adam.py 30.8 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .optimizer import Optimizer
from ..fluid import core
from ..fluid import framework
18
from ..fluid.framework import Variable, in_dygraph_mode
19 20 21 22
from ..fluid import layers
from ..fluid import unique_name
from ..fluid.layer_helper import LayerHelper
import warnings
W
WangXi 已提交
23
from ..fluid.dygraph import base as imperative_base
24
from collections import defaultdict
M
MRXLT 已提交
25

26
import paddle
27
from paddle import _C_ops, _legacy_C_ops
28

29 30
__all__ = []

M
MRXLT 已提交
31 32

class Adam(Optimizer):
33
    r"""
M
MRXLT 已提交
34 35 36 37
    The Adam optimizer uses an optimization described at the end
    of section 2 of `Adam paper <https://arxiv.org/abs/1412.6980>`_ ,
    it can dynamically adjusts the learning rate of each parameter using
    the 1st moment estimates and the 2nd moment estimates of the gradient.
38

M
MRXLT 已提交
39 40 41 42 43 44
    The parameter ``param_out`` update rule with gradient ``grad``:

    .. math::

        t & = t + 1

45
        moment\_1\_out & = {\beta}_1 * moment\_1 + (1 - {\beta}_1) * grad
M
MRXLT 已提交
46

47
        moment\_2\_out & = {\beta}_2 * moment\_2 + (1 - {\beta}_2) * grad * grad
M
MRXLT 已提交
48

49 50
        learning\_rate & = learning\_rate * \
                          \frac{\sqrt{1 - {\beta}_2^t}}{1 - {\beta}_1^t}
M
MRXLT 已提交
51

52
        param\_out & = param - learning\_rate * \frac{moment\_1}{\sqrt{moment\_2} + \epsilon}
M
MRXLT 已提交
53 54 55 56

    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

    Args:
57 58
        learning_rate (float|LRScheduler, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a LRScheduler. The default value is 0.001.
M
MRXLT 已提交
59 60 61 62 63 64
        beta1 (float|Tensor, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Tensor with shape [1] and data type as float32.
            The default value is 0.9.
        beta2 (float|Tensor, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Tensor with shape [1] and data type as float32.
            The default value is 0.999.
65 66
        epsilon (float|Tensor, optional): A small float value for numerical stability.
            It should be a float number or a Tensor with shape [1] and data type as float32.
M
MRXLT 已提交
67
            The default value is 1e-08.
68 69 70 71 72 73 74 75 76 77 78 79 80
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``.
            This parameter is required in dygraph mode. And you can specify different options for
            different parameter groups such as the learning rate, weight decay, etc,
            then the parameters are list of dict. Note that the learning_rate in paramter groups
            represents the scale of base learning_rate.
            The default value is None in static mode, at this time all parameters will be updated.
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization.
            It canbe a float value as coeff of L2 regularization or
            :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
            If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already,
            the regularization setting here in optimizer will be ignored for this parameter.
            Otherwise, the regularization setting here in optimizer will take effect.
            Default None, meaning there is no regularization.
81 82 83
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
M
MRXLT 已提交
84 85 86 87 88 89 90 91
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
92
        multi_precision (bool, optional): Whether to use multi-precision during weight updating. Default is false.
Z
zhangbo9674 已提交
93
        use_multi_tensor (bool, optional): Whether to use multi-tensor strategy to update all parameters at once . Default is false.
94 95 96
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
M
MRXLT 已提交
97 98 99 100 101 102 103

    Examples:
        .. code-block:: python

            import paddle

            linear = paddle.nn.Linear(10, 10)
104
            inp = paddle.rand([10,10], dtype="float32")
M
MRXLT 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118
            out = linear(inp)
            loss = paddle.mean(out)
            adam = paddle.optimizer.Adam(learning_rate=0.1,
                    parameters=linear.parameters())
            out.backward()
            adam.step()
            adam.clear_grad()

