adam.py 29.8 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import warnings
16
from collections import defaultdict
M
MRXLT 已提交
17

18
import paddle
19
from paddle import _C_ops
20

21
from ..fluid import core, framework
22 23 24 25
from ..fluid.dygraph import base as imperative_base
from ..fluid.framework import Variable, in_dygraph_mode
from .optimizer import Optimizer

26 27
__all__ = []

28
GRAD_TYPES = [int(paddle.float32), int(paddle.float16), int(paddle.bfloat16)]
29

M
MRXLT 已提交
30 31

class Adam(Optimizer):
32
    r"""
M
MRXLT 已提交
33 34 35 36
    The Adam optimizer uses an optimization described at the end
    of section 2 of `Adam paper <https://arxiv.org/abs/1412.6980>`_ ,
    it can dynamically adjusts the learning rate of each parameter using
    the 1st moment estimates and the 2nd moment estimates of the gradient.
37

M
MRXLT 已提交
38 39 40 41 42 43
    The parameter ``param_out`` update rule with gradient ``grad``:

    .. math::

        t & = t + 1

44
        moment\_1\_out & = {\beta}_1 * moment\_1 + (1 - {\beta}_1) * grad
M
MRXLT 已提交
45

46
        moment\_2\_out & = {\beta}_2 * moment\_2 + (1 - {\beta}_2) * grad * grad
M
MRXLT 已提交
47

48 49
        learning\_rate & = learning\_rate * \
                          \frac{\sqrt{1 - {\beta}_2^t}}{1 - {\beta}_1^t}
M
MRXLT 已提交
50

51
        param\_out & = param - learning\_rate * \frac{moment\_1}{\sqrt{moment\_2} + \epsilon}
M
MRXLT 已提交
52 53 54 55

    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

    Args:
56 57
        learning_rate (float|LRScheduler, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a LRScheduler. The default value is 0.001.
M
MRXLT 已提交
58 59 60 61 62 63
        beta1 (float|Tensor, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Tensor with shape [1] and data type as float32.
            The default value is 0.9.
        beta2 (float|Tensor, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Tensor with shape [1] and data type as float32.
            The default value is 0.999.
64 65
        epsilon (float|Tensor, optional): A small float value for numerical stability.
            It should be a float number or a Tensor with shape [1] and data type as float32.
M
MRXLT 已提交
66
            The default value is 1e-08.
67 68 69 70 71
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``.
            This parameter is required in dygraph mode. And you can specify different options for
            different parameter groups such as the learning rate, weight decay, etc,
            then the parameters are list of dict. Note that the learning_rate in paramter groups
            represents the scale of base learning_rate.
72
            The default value is None in static graph mode, at this time all parameters will be updated.
73 74 75 76 77 78 79
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization.
            It canbe a float value as coeff of L2 regularization or
            :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
            If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already,
            the regularization setting here in optimizer will be ignored for this parameter.
            Otherwise, the regularization setting here in optimizer will take effect.
            Default None, meaning there is no regularization.
80 81 82
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
M
MRXLT 已提交
83 84 85 86 87 88 89 90
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
91
        multi_precision (bool, optional): Whether to use multi-precision during weight updating. Default is false.
Z
zhangbo9674 已提交
92
        use_multi_tensor (bool, optional): Whether to use multi-tensor strategy to update all parameters at once . Default is false.
93 94 95
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
M
MRXLT 已提交
96 97 98

    Examples:
        .. code-block:: python
99
            :name: code-example1
M
MRXLT 已提交
100 101 102 103

            import paddle

            linear = paddle.nn.Linear(10, 10)
104
            inp = paddle.rand([10,10], dtype="float32")
M
MRXLT 已提交
105 106 107 108
            out = linear(inp)
            loss = paddle.mean(out)
            adam = paddle.optimizer.Adam(learning_rate=0.1,
                    parameters=linear.parameters())
109
            loss.backward()
M
MRXLT 已提交
110 111 112 113
            adam.step()
            adam.clear_grad()

        .. code-block:: python
114
            :name: code-example2
M
MRXLT 已提交
115 116 117 118 119

