未验证 提交 1eefd66a 编写于 作者: C Charles-hit 提交者: GitHub

support expand_v2 op backward refuse forward (#45941)

上级 f639bc69
......@@ -797,10 +797,7 @@
forward : expand_grad (Tensor x, Tensor grad_out, IntArray shape) -> Tensor(grad_x)
args : (Tensor grad_x_grad, IntArray shape)
output : Tensor(grad_out_grad)
infer_meta :
func : ExpandInferMeta
kernel :
func : expand
invoke : expand(grad_x_grad, shape)
- backward_api : expand_grad
forward : expand (Tensor x, IntArray shape) -> Tensor(out)
......
......@@ -18,9 +18,12 @@ import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
from paddle.fluid import compiler, Program, program_guard, core
import paddle
from paddle.fluid.framework import _test_eager_guard
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
# Situation 1: shape is a list(without tensor)
......@@ -284,6 +287,80 @@ class TestExpandV2DygraphAPI(unittest.TestCase):
egr_expand_1.numpy())
class TestExpandDoubleGradCheck(unittest.TestCase):
def expand_wrapper(self, x):
return paddle.expand(x[0], [2, 3])
@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
eps = 0.005
dtype = np.float32
data = layers.data('data', [2, 3], False, dtype)
data.persistable = True
out = paddle.expand(data, [2, 3])
data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)
gradient_checker.double_grad_check([data],
out,
x_init=[data_arr],
place=place,
eps=eps)
fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
gradient_checker.double_grad_check_for_dygraph(self.expand_wrapper,
[data],
out,
x_init=[data_arr],
place=place)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestExpandTripleGradCheck(unittest.TestCase):
def expand_wrapper(self, x):
return paddle.expand(x[0], [2, 3])
@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
eps = 0.005
dtype = np.float32
data = layers.data('data', [2, 3], False, dtype)
data.persistable = True
out = paddle.expand(data, [2, 3])
data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)
gradient_checker.triple_grad_check([data],
out,
x_init=[data_arr],
place=place,
eps=eps)
fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
gradient_checker.triple_grad_check_for_dygraph(self.expand_wrapper,
[data],
out,
x_init=[data_arr],
place=place)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
if __name__ == "__main__":
paddle.enable_static()
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册