        .. code-block:: python

            # Adam with beta1/beta2 as Tensor and weight_decay as float
            import paddle

            linear = paddle.nn.Linear(10, 10)
119
            inp = paddle.rand([10,10], dtype="float32")
M
MRXLT 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
            out = linear(inp)
            loss = paddle.mean(out)

            beta1 = paddle.to_tensor([0.9], dtype="float32")
            beta2 = paddle.to_tensor([0.99], dtype="float32")

            adam = paddle.optimizer.Adam(learning_rate=0.1,
                    parameters=linear.parameters(),
                    beta1=beta1,
                    beta2=beta2,
                    weight_decay=0.01)
            out.backward()
            adam.step()
            adam.clear_grad()

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
            adam = paddle.optimizer.Adam(
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1,
                    'beta1': 0.8
                }],
                weight_decay=0.01,
153
                beta1=0.9)
154 155 156 157
            out.backward()
            adam.step()
            adam.clear_grad()

M
MRXLT 已提交
158 159 160 161 162 163
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

164 165 166 167 168 169 170 171 172 173 174 175 176 177
    def __init__(
        self,
        learning_rate=0.001,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-8,
        parameters=None,
        weight_decay=None,
        grad_clip=None,
        lazy_mode=False,
        multi_precision=False,
        use_multi_tensor=False,
        name=None,
    ):
M
MRXLT 已提交
178 179 180 181
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
182 183 184
        if not isinstance(beta1, Variable):
            if not 0 <= beta1 < 1:
                raise ValueError(
185 186
                    "Invaild value of beta1, expect beta1 in [0,1)."
                )
187 188 189
        if not isinstance(beta2, Variable):
            if not 0 <= beta2 < 1:
                raise ValueError(
190 191
                    "Invaild value of beta2, expect beta2 in [0,1)."
                )
192 193 194
        if not isinstance(epsilon, Variable):
            if not 0 <= epsilon:
                raise ValueError(
195 196 197 198 199 200 201 202 203
                    "Invaild value of epsilon, expect epsilon >= 0."
                )
        super(Adam, self).__init__(
            learning_rate=learning_rate,
            parameters=parameters,
            weight_decay=weight_decay,
            grad_clip=grad_clip,
            name=name,
        )
M
MRXLT 已提交
204 205 206 207 208
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
        self._lazy_mode = lazy_mode
209 210
        self._multi_precision = multi_precision
        self._master_weights = {}
211 212 213 214 215 216
        self._default_dict = {
            'beta1': beta1,
            'beta2': beta2,
            'epsilon': epsilon,
            'lazy_mode': lazy_mode,
        }
217

Z
zhangbo9674 已提交
218 219 220 221 222 223 224
        self._use_multi_tensor = use_multi_tensor
        if self._use_multi_tensor:
            self._param_dict = {'FP32_LODTensor': [], 'FP16_LODTensor': []}
            self._moment1_dict = {'FP32_LODTensor': [], 'FP16_LODTensor': []}
            self._moment2_dict = {'FP32_LODTensor': [], 'FP16_LODTensor': []}
            self._beta1_pow_acc_dict = {
                'FP32_LODTensor': [],
225
                'FP16_LODTensor': [],
Z
zhangbo9674 已提交
226 227 228
            }
            self._beta2_pow_acc_dict = {
                'FP32_LODTensor': [],
229
                'FP16_LODTensor': [],
Z
zhangbo9674 已提交
230 231 232
            }
            self._master_weight_dict = {
                'FP32_LODTensor': None,
233
                'FP16_LODTensor': [],
Z
zhangbo9674 已提交
234 235
            }

236
    def _create_master_weight(self, param):
237 238 239 240 241 242 243
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + "_fp32_master"
            var_name = unique_name.generate(var_name)
244 245 246 247 248 249 250
            var = layers.create_global_var(
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
251
            block = self.helper.startup_program.global_block()
252 253 254 255 256 257 258 259 260
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
261
            self._master_weights[param.name] = var
262 263 264 265 266 267 268 269 270 271 272 273
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
274 275 276 277 278 279
        find_master = (
            self._multi_precision and param.dtype == core.VarDesc.VarType.FP16
        )
        target_param = (
            self._master_weights[param.name] if find_master else param
        )
280
        target_name = target_param.name
281 282 283 284
        if (
            name not in self._accumulators
            or target_name not in self._accumulators[name]
        ):
285 286
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
287 288 289
                    name, target_name
                )
            )
290 291 292 293
        return self._accumulators[name][target_name]