            # Adam with beta1/beta2 as Tensor and weight_decay as float
            import paddle

            linear = paddle.nn.Linear(10, 10)
120
            inp = paddle.rand([10,10], dtype="float32")
M
MRXLT 已提交
121 122 123 124 125 126 127 128 129 130 131
            out = linear(inp)
            loss = paddle.mean(out)

            beta1 = paddle.to_tensor([0.9], dtype="float32")
            beta2 = paddle.to_tensor([0.99], dtype="float32")

            adam = paddle.optimizer.Adam(learning_rate=0.1,
                    parameters=linear.parameters(),
                    beta1=beta1,
                    beta2=beta2,
                    weight_decay=0.01)
132
            loss.backward()
M
MRXLT 已提交
133 134 135
            adam.step()
            adam.clear_grad()

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
            adam = paddle.optimizer.Adam(
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1,
                    'beta1': 0.8
                }],
                weight_decay=0.01,
154
                beta1=0.9)
155
            loss.backward()
156 157 158
            adam.step()
            adam.clear_grad()

M
MRXLT 已提交
159 160 161 162 163 164
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

165 166 167 168 169 170 171 172 173 174 175 176 177 178
    def __init__(
        self,
        learning_rate=0.001,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-8,
        parameters=None,
        weight_decay=None,
        grad_clip=None,
        lazy_mode=False,
        multi_precision=False,
        use_multi_tensor=False,
        name=None,
    ):
M
MRXLT 已提交
179 180 181 182
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
183 184 185
        if not isinstance(beta1, Variable):
            if not 0 <= beta1 < 1:
                raise ValueError(
186 187
                    "Invaild value of beta1, expect beta1 in [0,1)."
                )
188 189 190
        if not isinstance(beta2, Variable):
            if not 0 <= beta2 < 1:
                raise ValueError(
191 192
                    "Invaild value of beta2, expect beta2 in [0,1)."
                )
193 194 195
        if not isinstance(epsilon, Variable):
            if not 0 <= epsilon:
                raise ValueError(
196 197
                    "Invaild value of epsilon, expect epsilon >= 0."
                )
198
        super().__init__(
199 200 201 202 203 204
            learning_rate=learning_rate,
            parameters=parameters,
            weight_decay=weight_decay,
            grad_clip=grad_clip,
            name=name,
        )
M
MRXLT 已提交
205 206 207 208 209
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
        self._lazy_mode = lazy_mode
210 211
        self._multi_precision = multi_precision
        self._master_weights = {}
212 213 214 215 216 217
        self._default_dict = {
            'beta1': beta1,
            'beta2': beta2,
            'epsilon': epsilon,
            'lazy_mode': lazy_mode,
        }
218

Z
zhangbo9674 已提交
219 220
        self._use_multi_tensor = use_multi_tensor
        if self._use_multi_tensor:
221 222 223 224 225 226 227
            self._param_dict = self._create_multi_tensor_dict()
            self._moment1_dict = self._create_multi_tensor_dict()
            self._moment2_dict = self._create_multi_tensor_dict()
            self._beta1_pow_acc_dict = self._create_multi_tensor_dict()
            self._beta2_pow_acc_dict = self._create_multi_tensor_dict()
            self._master_weight_dict = self._create_multi_tensor_dict()
            self._master_weight_dict['FP32_LODTensor'] = None
Z
zhangbo9674 已提交
228

229 230
    def _add_moments_pows(self, p):
        acc_dtype = p.dtype
231
        if self._is_dtype_fp16_or_bf16(acc_dtype):
232 233 234 235 236 237 238
            acc_dtype = core.VarDesc.VarType.FP32
        self._add_accumulator(self._moment1_acc_str, p, dtype=acc_dtype)
        self._add_accumulator(self._moment2_acc_str, p, dtype=acc_dtype)
        self._add_accumulator(
            name=self._beta1_pow_acc_str,
            param=p,
            dtype=acc_dtype,
239 240 241
            fill_value=0.9
            if isinstance(self._beta1, Variable)
            else self._beta1,
242
            shape=[1],
243 244 245
            type=core.VarDesc.VarType.LOD_TENSOR,
            device='cpu',
        )
246 247 248 249
        self._add_accumulator(
            name=self._beta2_pow_acc_str,
            param=p,
            dtype=acc_dtype,
250 251 252
            fill_value=0.999
            if isinstance(self._beta2, Variable)
            else self._beta2,
253
            shape=[1],
254 255 256
            type=core.VarDesc.VarType.LOD_TENSOR,
            device='cpu',
        )
M
MRXLT 已提交
257 258 259

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)
260 261
        if isinstance(parameters, dict):
            parameters = self._update_param_group(parameters)
M
MRXLT 已提交
262 263 264

