legacy_backward.yaml 42.0 KB
Newer Older
1
- backward_op : add_double_grad
Z
zyfncg 已提交
2 3 4 5 6 7 8 9 10
  forward : add_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [grad_out]
  kernel :
    func : add_double_grad
  optional : grad_x_grad, grad_y_grad
11
  backward : add_triple_grad
Z
zyfncg 已提交
12
  inplace : (grad_x_grad -> grad_out_grad)
13
  composite : add_double_grad(y, grad_out, grad_x_grad, grad_y_grad, axis, grad_out_grad)
Z
zyfncg 已提交
14

15
- backward_op : add_grad
Z
zyfncg 已提交
16 17 18 19 20 21 22 23 24
  forward : add (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : add_grad
  no_need_buffer : x, y
25
  composite : add_grad(x, y, out_grad, axis, x_grad, y_grad)
Z
zyfncg 已提交
26 27 28
  backward : add_double_grad
  inplace : (out_grad -> x_grad)

29 30 31 32 33 34 35 36 37 38 39
- backward_op : add_triple_grad
  forward : add_double_grad (Tensor y, Tensor grad_out, Tensor grad_grad_x, Tensor grad_grad_y, int axis = -1) -> Tensor(grad_grad_out)
  args : (Tensor grad_grad_x, Tensor grad_grad_y, Tensor grad_grad_out_grad, int axis = -1)
  output : Tensor(grad_grad_x_grad), Tensor(grad_grad_y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [grad_grad_x, grad_grad_y]
  kernel :
    func : add_triple_grad
  inplace : (grad_grad_out_grad -> grad_grad_x_grad)

40
- backward_op : amax_grad
41 42
  forward: amax (Tensor x,  int64_t[] axis={},  bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis={},  bool keepdim=false, bool reduce_all=false)
43 44 45 46 47 48 49
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : amax_grad

50
- backward_op : amin_grad
51 52
  forward: amin (Tensor x,  int64_t[] axis={},  bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis={},  bool keepdim=false, bool reduce_all=false)
53 54 55 56 57 58 59
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : amin_grad

60
- backward_op : assign_grad
Z
zyfncg 已提交
61 62 63
  forward : assign (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
64
  composite: assign_grad(out_grad, x_grad)
65
  invoke : assign(out_grad)
Z
zyfncg 已提交
66

67
- backward_op : assign_out__grad
Z
zyfncg 已提交
68 69 70 71 72 73 74 75 76
  forward : assign_out_ (Tensor x, Tensor output) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
  kernel :
    func : assign
  inplace : (out_grad -> x_grad)

77
- backward_op : batch_norm_double_grad
78 79
  forward : batch_norm_grad (Tensor x, Tensor scale, Tensor bias, Tensor out_mean, Tensor out_variance, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor grad_out, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics) -> Tensor(grad_x), Tensor(grad_scale), Tensor(grad_bias)
  args : (Tensor x, Tensor scale, Tensor out_mean, Tensor out_variance, Tensor saved_mean, Tensor saved_variance, Tensor grad_out,  Tensor grad_x_grad, Tensor grad_scale_grad, Tensor grad_bias_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics)
Z
zyfncg 已提交
80 81 82 83 84
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, scale, x]
  kernel :
85
    func : batch_norm_double_grad
Z
zyfncg 已提交
86
    data_type : x
87
  optional : out_mean, out_variance, grad_x_grad, grad_scale_grad, grad_bias_grad
Z
zyfncg 已提交
88 89
  inplace : (grad_out -> grad_out_grad)

90
- backward_op : batch_norm_grad
91 92
  forward : batch_norm (Tensor x, Tensor mean, Tensor variance, Tensor scale, Tensor bias, bool is_test, float momentum, float epsilon, str data_layout, bool use_global_stats, bool trainable_statistics) -> Tensor(out), Tensor(mean_out), Tensor(variance_out), Tensor(saved_mean), Tensor(saved_variance), Tensor(reserve_space)
  args : (Tensor x, Tensor scale, Tensor bias, Tensor mean_out, Tensor variance_out, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor out_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics)
Z
zyfncg 已提交
93 94 95 96 97 98 99 100
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, scale, bias]
  kernel :
    func : batch_norm_grad
    data_type : out_grad
  optional : mean_out, variance_out, reserve_space
101
  composite: batch_norm_grad(x, scale, bias, mean_out, variance_out, saved_mean, saved_variance, reserve_space, out_grad, momentum, epsilon, data_layout, is_test, use_global_stats, trainable_statistics)
Z
zyfncg 已提交
102 103
  backward : batch_norm_double_grad

104
- backward_op : cast_grad
105
  forward : cast (Tensor x, DataType dtype) -> Tensor(out)
Z
zyfncg 已提交
106 107
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
108
  invoke : cast (out_grad, x.dtype())
109
  composite: cast_grad(x, out_grad, x_grad)
Z
zyfncg 已提交
110 111
  no_need_buffer : x

112 113 114 115 116 117 118 119 120
- backward_op : channel_shuffle_grad
  forward : channel_shuffle (Tensor x, int groups, str data_format="NCHW") -> Tensor(out)
  args : (Tensor out_grad, int groups, str data_format="NCHW")
  output : Tensor(x_grad)
  infer_meta :
    func : ChannelShuffleGradInferMeta
  kernel :
    func : channel_shuffle_grad

