未验证 提交 ff1da188 编写于 作者: C Charles-hit 提交者: GitHub

support concat backward refuse forward (#45940)

上级 c6f173b0
......@@ -430,11 +430,7 @@
forward : concat_grad (Tensor[] x, Tensor grad_out, Scalar axis) -> Tensor[](grad_x)
args : (Tensor[] grad_x_grad, Scalar axis = 0)
output : Tensor(grad_out_grad)
infer_meta :
func : ConcatInferMeta
param : [grad_x_grad, axis]
kernel :
func : concat
invoke : concat(grad_x_grad, axis)
- backward_api : concat_grad
forward : concat (Tensor[] x, Scalar axis) -> Tensor(out)
......
......@@ -21,6 +21,9 @@ import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard, core
from paddle.fluid.framework import _test_eager_guard
import paddle
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
class TestConcatOp(OpTest):
......@@ -451,5 +454,83 @@ class TestConcatAPIWithLoDTensorArray(unittest.TestCase):
res[0], np.concatenate([self.x] * self.iter_num, axis=self.axis))
class TestConcatDoubleGradCheck(unittest.TestCase):
def concat_wrapper(self, x):
return paddle.concat(x)
@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
eps = 0.005
dtype = np.float32
data1 = layers.data('data1', [2, 3], False, dtype)
data1.persistable = True
data2 = layers.data('data2', [2, 3], False, dtype)
data2.persistable = True
out = paddle.concat([data1, data2])
data1_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)
data2_arr = np.random.uniform(-1, 1, data2.shape).astype(dtype)
gradient_checker.double_grad_check([data1, data2],
out,
x_init=[data1_arr, data2_arr],
place=place,
eps=eps)
fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
gradient_checker.double_grad_check_for_dygraph(
self.concat_wrapper, [data1, data2],
out,
x_init=[data1_arr, data2_arr],
place=place)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestConcatTripleGradCheck(unittest.TestCase):
def concat_wrapper(self, x):
return paddle.concat(x, 1)
@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
eps = 0.005
dtype = np.float32
data1 = layers.data('data1', [2, 3, 4], False, dtype)
data1.persistable = True
data2 = layers.data('data2', [2, 3, 4], False, dtype)
data2.persistable = True
out = paddle.concat([data1, data2], 1)
data1_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)
data2_arr = np.random.uniform(-1, 1, data2.shape).astype(dtype)
gradient_checker.double_grad_check([data1, data2],
out,
x_init=[data1_arr, data2_arr],
place=place,
eps=eps)
fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
gradient_checker.double_grad_check_for_dygraph(
self.concat_wrapper, [data1, data2],
out,
x_init=[data1_arr, data2_arr],
place=place)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册