    def _add_moments_pows(self, p):
        acc_dtype = p.dtype
294 295 296 297
        if (
            acc_dtype == core.VarDesc.VarType.FP16
            or acc_dtype == core.VarDesc.VarType.BF16
        ):
298 299 300 301 302 303 304
            acc_dtype = core.VarDesc.VarType.FP32
        self._add_accumulator(self._moment1_acc_str, p, dtype=acc_dtype)
        self._add_accumulator(self._moment2_acc_str, p, dtype=acc_dtype)
        self._add_accumulator(
            name=self._beta1_pow_acc_str,
            param=p,
            dtype=acc_dtype,
305 306 307
            fill_value=0.9
            if isinstance(self._beta1, Variable)
            else self._beta1,
308
            shape=[1],
309 310 311
            type=core.VarDesc.VarType.LOD_TENSOR,
            device='cpu',
        )
312 313 314 315
        self._add_accumulator(
            name=self._beta2_pow_acc_str,
            param=p,
            dtype=acc_dtype,
316 317 318
            fill_value=0.999
            if isinstance(self._beta2, Variable)
            else self._beta2,
319
            shape=[1],
320 321 322
            type=core.VarDesc.VarType.LOD_TENSOR,
            device='cpu',
        )
M
MRXLT 已提交
323 324 325

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)
326 327
        if isinstance(parameters, dict):
            parameters = self._update_param_group(parameters)
M
MRXLT 已提交
328 329 330

        # Create accumulator tensors for first and second moments
        for p in parameters:
331 332 333 334
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                self._add_moments_pows(master_p)
                continue
335 336 337 338
            if (
                p.dtype == core.VarDesc.VarType.FP16
                and not self._multi_precision
            ):
339 340
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
341
                    "Consider using multi_precision=True option of the Adam optimizer."
342 343
                )
            self._add_moments_pows(p)
M
MRXLT 已提交
344 345 346

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
347 348
        if isinstance(param_and_grad, dict):
            param_and_grad = self._update_param_group(param_and_grad)
M
MRXLT 已提交
349

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
        moment1 = self._get_accumulator(
            self._moment1_acc_str, param_and_grad[0]
        )
        moment2 = self._get_accumulator(
            self._moment2_acc_str, param_and_grad[0]
        )
        beta1_pow_acc = self._get_accumulator(
            self._beta1_pow_acc_str, param_and_grad[0]
        )
        beta2_pow_acc = self._get_accumulator(
            self._beta2_pow_acc_str, param_and_grad[0]
        )
        find_master = (
            self._multi_precision
            and param_and_grad[0].dtype == core.VarDesc.VarType.FP16
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
M
MRXLT 已提交
371 372 373
        lr = self._create_param_lr(param_and_grad)
        # create the adam optimize op

C
chentianyu03 已提交
374 375 376
        if framework.in_dygraph_mode():
            found_inf = self._get_auxiliary_var('found_inf')

377 378 379 380 381 382 383 384 385 386
            _beta1 = (
                self._beta1
                if not isinstance(self._beta1, Variable)
                else self._beta1.numpy().item(0)
            )
            _beta2 = (
                self._beta2
                if not isinstance(self._beta2, Variable)
                else self._beta2.numpy().item(0)
            )
C
chentianyu03 已提交
387