121
- backward_op : concat_double_grad
Z
zyfncg 已提交
122 123 124
  forward : concat_grad (Tensor[] x, Tensor grad_out, Scalar axis) -> Tensor[](grad_x)
  args : (Tensor[] grad_x_grad, Scalar axis = 0)
  output : Tensor(grad_out_grad)
125
  invoke : concat(grad_x_grad, axis)
Z
zyfncg 已提交
126

127
- backward_op : concat_grad
Z
zyfncg 已提交
128 129 130 131 132 133 134 135
  forward : concat (Tensor[] x, Scalar axis) -> Tensor(out)
  args : (Tensor[] x, Tensor out_grad, Scalar axis = 0)
  output : Tensor[](x_grad){x.size()}
  infer_meta :
    func : UnchangedMultiInferMeta
    param : [x]
  kernel :
    func : concat_grad
W
wangzhen38 已提交
136
  composite : concat_grad(x, out_grad, axis, x_grad)
Z
zyfncg 已提交
137 138 139
  no_need_buffer : x
  backward : concat_double_grad

140
- backward_op : conv2d_grad
141 142
  forward : conv2d (Tensor input, Tensor filter, int[] strides, int[] paddings, str padding_algorithm, int[] dilations, int groups, str data_format) -> Tensor(out)
  args : (Tensor input, Tensor filter, Tensor out_grad,  int[] strides, int[] paddings, str padding_algorithm, int[] dilations, int groups, str data_format)
Z
zyfncg 已提交
143
  output : Tensor(input_grad), Tensor(filter_grad)
Z
zyfncg 已提交
144 145 146 147 148
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [input, filter]
  kernel :
    func : conv2d_grad
Z
zyfncg 已提交
149 150
  backward : conv2d_grad_grad

151
- backward_op : conv2d_grad_grad
152 153
  forward : conv2d_grad (Tensor input, Tensor filter, Tensor grad_out,  int[] strides, int[] paddings, str padding_algorithm, int[] dilations, int groups, str data_format) -> Tensor(grad_input), Tensor(grad_filter)
  args : (Tensor input, Tensor filter, Tensor grad_out, Tensor grad_input_grad, Tensor grad_filter_grad, int[] strides, int[] paddings, str padding_algorithm, int[] dilations, int groups, str data_format)
Z
zyfncg 已提交
154 155 156 157 158
  output : Tensor(input_grad), Tensor(filter_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param: [input, filter, grad_out]
  kernel :
159
    func : conv2d_double_grad
Z
zyfncg 已提交
160 161
  optional : grad_input_grad, grad_filter_grad

162
- backward_op : conv2d_transpose_double_grad
163 164
  forward : conv2d_transpose_grad(Tensor x, Tensor filter, Tensor grad_out, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(grad_x), Tensor(grad_filter)
  args : (Tensor x, Tensor filter, Tensor grad_out, Tensor grad_x_grad, Tensor grad_filter_grad, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
Z
zyfncg 已提交
165 166 167 168
  output : Tensor(x_grad), Tensor(filter_grad), Tensor(grad_out_grad)
  infer_meta :
    func : Conv2dTransposeDoubleGradInferMeta
  kernel :
169
    func : conv2d_transpose_double_grad
Z
zyfncg 已提交
170

171
- backward_op : conv2d_transpose_grad
172 173
  forward : conv2d_transpose(Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out)
  args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
Z
zyfncg 已提交
174 175
  output : Tensor(x_grad), Tensor(filter_grad)
  infer_meta :
176
    func : Conv2dTransposeGradInferMeta
Z
zyfncg 已提交
177 178 179 180
  kernel :
    func : conv2d_transpose_grad
  backward : conv2d_transpose_double_grad

181 182 183 184 185 186 187 188 189 190 191
- backward_op : conv3d_double_grad
  forward : conv3d_grad (Tensor input, Tensor filter, Tensor grad_out,  int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(grad_input), Tensor(grad_filter)
  args : (Tensor input, Tensor filter, Tensor grad_out, Tensor grad_input_grad, Tensor grad_filter_grad, int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format)
  output : Tensor(input_grad), Tensor(filter_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param: [input, filter, grad_out]
  kernel :
    func : conv3d_double_grad
  optional : grad_input_grad, grad_filter_grad

192
- backward_op : conv3d_grad
193 194
  forward : conv3d (Tensor input, Tensor filter, int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out)
  args : (Tensor input, Tensor filter, Tensor out_grad,  int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format)
Z
zyfncg 已提交
195
  output : Tensor(input_grad), Tensor(filter_grad)
Z
zyfncg 已提交
196 197 198 199 200
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [input, filter]
  kernel :
    func : conv3d_grad
201
  backward : conv3d_double_grad
Z
zyfncg 已提交
202

203
- backward_op : conv3d_transpose_grad
Z
zyfncg 已提交
204 205 206 207 208 209 210 211
  forward : conv3d_transpose(Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out)
  args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
  output : Tensor(x_grad), Tensor(filter_grad)
  infer_meta :
    func : ConvTransposeGradInferMeta
  kernel :
    func : conv3d_transpose_grad

212
- backward_op : cumsum_grad
W
WangZhen 已提交
213
  forward : cumsum(Tensor x, Scalar axis, bool flatten, bool exclusive, bool reverse) -> Tensor(out)
214
  args : (Tensor x, Tensor out_grad, Scalar axis, bool flatten, bool exclusive, bool reverse)
Z
zyfncg 已提交
215
  output : Tensor(x_grad)
216 217 218 219 220 221
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : cumsum_grad
    data_type: x
G
GGBond8488 已提交
222
  composite: cumsum_grad(x, out_grad, axis, flatten, exclusive, reverse, x_grad)
Z
zyfncg 已提交
223

