未验证 提交 3e636ec9 编写于 作者: Z zhangyuqin1998 提交者: GitHub

Delete hardswish_raw op (#51634)

* Delete hardswish_raw op

* fix ut
上级 bcec0dce
......@@ -532,7 +532,7 @@
- backward_op : hardswish_grad
forward : hardswish (Tensor x) -> Tensor(out)
args : (Tensor x, Tensor out_grad, float threshold = 6.0, float scale = 6.0, float offset = 3.0)
args : (Tensor x, Tensor out_grad)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
......
......@@ -225,9 +225,6 @@ template <typename T, typename Context>
void HardSwishGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& dout,
float threshold,
float scale,
float offset,
DenseTensor* dx);
template <typename T, typename Context>
......
......@@ -19,13 +19,6 @@
namespace phi {
template <typename T, typename Context>
void HardSwishKernel(const Context& dev_ctx,
const DenseTensor& x,
DenseTensor* out) {
HardSwishRawKernel<T, Context>(dev_ctx, x, 6, 6, 3, out);
}
template <typename T, typename Context>
void Relu6Kernel(const Context& dev_ctx,
const DenseTensor& x,
......@@ -44,21 +37,10 @@ void SwishKernel(const Context& dev_ctx,
using complex64 = ::phi::dtype::complex<float>;
using complex128 = ::phi::dtype::complex<double>;
PD_REGISTER_KERNEL(
hardswish, CPU, ALL_LAYOUT, phi::HardSwishKernel, float, double) {}
PD_REGISTER_KERNEL(relu6, CPU, ALL_LAYOUT, phi::Relu6Kernel, float, double) {}
PD_REGISTER_KERNEL(swish, CPU, ALL_LAYOUT, phi::SwishKernel, float, double) {}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_KERNEL(hardswish,
GPU,
ALL_LAYOUT,
phi::HardSwishKernel,
float,
double,
phi::dtype::float16,
phi::dtype::bfloat16) {}
PD_REGISTER_KERNEL(relu6,
GPU,
ALL_LAYOUT,
......@@ -80,18 +62,11 @@ PD_REGISTER_KERNEL(swish,
#endif
#if defined PADDLE_WITH_XPU
PD_REGISTER_KERNEL(hardswish, XPU, ALL_LAYOUT, phi::HardSwishKernel, float) {}
PD_REGISTER_KERNEL(relu6, XPU, ALL_LAYOUT, phi::Relu6Kernel, float) {}
PD_REGISTER_KERNEL(swish, XPU, ALL_LAYOUT, phi::SwishKernel, float) {}
#endif
#ifdef PADDLE_WITH_MKLDNN
PD_REGISTER_KERNEL(hardswish,
OneDNN,
ONEDNN,
phi::HardSwishKernel,
float,
phi::dtype::bfloat16) {}
PD_REGISTER_KERNEL(
relu6, OneDNN, ONEDNN, phi::Relu6Kernel, float, phi::dtype::bfloat16) {}
PD_REGISTER_KERNEL(
......
......@@ -90,14 +90,6 @@ DECLARE_ACTIVATION_KERNEL_WITH_TWO_ATTRS(STanh, scale_a, scale_b)
DECLARE_ACTIVATION_KERNEL_WITH_TWO_ATTRS(Softplus, beta, threshold)
DECLARE_ACTIVATION_KERNEL_WITH_TWO_ATTRS(HardSigmoid, slope, offset)
template <typename T, typename Context>
void HardSwishRawKernel(const Context& dev_ctx,
const DenseTensor& x,
float threshold,
float scale,
float offset,
DenseTensor* out);
template <typename T, typename Context>
void HardSwishKernel(const Context& dev_ctx,
const DenseTensor& x,
......
......@@ -226,11 +226,11 @@ template <typename T, typename Context>
void HardSwishGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& dout,
float threshold,
float scale,
float offset,
DenseTensor* dx) {
funcs::HardSwishGradFunctor<T> functor;
float threshold = 6;
float scale = 6;
float offset = 3;
auto attrs = functor.GetAttrs();
*(attrs[0].second) = threshold;
*(attrs[1].second) = scale;
......