        # Create accumulator tensors for first and second moments
        for p in parameters:
W
wanghuancoder 已提交
265 266
            if p.name in self._already_create_accumulater:
                continue
267
            if self._multi_precision and self._is_dtype_fp16_or_bf16(p.dtype):
268 269
                master_p = self._create_master_weight(p)
                self._add_moments_pows(master_p)
W
wanghuancoder 已提交
270
                self._already_create_accumulater.add(p.name)
271
                continue
272
            if (
273
                self._is_dtype_fp16_or_bf16(p.dtype)
274 275
                and not self._multi_precision
            ):
276
                warnings.warn(
277
                    "Accumulating with FP16 or BF16 in optimizer can lead to poor accuracy or slow convergence."
278
                    "Consider using multi_precision=True option of the Adam optimizer."
279 280
                )
            self._add_moments_pows(p)
W
wanghuancoder 已提交
281
            self._already_create_accumulater.add(p.name)
M
MRXLT 已提交
282 283 284

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
285 286
        if isinstance(param_and_grad, dict):
            param_and_grad = self._update_param_group(param_and_grad)
M
MRXLT 已提交
287

288
        moment1 = self._get_accumulator_master(
289 290
            self._moment1_acc_str, param_and_grad[0]
        )
291
        moment2 = self._get_accumulator_master(
292 293
            self._moment2_acc_str, param_and_grad[0]
        )
294
        beta1_pow_acc = self._get_accumulator_master(
295 296
            self._beta1_pow_acc_str, param_and_grad[0]
        )
297
        beta2_pow_acc = self._get_accumulator_master(
298 299
            self._beta2_pow_acc_str, param_and_grad[0]
        )
300 301
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param_and_grad[0].dtype
302 303 304 305 306 307
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
M
MRXLT 已提交
308 309 310
        lr = self._create_param_lr(param_and_grad)
        # create the adam optimize op

C
chentianyu03 已提交
311
        if framework.in_dygraph_mode():
312 313 314
            _beta1 = (
                self._beta1
                if not isinstance(self._beta1, Variable)
315
                else self._beta1.item(0)
316 317 318 319
            )
            _beta2 = (
                self._beta2
                if not isinstance(self._beta2, Variable)
320
                else self._beta2.item(0)
321
            )
C
chentianyu03 已提交
322

323
            _, _, _, _, _, _ = _C_ops.adam_(
324 325 326 327 328 329 330 331
                param_and_grad[0],
                param_and_grad[1],
                lr,
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
W
wanghuancoder 已提交
332
                None,
333 334 335 336 337 338 339 340
                _beta1,
                _beta2,
                self._epsilon,
                self._lazy_mode,
                1000,
                find_master,
                False,
            )
C
chentianyu03 已提交
341 342

            return None
M
MRXLT 已提交
343
        else:
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
            inputs = {
                "Param": [param_and_grad[0]],
                "Grad": [param_and_grad[1]],
                "LearningRate": [lr],
                "Moment1": [moment1],
                "Moment2": [moment2],
                "Beta1Pow": [beta1_pow_acc],
                "Beta2Pow": [beta2_pow_acc],
            }
            outputs = {
                "ParamOut": [param_and_grad[0]],
                "Moment1Out": [moment1],
                "Moment2Out": [moment2],
                "Beta1PowOut": [beta1_pow_acc],
                "Beta2PowOut": [beta2_pow_acc],
            }
            attrs = {
                "lazy_mode": self._lazy_mode,
                "min_row_size_to_use_multithread": 1000,
                "multi_precision": find_master,
            }

            if isinstance(self._beta1, Variable):
                inputs['Beta1Tensor'] = self._beta1
            else:
                attrs['beta1'] = self._beta1
            if isinstance(self._beta2, Variable):
                inputs['Beta2Tensor'] = self._beta2
            else:
                attrs['beta2'] = self._beta2
            if isinstance(self._epsilon, Variable):
                inputs['EpsilonTensor'] = self._epsilon
            else:
                attrs['epsilon'] = self._epsilon

            if find_master:
                inputs["MasterParam"] = master_weight
                outputs["MasterParamOut"] = master_weight

            adam_op = block.append_op(
                type=self.type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
                stop_gradient=True,
            )
M
MRXLT 已提交
390

391
            return adam_op
392

W
WangXi 已提交
393
    @imperative_base.no_grad
394
    @framework.non_static_only
395 396 397
    def step(self):
        """
        Execute the optimizer and update parameters once.
398

399 400 401 402 403 404 405
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
406