224
- backward_op : deformable_conv_grad
Z
zyfncg 已提交
225 226 227 228 229 230 231 232 233 234
  forward : deformable_conv(Tensor x, Tensor offset, Tensor filter, Tensor mask, int[] strides, int[] paddings, int[] dilations, int deformable_groups, int groups, int im2col_step) -> Tensor(out)
  args : (Tensor x, Tensor offset, Tensor filter, Tensor mask, Tensor out_grad, int[] strides, int[] paddings, int[] dilations, int deformable_groups, int groups, int im2col_step)
  output : Tensor(x_grad), Tensor(offset_grad), Tensor(filter_grad), Tensor(mask_grad)
  infer_meta :
    func : DeformableConvGradInferMeta
  kernel :
    func : deformable_conv_grad
    data_type : x
  optional : mask

235
- backward_op : depthwise_conv2d_double_grad
236
  forward : depthwise_conv2d_grad (Tensor input, Tensor filter, Tensor grad_out, int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(grad_input), Tensor(grad_filter)
237 238 239 240 241 242 243 244 245
  args : (Tensor input, Tensor filter, Tensor grad_out, Tensor grad_input_grad, Tensor grad_filter_grad, int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format)
  output : Tensor(input_grad), Tensor(filter_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param: [input, filter, grad_out]
  kernel :
    func : depthwise_conv2d_double_grad
  optional : grad_input_grad, grad_filter_grad

246
- backward_op : depthwise_conv2d_grad
247 248
  forward : depthwise_conv2d (Tensor input, Tensor filter, int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out)
  args : (Tensor input, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format)
Z
zyfncg 已提交
249 250 251 252 253 254
  output : Tensor(input_grad), Tensor(filter_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [input, filter]
  kernel :
    func : depthwise_conv2d_grad
255 256
    param : [input, filter, out_grad, strides, paddings, padding_algorithm, groups, dilations, data_format]
  backward : depthwise_conv2d_double_grad
Z
zyfncg 已提交
257

258
- backward_op : depthwise_conv2d_transpose_grad
259 260
  forward : depthwise_conv2d_transpose(Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out)
  args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
Z
zyfncg 已提交
261 262
  output : Tensor(x_grad), Tensor(filter_grad)
  infer_meta :
263
    func : Conv2dTransposeGradInferMeta
Z
zyfncg 已提交
264 265 266
  kernel :
    func : depthwise_conv2d_transpose_grad

267
- backward_op : divide_double_grad
Z
zyfncg 已提交
268 269 270 271 272 273 274 275 276 277 278 279
  forward : divide_grad (Tensor x, Tensor y, Tensor out, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor y, Tensor out, Tensor grad_x, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(y_grad), Tensor(out_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [y, grad_x, grad_x]
  kernel :
    func : divide_double_grad
    data_type : out
  optional : grad_x_grad, grad_y_grad
  inplace : (grad_x_grad -> grad_out_grad)

280
- backward_op : divide_grad
Z
zyfncg 已提交
281 282 283 284 285 286 287 288
  forward : divide (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : divide_grad
289
  composite : divide_grad(x, y, out, out_grad, axis, x_grad, y_grad)
Z
zyfncg 已提交
290 291
  backward : divide_double_grad

292
- backward_op : dropout_grad
293 294
  forward : dropout (Tensor x, Tensor seed_tensor, Scalar p, bool is_test, str mode, int seed, bool fix_seed) -> Tensor(out), Tensor(mask)
  args : (Tensor mask, Tensor out_grad, Scalar p, bool is_test, str mode)
Z
zyfncg 已提交
295 296 297 298 299 300 301
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : dropout_grad

302
- backward_op : einsum_grad
Z
zyfncg 已提交
303 304 305 306 307 308 309 310 311
  forward : einsum (Tensor[] x, str equation) -> Tensor(out), Tensor[](inner_cache), Tensor[](x_shape)
  args : (Tensor[] x_shape, Tensor[] inner_cache, Tensor out_grad, str equation)
  output : Tensor[](x_grad){x.size()}
  infer_meta :
    func : UnchangedMultiInferMeta
    param : [x_shape]
  kernel :
    func : einsum_grad

312
- backward_op : elementwise_pow_grad
Z
zyfncg 已提交
313
  forward : elementwise_pow(Tensor x, Tensor y) -> Tensor(out)
314
  args : (Tensor x, Tensor y, Tensor out_grad)
Z
zyfncg 已提交
315 316 317 318
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
319
  composite : elementwise_pow_grad(x, y, out_grad, axis, x_grad, y_grad)
Z
zyfncg 已提交
320 321 322
  kernel :
    func : elementwise_pow_grad

323
- backward_op : embedding_grad
Z
zyfncg 已提交
324 325 326 327
  forward : embedding (Tensor x, Tensor weight, int64_t padding_idx=-1, bool sparse=false) -> Tensor(out)
  args : (Tensor x, Tensor weight, Tensor out_grad, int64_t padding_idx=-1, bool sparse=false)
  output : Tensor(weight_grad)
  invoke : embedding_grad_impl(x, weight, out_grad, padding_idx, sparse, weight_grad)
W
wanghuancoder 已提交
328
  no_need_buffer : weight
Z
zyfncg 已提交
329

