  forward : sync_batch_norm_ (Tensor x, Tensor mean, Tensor variance, Tensor scale, Tensor bias, bool is_test, float momentum, float epsilon, str data_layout, bool use_global_stats, bool trainable_statistics) -> Tensor(out), Tensor(mean_out), Tensor(variance_out), Tensor(saved_mean), Tensor(saved_variance), Tensor(reserve_space)
  args : (Tensor x, Tensor scale, Tensor bias, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor out_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics)
1143 1144 1145 1146 1147 1148 1149
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, scale, bias]
  kernel :
    func : sync_batch_norm_grad
    data_type : out_grad
1150
  optional : reserve_space
1151

1152
- backward_op : temporal_shift_grad
C
ccrrong 已提交
1153 1154 1155 1156 1157 1158 1159 1160 1161
  forward : temporal_shift(Tensor x, int seg_num, float shift_ratio, str data_format_str) -> Tensor(out)
  args : (Tensor out_grad, int seg_num, float shift_ratio, str data_format_str)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : temporal_shift_grad

1162
- backward_op : tile_double_grad
Z
zyfncg 已提交
1163 1164 1165
  forward : tile_grad (Tensor x, Tensor grad_out, IntArray repeat_times) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray repeat_times)
  output : Tensor(grad_out_grad)
1166
  invoke : tile(grad_x_grad, repeat_times)
Z
zyfncg 已提交
1167

1168
- backward_op : tile_grad
Z
zyfncg 已提交
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
  forward : tile (Tensor x, IntArray repeat_times) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray repeat_times)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : tile_grad
  no_need_buffer : x
  backward : tile_double_grad

1180
- backward_op : transpose_double_grad
1181 1182
  forward : transpose_grad (Tensor grad_out, int[] perm) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, int[] perm)
Z
zyfncg 已提交
1183
  output : Tensor(grad_out_grad)
1184
  invoke : transpose(grad_x_grad, perm)
Z
zyfncg 已提交
1185

1186
- backward_op : transpose_grad
1187 1188
  forward : transpose (Tensor x, int[] perm) -> Tensor(out)
  args : (Tensor out_grad, int[] perm)
Z
zyfncg 已提交
1189 1190 1191
  output : Tensor(x_grad)
  infer_meta :
    func : TransposeGradInferMeta
1192
    param : [out_grad, perm]
Z
zyfncg 已提交
1193 1194 1195
  kernel :
    func : transpose_grad
  backward : transpose_double_grad
1196
  composite: transpose_grad(out_grad, perm, x_grad)
Z
zyfncg 已提交
1197

1198
- backward_op : triangular_solve_grad
Z
zyfncg 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207
  forward : triangular_solve (Tensor x, Tensor y, bool upper, bool tranpose, bool unitriangular) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, bool upper, bool tranpose, bool unitriangular)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : triangular_solve_grad

1208
- backward_op : tril_grad
1209 1210
  forward : tril(Tensor x,  int diagonal) -> Tensor(out)
  args : (Tensor out_grad,  int diagonal)
Z
zyfncg 已提交
1211 1212 1213 1214 1215
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
1216
    func : tril_grad
Z
zyfncg 已提交
1217

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
- backward_op : triu_grad
  forward : triu(Tensor x,  int diagonal) -> Tensor(out)
  args : (Tensor out_grad,  int diagonal)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : triu_grad

1228 1229
- backward_op : uniform_inplace_grad
  forward : uniform_inplace(Tensor x, float min, float max, int seed, int diag_num, int diag_step, float diag_val) -> Tensor(out)
1230 1231 1232 1233 1234
  args : (Tensor out_grad, float min, float max, int seed, int diag_num, int diag_step, float diag_val)
  output : Tensor(x_grad)
  infer_meta :
    func : UniformRandomInplaceGradInferMeta
  kernel :
1235
    func : uniform_inplace_grad
1236 1237
  inplace : (out_grad -> x_grad)

1238
- backward_op : warpctc_grad
1239
  forward : warpctc (Tensor logits, Tensor label, Tensor logits_length, Tensor labels_length, int blank, bool norm_by_times) -> Tensor(loss), Tensor(warpctcgrad)
Z
Zhong Hui 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
  args : (Tensor logits, Tensor logits_length, Tensor warpctcgrad, Tensor loss_grad, int blank, bool norm_by_times)
  output : Tensor(logits_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [logits]
  kernel :
    func : warpctc_grad
  optional : logits_length
  no_need_buffer : logits

1250 1251
- backward_op : yolo_loss_grad
  forward : yolo_loss(Tensor x, Tensor gt_box, Tensor gt_label, Tensor gt_score, int[] anchors, int[] anchor_mask, int class_num, float ignore_thresh, int downsample_ratio, bool use_label_smooth=true, float scale_x_y=1.0) -> Tensor(loss), Tensor(objectness_mask), Tensor(gt_match_mask)
1252 1253 1254
  args : (Tensor x, Tensor gt_box, Tensor gt_label, Tensor gt_score, Tensor objectness_mask, Tensor gt_match_mask, Tensor loss_grad, int[] anchors, int[] anchor_mask, int class_num, float ignore_thresh, int downsample_ratio, bool use_label_smooth=true, float scale_x_y=1.0)
  output : Tensor(x_grad), Tensor(gt_box_grad), Tensor(gt_label_grad), Tensor(gt_score_grad)
  infer_meta :
1255
    func : YoloLossGradInferMeta
1256
  kernel :
1257
    func : yolo_loss_grad
1258
  optional : gt_score
X
xiaoting 已提交
1259

1260
- backward_op: unpool3d_grad
X
xiaoting 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
  forward: unpool3d (Tensor x, Tensor indices, int[] ksize, int[] strides, int[] padding, int[] output_size, str data_format) -> Tensor(out)
  args: (Tensor x, Tensor indices, Tensor out, Tensor out_grad, int[] ksize, int[] strides, int[] padding, int[] output_size, str data_format)
  output: Tensor(x_grad)
  infer_meta:
    func: UnchangedInferMeta
    param : [x]
  kernel:
    func: unpool3d_grad
    data_type: x

1271
- backward_op: unpool_grad
1272 1273
  forward: unpool (Tensor x, Tensor indices, int[] ksize, int[] strides, int[] padding,  IntArray output_size, str data_format) -> Tensor(out)
  args: (Tensor x, Tensor indices, Tensor out, Tensor out_grad, int[] ksize, int[] strides, int[] padding, IntArray output_size, str data_format)
X
xiaoting 已提交
1274 1275 1276 1277 1278 1279 1280
  output: Tensor(x_grad)
  infer_meta:
    func: UnchangedInferMeta
    param : [x]
  kernel:
    func: unpool_grad
    data_type: x