......@@ -113,13 +113,13 @@ DEFINE_CPU_ACT_KERNEL_WITH_TWO_ATTRS(HardSigmoid,
offset)
template <typename T, typename Context>
void HardSwishRawKernel(const Context& dev_ctx,
const DenseTensor& x,
float threshold,
float scale,
float offset,
DenseTensor* out) {
void HardSwishKernel(const Context& dev_ctx,
const DenseTensor& x,
DenseTensor* out) {
funcs::HardSwishFunctor<T> functor;
float threshold = 6;
float scale = 6;
float offset = 3;
auto attrs = functor.GetAttrs();
*(attrs[0].second) = threshold;
*(attrs[1].second) = scale;
......@@ -183,7 +183,7 @@ PD_REGISTER_ACTIVATION_KERNEL(log2, Log2Kernel)
PD_REGISTER_ACTIVATION_KERNEL(log10, Log10Kernel)
PD_REGISTER_ACTIVATION_KERNEL(log1p, Log1pKernel)
PD_REGISTER_ACTIVATION_KERNEL(swish_raw, SwishRawKernel)
PD_REGISTER_ACTIVATION_KERNEL(hardswish_raw, HardSwishRawKernel)
PD_REGISTER_ACTIVATION_KERNEL(hardswish, HardSwishKernel)
PD_REGISTER_ACTIVATION_KERNEL(round, RoundKernel)
PD_REGISTER_ACTIVATION_KERNEL(floor, FloorKernel)
PD_REGISTER_ACTIVATION_KERNEL(ceil, CeilKernel)
......
......@@ -274,11 +274,11 @@ template <typename T, typename Context>
void HardSwishGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& dout,
float threshold,
float scale,
float offset,
DenseTensor* dx) {
funcs::CudaHardSwishGradFunctor<T> functor;
float threshold = 6;
float scale = 6;
float offset = 3;
auto attrs = functor.GetAttrs();
*(attrs[0].second) = threshold;
*(attrs[1].second) = scale;
......
......@@ -138,13 +138,13 @@ DEFINE_GPU_ACT_KERNEL_WITH_TWO_ATTRS(HardSigmoid,
DEFINE_GPU_ACT_KERNEL_WITH_TWO_ATTRS(Selu, CudaSeluFunctor, scale, alpha)
template <typename T, typename Context>
void HardSwishRawKernel(const Context& dev_ctx,
const DenseTensor& x,
float threshold,
float scale,
float offset,
DenseTensor* out) {
void HardSwishKernel(const Context& dev_ctx,
const DenseTensor& x,
DenseTensor* out) {
funcs::CudaHardSwishFunctor<T> functor;
float threshold = 6;
float scale = 6;
float offset = 3;
auto attrs = functor.GetAttrs();
*(attrs[0].second) = threshold;
*(attrs[1].second) = scale;
......@@ -257,7 +257,7 @@ PD_REGISTER_ACTIVATION_KERNEL(log, LogKernel)
PD_REGISTER_ACTIVATION_KERNEL(log2, Log2Kernel)
PD_REGISTER_ACTIVATION_KERNEL(log10, Log10Kernel)
PD_REGISTER_ACTIVATION_KERNEL(log1p, Log1pKernel)
PD_REGISTER_ACTIVATION_KERNEL(hardswish_raw, HardSwishRawKernel)
PD_REGISTER_ACTIVATION_KERNEL(hardswish, HardSwishKernel)
PD_REGISTER_ACTIVATION_KERNEL(swish_raw, SwishRawKernel)
PD_REGISTER_ACTIVATION_KERNEL(round, RoundKernel)
PD_REGISTER_ACTIVATION_KERNEL(floor, FloorKernel)
......
......@@ -238,9 +238,6 @@ template <typename T, typename Context>
void HardSwishGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& dout,
float threshold,
float scale,
float offset,
DenseTensor* dx) {
HardSwishOneDNNGradFunctor<T> functor;
functor(dev_ctx, x, dout, 0, 0, dx);
......
......@@ -157,14 +157,11 @@ DEFINE_ONEDNN_ACT_KERNEL_WITH_ONE_ATTRS(Mish, MishOneDNNFunctor, threshold)
DEFINE_ONEDNN_ACT_KERNEL_WITH_ONE_ATTRS(SwishRaw, SwishOneDNNFunctor, beta)
template <typename T, typename Context>
void HardSwishRawKernel(const Context& dev_ctx,
const DenseTensor& x,
float threshold,
float scale,
float offset,
DenseTensor* out) {
void HardSwishKernel(const Context& dev_ctx,
const DenseTensor& x,
DenseTensor* out) {
HardSwishOneDNNFunctor<T> functor;
functor(dev_ctx, x, threshold, 0, out);
functor(dev_ctx, x, 6, 0, out);
}
template <typename T, typename Context>
......@@ -202,7 +199,7 @@ PD_REGISTER_ACTIVATION_KERNEL(abs, AbsKernel)
PD_REGISTER_ACTIVATION_KERNEL(elu, EluKernel)
PD_REGISTER_ACTIVATION_KERNEL(exp, ExpKernel)
PD_REGISTER_ACTIVATION_KERNEL(gelu, GeluKernel)
PD_REGISTER_ACTIVATION_KERNEL(hardswish_raw, HardSwishRawKernel)
PD_REGISTER_ACTIVATION_KERNEL(hardswish, HardSwishKernel)
PD_REGISTER_ACTIVATION_KERNEL(leaky_relu, LeakyReluKernel)
PD_REGISTER_ACTIVATION_KERNEL(mish, MishKernel)
PD_REGISTER_ACTIVATION_KERNEL(relu, ReluKernel)
......