330
- backward_op : expand_double_grad
Z
zyfncg 已提交
331 332 333
  forward : expand_grad (Tensor x, Tensor grad_out, IntArray shape) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray shape)
  output : Tensor(grad_out_grad)
334
  invoke : expand(grad_x_grad, shape)
Z
zyfncg 已提交
335

336
- backward_op : expand_grad
Z
zyfncg 已提交
337 338 339 340 341 342 343 344 345 346
  forward : expand (Tensor x, IntArray shape) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray shape)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : expand_grad
  no_need_buffer : x
  backward : expand_double_grad
347
  composite: expand_grad(x, out_grad, shape, x_grad)
Z
zyfncg 已提交
348

349
- backward_op : exponential__grad
350
  forward : exponential_ (Tensor x, float lam) -> Tensor(out)
351 352 353 354
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
355
  invoke : zeros_like(out_grad)
356

357
- backward_op : fill_grad
358 359 360 361 362 363 364 365 366 367
  forward : fill (Tensor x, Scalar value) -> Tensor(out)
  args : (Tensor out_grad, Scalar value)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : fill_grad
  inplace : (out_grad -> x_grad)

368
- backward_op : fmax_grad
369
  forward : fmax(Tensor x, Tensor y) -> Tensor(out)
Z
zhangyuqin1998 已提交
370
  args : (Tensor x, Tensor y, Tensor out_grad)
Z
zyfncg 已提交
371 372 373 374 375 376 377
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : fmax_grad

378
- backward_op : fmin_grad
379
  forward : fmin(Tensor x, Tensor y) -> Tensor(out)
Z
zyfncg 已提交
380
  args : (Tensor x, Tensor y, Tensor out_grad)
Z
zyfncg 已提交
381 382 383 384 385 386 387
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : fmin_grad

388
- backward_op : frobenius_norm_grad
Z
zyfncg 已提交
389 390 391 392 393 394 395 396 397
  forward : frobenius_norm(Tensor x, int64_t[] axis,  bool keep_dim,  bool reduce_all) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis,  bool keep_dim,  bool reduce_all)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : frobenius_norm_grad

398
- backward_op : gather_grad
Z
zyfncg 已提交
399
  forward : gather(Tensor x, Tensor index, Scalar axis=0) -> Tensor(out)
400
  args : (Tensor x, Tensor index, Tensor out_grad, Scalar axis=0)
Z
zyfncg 已提交
401 402 403 404 405 406 407
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    data_type: x
    func : gather_grad
408
  composite : gather_grad(x, index, out_grad, axis, x_grad)
Z
zyfncg 已提交
409 410
  no_need_buffer : x

411
- backward_op : group_norm_grad
Z
zyfncg 已提交
412 413 414 415 416 417 418 419 420
  forward : group_norm (Tensor x, Tensor scale, Tensor bias, float epsilon, int groups, str data_layout) -> Tensor(y), Tensor(mean), Tensor(variance)
  args : (Tensor x, Tensor scale, Tensor bias, Tensor y, Tensor mean, Tensor variance, Tensor y_grad, float epsilon, int groups, str data_layout)
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [y, scale, bias]
  kernel :
    func : group_norm_grad
    data_type : y_grad
421
  composite : group_norm_grad(x, scale, bias, y, mean, variance, y_grad, epsilon, groups, data_layout)
Z
zyfncg 已提交
422 423 424
  optional: scale, bias
  inplace : (y_grad -> x_grad)

425
- backward_op : hardswish_grad
426
  forward : hardswish (Tensor x) -> Tensor(out)
427
  args : (Tensor x, Tensor out_grad)
Z
zyfncg 已提交
428 429 430 431 432
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
Z
zyfncg 已提交
433
    func : hardswish_grad
Z
zyfncg 已提交
434 435
  inplace : (out_grad -> x_grad)

436 437 438 439 440 441 442 443 444 445
- backward_op : heaviside_grad
  forward : heaviside (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : heaviside_grad

446
- backward_op : hsigmoid_loss_grad
Z
zhangyuqin1998 已提交
447 448
  forward : hsigmoid_loss (Tensor x, Tensor label, Tensor w, Tensor bias, Tensor path, Tensor code, int num_classes, bool is_sparse) -> Tensor(out), Tensor(pre_out), Tensor(w_out)
  args : (Tensor x, Tensor w, Tensor label, Tensor path, Tensor code, Tensor bias, Tensor pre_out, Tensor out_grad, int num_classes, bool is_sparse)
449 450 451 452 453 454
  output : Tensor(x_grad), Tensor(w_grad), Tensor(bias_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x ,w, bias]
  optional: path, code, bias
  kernel :
455
    func : hsigmoid_loss_grad
456

457
- backward_op : logsumexp_grad
Z
zyfncg 已提交
458 459 460 461 462 463 464 465 466
  forward : logsumexp(Tensor x, int64_t[] axis,  bool keepdim,  bool reduce_all) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis,  bool keepdim,  bool reduce_all)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : logsumexp_grad

467
- backward_op : matmul_double_grad
Z
zyfncg 已提交
468 469 470 471 472 473 474 475
  forward : matmul_grad (Tensor x, Tensor y, Tensor grad_out, bool transpose_x=false, bool transpose_y=false) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor x, Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, bool transpose_x=false, bool transpose_y=false)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, y, grad_out]
  kernel :
    func : matmul_double_grad
476
  composite : matmul_double_grad(x, y, grad_out, grad_x_grad, grad_y_grad, transpose_x=false, transpose_y=false)
Z
zyfncg 已提交
477 478
  optional : grad_x_grad, grad_y_grad