407
                a = paddle.rand([2,13], dtype="float32")
408 409
                linear = paddle.nn.Linear(13, 5)
                # This can be any optimizer supported by dygraph.
410
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
411 412 413 414 415 416
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()
        """
417 418 419 420
        if paddle.fluid.dygraph.base.in_declarative_mode():
            self._declarative_step()
            return

421 422 423 424 425 426 427
        if not isinstance(self._parameter_list[0], dict):
            params_grads = []
            for param in self._parameter_list:
                if param.stop_gradient:
                    continue
                if param._grad_ivar() is not None:
                    grad_var = param._grad_ivar()
428
                    if in_dygraph_mode():
429 430 431 432 433
                        if (
                            hasattr(grad_var, "is_selected_rows")
                            and grad_var.is_selected_rows()
                            and self.regularization is not None
                        ):
434 435 436 437
                            raise RuntimeError(
                                "Adam don't support weight_decay with sparse parameters, please set it to None."
                            )
                    else:
438 439 440 441 442
                        if (
                            hasattr(grad_var, "_is_sparse")
                            and grad_var._is_sparse()
                            and self.regularization is not None
                        ):
443 444 445
                            raise RuntimeError(
                                "Adam don't support weight_decay with sparse parameters, please set it to None."
                            )
446 447
                    params_grads.append((param, grad_var))

448
            optimize_ops = self._apply_optimize(
449 450 451 452
                loss=None,
                startup_program=None,
                params_grads=params_grads,
                param_group_idx=0,
453
            )
454 455
        else:
            # optimize parameters in groups
456
            for idx, param_group in enumerate(self._param_groups):
457
                params_grads = defaultdict(lambda: [])
458 459 460 461 462 463 464
                for param in param_group['params']:
                    if param.stop_gradient:
                        continue
                    if param._grad_ivar() is not None:
                        grad_var = param._grad_ivar()
                        params_grads['params'].append((param, grad_var))
                params_grads.update(
465 466 467
                    {k: v for k, v in param_group.items() if k != 'params'}
                )
                self._apply_optimize(
468 469 470 471
                    loss=None,
                    startup_program=None,
                    params_grads=params_grads,
                    param_group_idx=idx,
472
                )
473

474
    def _multi_tensor_init(self, target_block, parameters, param_group_idx):
Z
zhangbo9674 已提交
475
        """
476
        All parameters used for optimizer (such as: parameters, master_weight, velocity_acc for momentum) calculations are grouped into a python list by data type (bfloat16, float16, float32).
Z
zhangbo9674 已提交
477 478 479 480 481 482 483
        This function will be overridden in the corresponding optimizer file.
        Args:
            target_block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        self._create_accumulators(target_block, parameters)
        for param in parameters:
484 485 486
            moment1 = self._get_accumulator_master(self._moment1_acc_str, param)
            moment2 = self._get_accumulator_master(self._moment2_acc_str, param)
            beta1_pow_acc = self._get_accumulator_master(
487 488
                self._beta1_pow_acc_str, param
            )
489
            beta2_pow_acc = self._get_accumulator_master(
490 491
                self._beta2_pow_acc_str, param
            )
Z
zhangbo9674 已提交
492 493

            if param.dtype == paddle.float32:
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
                self._param_dict['FP32_LODTensor'][param_group_idx].append(
                    param
                )
                self._moment1_dict['FP32_LODTensor'][param_group_idx].append(
                    moment1
                )
                self._moment2_dict['FP32_LODTensor'][param_group_idx].append(
                    moment2
                )
                self._beta1_pow_acc_dict['FP32_LODTensor'][
                    param_group_idx
                ].append(beta1_pow_acc)
                self._beta2_pow_acc_dict['FP32_LODTensor'][
                    param_group_idx
                ].append(beta2_pow_acc)
509
            elif self._is_dtype_fp16_or_bf16(param.dtype):
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
                self._param_dict['FP16_LODTensor'][param_group_idx].append(
                    param
                )
                self._moment1_dict['FP16_LODTensor'][param_group_idx].append(
                    moment1
                )
                self._moment2_dict['FP16_LODTensor'][param_group_idx].append(
                    moment2
                )
                self._beta1_pow_acc_dict['FP16_LODTensor'][
                    param_group_idx
                ].append(beta1_pow_acc)
                self._beta2_pow_acc_dict['FP16_LODTensor'][
                    param_group_idx
                ].append(beta2_pow_acc)
Z
zhangbo9674 已提交
525
                if self._multi_precision:
526 527 528
                    self._master_weight_dict['FP16_LODTensor'][
                        param_group_idx
                    ].append(self._master_weights[param.name])
Z
zhangbo9674 已提交
529 530 531 532
                else:
                    self._master_weight_dict['FP16_LODTensor'] = None
            else:
                raise ValueError(
533
                    "Now multi_tensor_momentum only support fp32, fp16 or bf16 parameters and grad is LOD_TENSOR."
Z
zhangbo9674 已提交
534 535
                )