388
            _, _, _, _, _, _ = _C_ops.adam_(
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
                param_and_grad[0],
                param_and_grad[1],
                lr,
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                found_inf,
                _beta1,
                _beta2,
                self._epsilon,
                self._lazy_mode,
                1000,
                find_master,
                False,
            )
C
chentianyu03 已提交
406 407 408 409

            return None

        if framework._in_legacy_dygraph():
410

411 412 413 414 415 416 417 418 419 420
            _beta1 = (
                self._beta1
                if not isinstance(self._beta1, Variable)
                else self._beta1.numpy().item(0)
            )
            _beta2 = (
                self._beta2
                if not isinstance(self._beta2, Variable)
                else self._beta2.numpy().item(0)
            )
421
            _, _, _, _, _, _ = _legacy_C_ops.adam(
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
                param_and_grad[0],
                param_and_grad[1],
                lr,
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                param_and_grad[0],
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                'epsilon',
                self._epsilon,
                'lazy_mode',
                self._lazy_mode,
                'min_row_size_to_use_multithread',
                1000,
                'beta1',
                _beta1,
                'beta2',
                _beta2,
                'multi_precision',
                find_master,
            )
M
MRXLT 已提交
449 450 451 452 453 454 455 456 457 458

            return None

        inputs = {
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "LearningRate": [lr],
            "Moment1": [moment1],
            "Moment2": [moment2],
            "Beta1Pow": [beta1_pow_acc],
459
            "Beta2Pow": [beta2_pow_acc],
M
MRXLT 已提交
460 461 462 463 464 465 466 467 468 469
        }
        outputs = {
            "ParamOut": [param_and_grad[0]],
            "Moment1Out": [moment1],
            "Moment2Out": [moment2],
            "Beta1PowOut": [beta1_pow_acc],
            "Beta2PowOut": [beta2_pow_acc],
        }
        attrs = {
            "lazy_mode": self._lazy_mode,
470
            "min_row_size_to_use_multithread": 1000,
471
            "multi_precision": find_master,
M
MRXLT 已提交
472 473 474 475 476 477 478 479 480 481
        }

        if isinstance(self._beta1, Variable):
            inputs['Beta1Tensor'] = self._beta1
        else:
            attrs['beta1'] = self._beta1
        if isinstance(self._beta2, Variable):
            inputs['Beta2Tensor'] = self._beta2
        else:
            attrs['beta2'] = self._beta2
482 483 484 485
        if isinstance(self._epsilon, Variable):
            inputs['EpsilonTensor'] = self._epsilon
        else:
            attrs['epsilon'] = self._epsilon
M
MRXLT 已提交
486

487 488 489 490
        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

491 492 493 494 495 496 497
        adam_op = block.append_op(
            type=self.type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True,
        )
M
MRXLT 已提交
498 499

        return adam_op
500

W
WangXi 已提交
501
    @imperative_base.no_grad
502 503 504 505
    @framework.dygraph_only
    def step(self):
        """
        Execute the optimizer and update parameters once.
506

507 508 509 510 511 512 513
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
514

515
                a = paddle.rand([2,13], dtype="float32")
516 517
                linear = paddle.nn.Linear(13, 5)
                # This can be any optimizer supported by dygraph.
518
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
519 520 521 522 523 524
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()
        """
525 526 527 528 529 530 531
        if not isinstance(self._parameter_list[0], dict):
            params_grads = []
            for param in self._parameter_list:
                if param.stop_gradient:
                    continue
                if param._grad_ivar() is not None:
                    grad_var = param._grad_ivar()
532
                    if in_dygraph_mode():
533 534 535 536 537
                        if (
                            hasattr(grad_var, "is_selected_rows")
                            and grad_var.is_selected_rows()
                            and self.regularization is not None
                        ):
538 539 540 541
                            raise RuntimeError(
                                "Adam don't support weight_decay with sparse parameters, please set it to None."
                            )
                    else:
542 543 544 545 546
                        if (
                            hasattr(grad_var, "_is_sparse")
                            and grad_var._is_sparse()
                            and self.regularization is not None
                        ):
547 548 549
                            raise RuntimeError(
                                "Adam don't support weight_decay with sparse parameters, please set it to None."
                            )
550 551
                    params_grads.append((param, grad_var))

552 553 554
            optimize_ops = self._apply_optimize(
                loss=None, startup_program=None, params_grads=params_grads
            )
555 556 557 558 559 560 561 562 563 564 565
        else:
            # optimize parameters in groups
            for param_group in self._param_groups:
                params_grads = defaultdict(lambda: list())
                for param in param_group['params']:
                    if param.stop_gradient:
                        continue
                    if param._grad_ivar() is not None:
                        grad_var = param._grad_ivar()
                        params_grads['params'].append((param, grad_var))
                params_grads.update(
566 567 568 569 570
                    {k: v for k, v in param_group.items() if k != 'params'}
                )
                self._apply_optimize(
                    loss=None, startup_program=None, params_grads=params_grads
                )
571