479
- backward_op : matmul_grad
Z
zyfncg 已提交
480 481 482 483 484 485 486 487 488 489
  forward : matmul (Tensor x, Tensor y, bool transpose_x=false, bool transpose_y=false) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, bool transpose_x=false, bool transpose_y=false)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : matmul_grad
  backward : matmul_double_grad

490
- backward_op : max_grad
491 492
  forward: max (Tensor x,  IntArray axis={},  bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, IntArray axis={}, bool keepdim=false, bool reduce_all=false)
Z
zyfncg 已提交
493 494 495 496 497 498
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : max_grad
499
  composite : max_grad(x, out, out_grad, axis, keepdim, reduce_all, x_grad)
Z
zyfncg 已提交
500

501
- backward_op : maximum_grad
Z
zyfncg 已提交
502
  forward : maximum(Tensor x, Tensor y) -> Tensor(out)
503
  args : (Tensor x, Tensor y, Tensor out_grad)
Z
zyfncg 已提交
504 505 506 507 508 509
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : maximum_grad
H
heyanru 已提交
510
  composite : maximum_grad(x, y, out_grad, axis, x_grad, y_grad)
Z
zyfncg 已提交
511

512
- backward_op : mean_double_grad
513 514
  forward: mean_grad (Tensor x, Tensor grad_out, IntArray axis={},  bool keepdim=false, bool reduce_all = false) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray axis={},  bool keepdim=false)
Z
zyfncg 已提交
515
  output : Tensor(grad_out_grad)
516
  invoke : mean(grad_x_grad, axis, keepdim)
Z
zyfncg 已提交
517

518
- backward_op : mean_grad
519 520
  forward: mean (Tensor x,  IntArray axis={},  bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray axis={},  bool keepdim=false, bool reduce_all=false)
Z
zyfncg 已提交
521 522 523 524 525 526 527 528 529
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : mean_grad
  backward : mean_double_grad
  no_need_buffer : x

530
- backward_op : min_grad
531 532
  forward: min (Tensor x,  IntArray axis={},  bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, IntArray axis={}, bool keepdim=false, bool reduce_all=false)
Z
zyfncg 已提交
533 534 535 536 537 538 539
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : min_grad

540
- backward_op : minimum_grad
Z
zyfncg 已提交
541
  forward : minimum(Tensor x, Tensor y) -> Tensor(out)
542
  args : (Tensor x, Tensor y, Tensor out_grad)
Z
zyfncg 已提交
543 544 545 546 547 548 549
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : minimum_grad

550
- backward_op : mish_grad
Z
zyfncg 已提交
551 552 553 554 555 556 557 558 559 560
  forward : mish (Tensor x, float threshold) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float threshold)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : mish_grad
  inplace : (out_grad -> x_grad)

561
- backward_op : multiply_double_grad
Z
zyfncg 已提交
562 563 564 565 566 567 568 569 570 571
  forward : multiply_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor x, Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, y, grad_out]
  kernel :
    func : multiply_double_grad
  optional : grad_x_grad, grad_y_grad
  inplace : (grad_x_grad -> grad_out_grad)
X
xiaoguoguo626807 已提交
572
  backward : multiply_triple_grad
573
  composite : multiply_double_grad(x, y, grad_out, grad_x_grad, grad_y_grad, axis, x_grad, y_grad, grad_out_grad)
Z
zyfncg 已提交
574

575
- backward_op : multiply_grad
Z
zyfncg 已提交
576 577 578 579 580 581 582 583
  forward : multiply (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : multiply_grad
584
  composite: multiply_grad(x, y, out_grad, axis, x_grad, y_grad)
Z
zyfncg 已提交
585 586
  backward : multiply_double_grad

X
xiaoguoguo626807 已提交
587 588 589 590 591 592 593 594 595 596 597
- backward_op : multiply_triple_grad
  forward : multiply_double_grad (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, int aixs = -1) -> Tensor(grad_x), Tensor(grad_y), Tensor(grad_grad_out)
  args : (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, Tensor grad_x_grad, Tensor grad_y_grad, Tensor grad_grad_out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(fwd_grad_out_grad), Tensor(fwd_grad_grad_x_grad), Tensor(fwd_grad_grad_y_grad)
  infer_meta :
    func : GeneralQuinaryGradInferMeta
    param : [x, y, fwd_grad_out, fwd_grad_grad_x, fwd_grad_grad_y]
  kernel :
    func : multiply_triple_grad
  optional : fwd_grad_grad_x, fwd_grad_grad_y, grad_x_grad, grad_y_grad, grad_grad_out_grad

598
- backward_op : norm_grad
Z
zyfncg 已提交
599 600 601 602 603 604 605 606 607
  forward : norm (Tensor x, int axis, float epsilon, bool is_test) -> Tensor(out), Tensor(norm)
  args : (Tensor x, Tensor norm, Tensor out_grad, int axis, float epsilon, bool is_test)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : norm_grad

608
- backward_op : pad3d_double_grad
Z
zyfncg 已提交
609 610 611 612 613 614 615 616
  forward : pad3d_grad(Tensor x, Tensor grad_out, IntArray paddings, str mode, float pad_value, str data_format) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray paddings, str mode, float pad_value, str data_format)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : Pad3dInferMeta
  kernel :
    func : pad3d