......@@ -603,11 +603,11 @@ template <typename T, typename Context>
void HardSwishGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& dout,
float threshold,
float scale,
float offset,
DenseTensor* dx) {
XPUHardSwishGradFunctor<T> functor;
float threshold = 6;
float scale = 6;
float offset = 3;
auto attrs = functor.GetAttrs();
*(attrs[0].second) = threshold;
*(attrs[1].second) = scale;
......
......@@ -513,13 +513,13 @@ DEFINE_XPU_ACTIVATION_KERNEL_WITH_TWO_ATTRS(HardSigmoid,
offset)
template <typename T, typename Context>
void HardSwishRawKernel(const Context& dev_ctx,
const DenseTensor& x,
float threshold,
float scale,
float offset,
DenseTensor* out) {
void HardSwishKernel(const Context& dev_ctx,
const DenseTensor& x,
DenseTensor* out) {
XPUHardSwishFunctor<T> functor;
float threshold = 6;
float scale = 6;
float offset = 3;
auto attrs = functor.GetAttrs();
*(attrs[0].second) = threshold;
*(attrs[1].second) = scale;
......@@ -551,7 +551,7 @@ PD_REGISTER_ACTIVATION_KERNEL(exp, ExpKernel) // no grad
PD_REGISTER_ACTIVATION_KERNEL(floor, FloorKernel)
PD_REGISTER_ACTIVATION_KERNEL(leaky_relu, LeakyReluKernel)
PD_REGISTER_ACTIVATION_KERNEL(hard_sigmoid, HardSigmoidKernel)
PD_REGISTER_ACTIVATION_KERNEL(hardswish_raw, HardSwishRawKernel)
PD_REGISTER_ACTIVATION_KERNEL(hardswish, HardSwishKernel)
PD_REGISTER_ACTIVATION_KERNEL(mish, MishKernel)
PD_REGISTER_ACTIVATION_KERNEL(pow, PowKernel)
PD_REGISTER_ACTIVATION_KERNEL(reciprocal, ReciprocalKernel)
......
......@@ -41,10 +41,6 @@ namespace phi {
DEFINE_ACT_GRAD_DEPX_OP_ARGMAP(HardTanh, "hardtanh", "t_min" comma "t_max");
DEFINE_ACT_GRAD_DEPX_OP_ARGMAP(Mish, "mish", "threshold");
DEFINE_ACT_GRAD_DEPX_OP_ARGMAP(HardSwish,
"hardswish",
"threshold" comma "scale" comma
"offset"); // NOLINT
DEFINE_ACT_GRAD_DEPX_OP_ARGMAP(Swish, "swish", "beta"); // NOLINT
DEFINE_ACT_GRAD_DEPX_OP_ARGMAP(STanh,
......@@ -53,9 +49,13 @@ DEFINE_ACT_GRAD_DEPX_OP_ARGMAP(STanh,
DEFINE_ACT_GRAD_DEPOUT_OP_ARGMAP(Relu6, "relu6", "threshold"); // NOLINT
KernelSignature HardSwishGradOpArgumentMapping(
const ArgumentMappingContext& ctx) {
return KernelSignature("hardswish_grad", {"X", "Out@GRAD"}, {}, {"X@GRAD"});
}
KernelSignature HardSwishOpArgumentMapping(const ArgumentMappingContext& ctx) {
return KernelSignature(
"hardswish_raw", {"X"}, {"threshold", "scale", "offset"}, {"Out"});
return KernelSignature("hardswish", {"X"}, {}, {"Out"});
}
KernelSignature SwishOpArgumentMapping(const ArgumentMappingContext& ctx) {
......
......@@ -40,9 +40,9 @@ class TrtConvertHardSwishTest(TrtLayerAutoScanTest):
def generate_input1(attrs: List[Dict[str, Any]]):
return np.ones([1, 3, 32, 32]).astype(np.float32)
for threshold in [6.0, 7.0, 100.0, 0.0, -1.0]:
for scale in [5.0, 7.0, -1.0, 0.0, 100.0]:
for offset in [3.0, 5.0, -1.0, 0.0, 100.0]:
for threshold in [6.0]:
for scale in [6.0]:
for offset in [3.0]:
dics = [
{
"threshold": threshold,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册