536
    def _append_optimize_multi_tensor_op(
537 538 539 540
        self,
        target_block,
        parameters_and_grads,
        param_group_idx,
541
    ):
542
        """
Z
zhangbo9674 已提交
543 544 545 546 547 548 549 550
        For Multi Tensor, append optimize merged_operator to block.
        """
        assert isinstance(target_block, framework.Block)

        grad_dict = {'FP32_LODTensor': [], 'FP16_LODTensor': []}
        lr_dict = {'FP32_LODTensor': [], 'FP16_LODTensor': []}

        if isinstance(parameters_and_grads, list):
551 552 553 554 555 556 557 558 559
            if framework.in_dygraph_mode():
                params = [pair[0] for pair in parameters_and_grads]
                grads_types = core.eager.get_grads_types(params)
                for index, tp in enumerate(grads_types):
                    if tp == GRAD_TYPES[0]:
                        grad_dict['FP32_LODTensor'].append(
                            parameters_and_grads[index][1]
                        )
                        lr = self._create_param_lr(parameters_and_grads[index])
Z
zhangbo9674 已提交
560
                        lr_dict['FP32_LODTensor'].append(lr)
561
                    elif tp == GRAD_TYPES[1] or tp == GRAD_TYPES[2]:
562 563 564 565
                        grad_dict['FP16_LODTensor'].append(
                            parameters_and_grads[index][1]
                        )
                        lr = self._create_param_lr(parameters_and_grads[index])
Z
zhangbo9674 已提交
566
                        lr_dict['FP16_LODTensor'].append(lr)
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
            else:
                for param_and_grad in parameters_and_grads:
                    if param_and_grad[1] is None:
                        continue
                    if param_and_grad[0].stop_gradient is False:
                        if (
                            param_and_grad[0].dtype == paddle.float32
                            and param_and_grad[1].type
                            == core.VarDesc.VarType.LOD_TENSOR
                        ):
                            grad_dict['FP32_LODTensor'].append(
                                param_and_grad[1]
                            )
                            lr = self._create_param_lr(param_and_grad)
                            lr_dict['FP32_LODTensor'].append(lr)
                        elif (
583
                            self._is_dtype_fp16_or_bf16(param_and_grad[0].dtype)
584 585 586 587 588 589 590 591
                            and param_and_grad[1].type
                            == core.VarDesc.VarType.LOD_TENSOR
                        ):
                            grad_dict['FP16_LODTensor'].append(
                                param_and_grad[1]
                            )
                            lr = self._create_param_lr(param_and_grad)
                            lr_dict['FP16_LODTensor'].append(lr)
Z
zhangbo9674 已提交
592 593 594 595 596
        else:
            for param_and_grad in parameters_and_grads['params']:
                if param_and_grad[1] is None:
                    continue
                if param_and_grad[0].stop_gradient is False:
597
                    param_grad_dict = {}
Z
zhangbo9674 已提交
598
                    param_grad_dict['params'] = param_and_grad
599 600 601 602 603 604 605
                    param_grad_dict.update(
                        {
                            k: v
                            for k, v in parameters_and_grads.items()
                            if k != 'params'
                        }
                    )
Z
zhangbo9674 已提交
606
                    param_and_grad = self._update_param_group(param_grad_dict)
607 608 609 610 611
                    if (
                        param_and_grad[0].dtype == paddle.float32
                        and param_and_grad[1].type
                        == core.VarDesc.VarType.LOD_TENSOR
                    ):
Z
zhangbo9674 已提交
612 613 614
                        grad_dict['FP32_LODTensor'].append(param_and_grad[1])
                        lr = self._create_param_lr(param_and_grad)
                        lr_dict['FP32_LODTensor'].append(lr)
615
                    elif (
616
                        self._is_dtype_fp16_or_bf16(param_and_grad[0].dtype)
617 618 619
                        and param_and_grad[1].type
                        == core.VarDesc.VarType.LOD_TENSOR
                    ):
Z
zhangbo9674 已提交
620 621 622 623 624 625
                        grad_dict['FP16_LODTensor'].append(param_and_grad[1])
                        lr = self._create_param_lr(param_and_grad)
                        lr_dict['FP16_LODTensor'].append(lr)

        multi_tensor_list = ['FP32_LODTensor', 'FP16_LODTensor']
        for key in multi_tensor_list:
626
            if len(self._param_dict[key][param_group_idx]) > 0:
627
                find_master = self._multi_precision and key == 'FP16_LODTensor'
Z
zhangbo9674 已提交
628