617
- backward_op : pad3d_grad
Z
zyfncg 已提交
618 619 620 621 622 623 624 625 626 627 628
  forward : pad3d(Tensor x, IntArray paddings, str mode,  float pad_value, str data_format) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray paddings, str mode,  float pad_value, str data_format)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : pad3d_grad
  no_need_buffer : x
  backward : pad3d_double_grad

629
- backward_op : pad_double_grad
630 631
  forward : pad_grad(Tensor x, Tensor grad_out, int[] paddings, Scalar pad_value) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, int[] paddings, Scalar pad_value)
Z
zyfncg 已提交
632 633 634 635 636 637
  output : Tensor(grad_out_grad)
  infer_meta :
    func : PadInferMeta
  kernel :
    func : pad

638
- backward_op : pad_grad
639 640
  forward : pad(Tensor x, int[] paddings, Scalar pad_value) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int[] paddings, Scalar pad_value)
Z
zyfncg 已提交
641 642 643 644 645 646 647 648
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : pad_grad
    param: [out_grad, paddings, pad_value]
  no_need_buffer : x
M
mengziheng 已提交
649
  composite : pad_grad(x, out_grad, paddings, pad_value, x_grad)
Z
zyfncg 已提交
650 651
  backward : pad_double_grad

652
- backward_op : pool2d_double_grad
653 654
  forward : pool2d_grad(Tensor x, Tensor out, Tensor grad_out, IntArray kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(grad_x)
  args : (Tensor x, Tensor grad_x_grad, IntArray kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm)
Z
zyfncg 已提交
655 656
  output : Tensor(grad_out_grad)
  infer_meta :
657
    func : Pool2DInferMeta
658
    param : [grad_x_grad, kernel_size, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm]
Z
zyfncg 已提交
659 660
  kernel :
    func : pool2d_double_grad
661
    param : [grad_x_grad, kernel_size, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm]
662
  no_need_buffer : x
Z
zyfncg 已提交
663

664
- backward_op : pool2d_grad
665 666
  forward : pool2d(Tensor x, IntArray kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, IntArray kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm)
Z
zyfncg 已提交
667 668
  output : Tensor(x_grad)
  infer_meta :
669 670
    func : UnchangedInferMeta
    param: [x]
Z
zyfncg 已提交
671 672
  kernel :
    func : pool2d_grad
673
    param : [x, out, out_grad, kernel_size, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm]
Z
zyfncg 已提交
674 675
  backward : pool2d_double_grad

676
- backward_op : pool3d_grad
677 678
  forward : pool3d(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm)
Z
zyfncg 已提交
679 680
  output : Tensor(x_grad)
  infer_meta :
681 682
    func : UnchangedInferMeta
    param: [x]
Z
zyfncg 已提交
683 684
  kernel :
    func : pool3d_grad
685
    param : [x, out, out_grad, kernel_size, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm]
Z
zyfncg 已提交
686

687 688 689 690 691 692 693 694 695
- backward_op : prod_grad
  forward : prod (Tensor x, IntArray dims, bool keep_dim, bool reduce_all) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, IntArray dims,  bool keep_dim, bool reduce_all)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : prod_grad
696
  composite: prod_grad(x, out, out_grad, dims, keep_dim, reduce_all, x_grad)
697

698
- backward_op : psroi_pool_grad
Z
zyfncg 已提交
699 700 701 702 703 704 705 706 707 708 709
  forward : psroi_pool (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, int output_channels, float spatial_scale) -> Tensor(out)
  args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor out_grad, int pooled_height, int pooled_width, int output_channels, float spatial_scale)
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param : [x]
  kernel :
    func : psroi_pool_grad
    data_type : x
  optional : boxes_num

710
- backward_op : relu6_grad
711
  forward : relu6 (Tensor x) -> Tensor(out)
712
  args : (Tensor out, Tensor out_grad)
713 714 715 716 717 718 719 720
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : relu6_grad
  inplace : (out_grad -> x_grad)

721
- backward_op : repeat_interleave_grad
722 723
  forward : repeat_interleave(Tensor x, int repeats, int axis) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int repeats, int axis)
S
seemingwang 已提交
724 725 726 727 728 729 730
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : repeat_interleave_grad

731
- backward_op : repeat_interleave_with_tensor_index_grad
732 733
  forward : repeat_interleave_with_tensor_index(Tensor x, Tensor repeats, int axis) -> Tensor(out)
  args : (Tensor x, Tensor repeats, Tensor out_grad, int axis)
S
seemingwang 已提交
734 735 736 737 738 739 740 741
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : repeat_interleave_with_tensor_index_grad
    data_type : x

742
- backward_op : reshape_double_grad
Z
zyfncg 已提交
743 744 745 746 747 748 749 750 751 752 753
  forward : reshape_grad (Tensor xshape, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor grad_out, Tensor grad_x_grad)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [grad_out]
  kernel :
    func : reshape_double_grad
  no_need_buffer : grad_out
  inplace : (grad_x_grad -> grad_out_grad)

754
- backward_op : reshape_grad
Z
zyfncg 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
  forward : reshape (Tensor x, IntArray shape) -> Tensor(out), Tensor(xshape)
  args : (Tensor xshape, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : KernelWithXShapeInferMeta
    param : [xshape]
  kernel :
    func : reshape_grad
    param : [out_grad]
    data_type: out_grad
    backend: out_grad
    layout: out_grad
  backward : reshape_double_grad
  inplace : (out_grad -> x_grad)

Y
YuanRisheng 已提交
770 771 772 773 774 775 776 777 778 779 780 781
- backward_op : rnn_grad
  forward : rnn (Tensor x, Tensor[] pre_state, Tensor[] weight_list, Tensor sequence_length, Tensor dropout_state_in, float dropout_prob, bool is_bidirec, int input_size, int hidden_size, int num_layers, str mode, int seed, bool is_test) -> Tensor(out), Tensor(dropout_state_out), Tensor[](state), Tensor(reserve)
  args : (Tensor x, Tensor[] pre_state, Tensor[] weight_list, Tensor sequence_length, Tensor out, Tensor dropout_state_out, Tensor reserve, Tensor out_grad, Tensor[] state_grad, float dropout_prob, bool is_bidirec, int input_size, int hidden_size, int num_layers, str mode, int seed, bool is_test)
  output : Tensor(x_grad), Tensor[](pre_state_grad){pre_state.size()}, Tensor[](weight_list_grad){weight_list.size()}
  infer_meta :
    func : RnnGradInferMeta
    param : [x, pre_state, weight_list]
  kernel :
    func : rnn_grad
    data_type: out_grad
  optional : sequence_length

782
- backward_op : roi_align_grad
Z
zyfncg 已提交
783 784 785 786 787 788 789 790 791 792 793 794
  forward : roi_align (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, float spatial_scale, int sampling_ratio, bool aligned) -> Tensor(out)
  args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor out_grad, int pooled_height, int pooled_width, float spatial_scale, int sampling_ratio, bool aligned)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : roi_align_grad
    data_type : boxes
  no_need_buffer : x
  optional : boxes_num

795
- backward_op : roi_pool_grad
Z
zyfncg 已提交
796 797 798 799 800 801 802 803 804 805 806
  forward : roi_pool (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, float spatial_scale) -> Tensor(out), Tensor(arg_max)
  args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor arg_max, Tensor out_grad, int pooled_height, int pooled_width, float spatial_scale)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : roi_pool_grad
    data_type : x
  optional : boxes_num

W
Weilong Wu 已提交
807 808 809 810 811 812 813 814 815 816 817
- backward_op : rrelu_grad
  forward : rrelu (Tensor x, float lower, float upper, bool is_test) -> Tensor(out), Tensor(noise)
  args : (Tensor x, Tensor noise, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : RReluGradInferMeta
    param : [out_grad, noise]
  kernel :
    func : rrelu_grad
    data_type : x

818
- backward_op : slice_double_grad
819 820 821
  forward : slice_grad (Tensor input, Tensor grad_out, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) -> Tensor(grad_input)
  args : (Tensor grad_input_grad, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis)
  output : Tensor(grad_out_grad)
822
  invoke : slice(grad_input_grad, axes, starts, ends, infer_flags, decrease_axis)
823

824
- backward_op : slice_grad
Z
zyfncg 已提交
825 826 827 828 829 830 831 832
  forward : slice (Tensor input, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) -> Tensor(out)
  args : (Tensor input, Tensor out_grad, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis)
  output : Tensor(input_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [input]
  kernel :
    func : slice_grad
833
  composite: slice_grad(input, out_grad, axes, starts, ends, infer_flags, decrease_axis, input_grad)
834
  backward : slice_double_grad
Z
zyfncg 已提交
835 836
  no_need_buffer : input

837
- backward_op : softmax_grad
Z
zyfncg 已提交
838 839 840 841 842 843 844 845
  forward : softmax (Tensor x, int axis) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : softmax_grad
846
  composite : softmax_grad(out, out_grad, axis, x_grad)
Z
zyfncg 已提交
847

848
- backward_op : split_grad
Z
zyfncg 已提交
849 850 851 852
  forward : split (Tensor x, IntArray num_or_sections, Scalar axis) -> Tensor[](out)
  args : (Tensor[] out_grad, Scalar axis = -1)
  output : Tensor(x_grad)
  invoke : concat( out_grad, axis)
853
  composite : split_grad(out_grad, axis, x_grad)
C
Charles-hit 已提交
854

855
- backward_op : split_with_num_grad
C
Charles-hit 已提交
856 857 858 859
  forward : split_with_num (Tensor x, int num, Scalar axis) -> Tensor[](out)
  args : (Tensor[] out_grad, Scalar axis = -1)
  output : Tensor(x_grad)
  invoke : concat( out_grad, axis)
860
  composite : split_grad(out_grad, axis, x_grad)
Z
zyfncg 已提交
861

862
- backward_op : strided_slice_grad
Z
zyfncg 已提交
863 864 865 866 867 868 869 870 871 872
  forward : strided_slice (Tensor x, int[] axes, IntArray starts, IntArray ends, IntArray strides) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int[] axes, IntArray starts, IntArray ends, IntArray strides)
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param : [x]
  kernel :
    func : strided_slice_grad
  no_need_buffer : x

873
- backward_op : subtract_double_grad
Z
zyfncg 已提交
874 875 876 877 878 879 880 881 882 883 884
  forward : subtract_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [grad_out]
  kernel :
    func : subtract_double_grad
  optional : grad_x_grad, grad_y_grad
  no_need_buffer : y, grad_out
  inplace : (grad_x_grad -> grad_out_grad)
885
  composite : subtract_double_grad(y, grad_out, grad_x_grad, grad_y_grad, axis, grad_out_grad)
Z
zyfncg 已提交
886