629 630 631
                _beta1 = (
                    self._beta1
                    if not isinstance(self._beta1, Variable)
632
                    else self._beta1.item(0)
633 634 635 636
                )
                _beta2 = (
                    self._beta2
                    if not isinstance(self._beta2, Variable)
637
                    else self._beta2.item(0)
638
                )
Z
zhangbo9674 已提交
639

640
                if framework.in_dygraph_mode():
641 642 643 644 645 646
                    master_weight = self._master_weight_dict[key]
                    master_weight = (
                        master_weight[param_group_idx]
                        if master_weight is not None
                        else None
                    )
W
wanghuancoder 已提交
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
                    found_inf = self._get_auxiliary_var('found_inf')
                    if found_inf:
                        if isinstance(found_inf, core.eager.Tensor):
                            self._set_auxiliary_var('found_inf', True)
                    else:
                        if isinstance(found_inf, core.eager.Tensor):
                            self._set_auxiliary_var('found_inf', False)
                        _, _, _, _, _, _ = _C_ops.merged_adam_(
                            self._param_dict[key][param_group_idx],
                            grad_dict[key],
                            lr_dict[key],
                            self._moment1_dict[key][param_group_idx],
                            self._moment2_dict[key][param_group_idx],
                            self._beta1_pow_acc_dict[key][param_group_idx],
                            self._beta2_pow_acc_dict[key][param_group_idx],
                            master_weight,
                            _beta1,
                            _beta2,
                            self._epsilon,
                            find_master,
                            False,
                        )
Z
zhangbo9674 已提交
669 670
                else:
                    inputs = {
671
                        "Param": self._param_dict[key][param_group_idx],
Z
zhangbo9674 已提交
672 673
                        "Grad": grad_dict[key],
                        "LearningRate": lr_dict[key],
674 675 676 677 678 679 680 681
                        "Moment1": self._moment1_dict[key][param_group_idx],
                        "Moment2": self._moment2_dict[key][param_group_idx],
                        "Beta1Pow": self._beta1_pow_acc_dict[key][
                            param_group_idx
                        ],
                        "Beta2Pow": self._beta2_pow_acc_dict[key][
                            param_group_idx
                        ],
Z
zhangbo9674 已提交
682 683
                    }
                    outputs = {
684 685 686 687 688 689 690 691 692
                        "ParamOut": self._param_dict[key][param_group_idx],
                        "Moment1Out": self._moment1_dict[key][param_group_idx],
                        "Moment2Out": self._moment2_dict[key][param_group_idx],
                        "Beta1PowOut": self._beta1_pow_acc_dict[key][
                            param_group_idx
                        ],
                        "Beta2PowOut": self._beta2_pow_acc_dict[key][
                            param_group_idx
                        ],
Z
zhangbo9674 已提交
693 694 695 696
                    }
                    attrs = {
                        "epsilon": self._epsilon,
                        "beta1": _beta1,
697
                        "beta2": _beta2,
Z
zhangbo9674 已提交
698
                    }
699
                    if find_master:
700 701 702
                        inputs["MasterParam"] = self._master_weight_dict[key][
                            param_group_idx
                        ]
Z
zhangbo9674 已提交
703
                        outputs["MasterParamOut"] = self._master_weight_dict[
704
                            key
705
                        ][param_group_idx]
706
                        attrs["multi_precision"] = find_master
707 708 709 710 711 712 713
                    target_block.append_op(
                        type="merged_adam",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
Z
zhangbo9674 已提交
714 715
        return None

716 717 718 719
    def _update_param_group(self, parameters):
        self._beta1 = parameters.get('beta1', self._default_dict['beta1'])
        self._beta2 = parameters.get('beta2', self._default_dict['beta2'])
        self._epsilon = parameters.get('epsilon', self._default_dict['epsilon'])
720 721 722
        self._lazy_mode = parameters.get(
            'lazy_mode', self._default_dict['lazy_mode']
        )
723 724
        parameters = parameters.get('params')
        return parameters