887
- backward_op : subtract_grad
Z
zyfncg 已提交
888 889 890 891 892 893 894 895 896
  forward : subtract (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : subtract_grad
  no_need_buffer : x, y
897
  composite : subtract_grad(x, y, out_grad, axis, x_grad, y_grad)
Z
zyfncg 已提交
898 899 900
  backward : subtract_double_grad
  inplace : (out_grad -> x_grad)

901
- backward_op : sum_double_grad
902 903
  forward : sum_grad (Tensor x, Tensor grad_out, IntArray axis, bool keepdim, bool reduce_all=false) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray axis={}, bool keepdim=false)
Z
zyfncg 已提交
904
  output : Tensor(grad_out_grad)
905
  invoke : sum(grad_x_grad, axis, grad_x_grad.dtype(), keepdim)
Z
zyfncg 已提交
906

907
- backward_op : sum_grad
908 909
  forward : sum (Tensor x, IntArray axis={}, DataType dtype=DataType::UNDEFINED, bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray axis, bool keepdim, bool reduce_all=false)
Z
zyfncg 已提交
910 911 912 913 914 915
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : sum_grad
916
  composite : sum_grad(x, out_grad, axis, keepdim, reduce_all, x_grad)
Z
zyfncg 已提交
917 918 919
  no_need_buffer : x
  backward : sum_double_grad

920
- backward_op : swish_grad
921
  forward : swish (Tensor x) -> Tensor(out)
922
  args : (Tensor x, Tensor out_grad)
Z
zyfncg 已提交
923 924 925 926 927 928 929 930
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param : [x]
  kernel :
    func : swish_grad
  inplace : (out_grad -> x_grad)

931
- backward_op : sync_batch_norm_grad
932 933
  forward : sync_batch_norm_ (Tensor x, Tensor mean, Tensor variance, Tensor scale, Tensor bias, bool is_test, float momentum, float epsilon, str data_layout, bool use_global_stats, bool trainable_statistics) -> Tensor(out), Tensor(mean_out), Tensor(variance_out), Tensor(saved_mean), Tensor(saved_variance), Tensor(reserve_space)
  args : (Tensor x, Tensor scale, Tensor bias, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor out_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics)
934 935 936 937 938 939 940
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, scale, bias]
  kernel :
    func : sync_batch_norm_grad
    data_type : out_grad
941
  optional : reserve_space
942

943
- backward_op : tile_double_grad
Z
zyfncg 已提交
944 945 946
  forward : tile_grad (Tensor x, Tensor grad_out, IntArray repeat_times) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray repeat_times)
  output : Tensor(grad_out_grad)
947
  invoke : tile(grad_x_grad, repeat_times)
Z
zyfncg 已提交
948

949
- backward_op : tile_grad
Z
zyfncg 已提交
950 951 952 953 954 955 956 957 958
  forward : tile (Tensor x, IntArray repeat_times) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray repeat_times)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : tile_grad
  no_need_buffer : x
C
ccrrong 已提交
959
  composite : tile_grad(x, outgrad, repeat_times, x_grad)
Z
zyfncg 已提交
960 961
  backward : tile_double_grad

N
niuliling123 已提交
962 963 964 965 966 967 968 969 970
- backward_op : trans_layout_grad
  forward : trans_layout (Tensor x, int[] perm) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int[] perm)
  output : Tensor(x_grad)
  infer_meta :
    func : TransLayoutGradInferMeta
  kernel :
    func : trans_layout_grad

971
- backward_op : transpose_double_grad
972 973
  forward : transpose_grad (Tensor grad_out, int[] perm) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, int[] perm)
Z
zyfncg 已提交
974
  output : Tensor(grad_out_grad)
975
  invoke : transpose(grad_x_grad, perm)
Z
zyfncg 已提交
976

977
- backward_op : transpose_grad
978 979
  forward : transpose (Tensor x, int[] perm) -> Tensor(out)
  args : (Tensor out_grad, int[] perm)
Z
zyfncg 已提交
980 981 982
  output : Tensor(x_grad)
  infer_meta :
    func : TransposeGradInferMeta
983
    param : [out_grad, perm]
Z
zyfncg 已提交
984 985 986
  kernel :
    func : transpose_grad
  backward : transpose_double_grad
987
  composite: transpose_grad(out_grad, perm, x_grad)
Z
zyfncg 已提交
988

989
- backward_op : tril_grad
990 991
  forward : tril(Tensor x,  int diagonal) -> Tensor(out)
  args : (Tensor out_grad,  int diagonal)
Z
zyfncg 已提交
992 993 994 995 996
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
997
    func : tril_grad
Z
zyfncg 已提交
998

999 1000 1001 1002 1003 1004 1005 1006 1007
- backward_op : triu_grad
  forward : triu(Tensor x,  int diagonal) -> Tensor(out)
  args : (Tensor out_grad,  int diagonal)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : triu_grad
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018

- backward_op: unpool_grad
  forward: unpool (Tensor x, Tensor indices, int[] ksize, int[] strides, int[] padding,  IntArray output_size, str data_format) -> Tensor(out)
  args: (Tensor x, Tensor indices, Tensor out, Tensor out_grad, int[] ksize, int[] strides, int[] padding, IntArray output_size, str data_format)
  output: Tensor(x_grad)
  infer_meta:
    func: UnchangedInferMeta
    param : [x]
  kernel:
    func: unpool_grad
    data_type: x