Z
zhangbo9674 已提交
572 573 574 575 576 577 578 579 580 581 582 583
    def _multi_tensor_init(self, target_block, parameters):
        """
        All parameters used for optimizer (such as: parameters, master_weight, velocity_acc for momentum) calculations are grouped into a python list by data type (float16, float32).
        This function will be overridden in the corresponding optimizer file.
        Args:
            target_block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        self._create_accumulators(target_block, parameters)
        for param in parameters:
            moment1 = self._get_accumulator(self._moment1_acc_str, param)
            moment2 = self._get_accumulator(self._moment2_acc_str, param)
584 585 586 587 588 589
            beta1_pow_acc = self._get_accumulator(
                self._beta1_pow_acc_str, param
            )
            beta2_pow_acc = self._get_accumulator(
                self._beta2_pow_acc_str, param
            )
Z
zhangbo9674 已提交
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604

            if param.dtype == paddle.float32:
                self._param_dict['FP32_LODTensor'].append(param)
                self._moment1_dict['FP32_LODTensor'].append(moment1)
                self._moment2_dict['FP32_LODTensor'].append(moment2)
                self._beta1_pow_acc_dict['FP32_LODTensor'].append(beta1_pow_acc)
                self._beta2_pow_acc_dict['FP32_LODTensor'].append(beta2_pow_acc)
            elif param.dtype == paddle.float16:
                self._param_dict['FP16_LODTensor'].append(param)
                self._moment1_dict['FP16_LODTensor'].append(moment1)
                self._moment2_dict['FP16_LODTensor'].append(moment2)
                self._beta1_pow_acc_dict['FP16_LODTensor'].append(beta1_pow_acc)
                self._beta2_pow_acc_dict['FP16_LODTensor'].append(beta2_pow_acc)
                if self._multi_precision:
                    self._master_weight_dict['FP16_LODTensor'].append(
605 606
                        self._master_weights[param.name]
                    )
Z
zhangbo9674 已提交
607 608 609 610 611 612 613
                else:
                    self._master_weight_dict['FP16_LODTensor'] = None
            else:
                raise ValueError(
                    "Now multi_tensor_momentum only support fp32 and fp16 parameters and grad is LOD_TENSOR."
                )

614 615 616
    def _append_optimize_multi_tensor_op(
        self, target_block, parameters_and_grads
    ):
617
        """
Z
zhangbo9674 已提交
618 619 620 621 622 623 624 625 626 627 628 629
        For Multi Tensor, append optimize merged_operator to block.
        """
        assert isinstance(target_block, framework.Block)

        grad_dict = {'FP32_LODTensor': [], 'FP16_LODTensor': []}
        lr_dict = {'FP32_LODTensor': [], 'FP16_LODTensor': []}

        if isinstance(parameters_and_grads, list):
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                if param_and_grad[0].stop_gradient is False:
630 631 632 633 634
                    if (
                        param_and_grad[0].dtype == paddle.float32
                        and param_and_grad[1].type
                        == core.VarDesc.VarType.LOD_TENSOR
                    ):
Z
zhangbo9674 已提交
635 636 637
                        grad_dict['FP32_LODTensor'].append(param_and_grad[1])
                        lr = self._create_param_lr(param_and_grad)
                        lr_dict['FP32_LODTensor'].append(lr)
638 639 640 641 642
                    elif (
                        param_and_grad[0].dtype == paddle.float16
                        and param_and_grad[1].type
                        == core.VarDesc.VarType.LOD_TENSOR
                    ):
Z
zhangbo9674 已提交
643 644 645 646 647 648 649 650 651 652
                        grad_dict['FP16_LODTensor'].append(param_and_grad[1])
                        lr = self._create_param_lr(param_and_grad)
                        lr_dict['FP16_LODTensor'].append(lr)
        else:
            for param_and_grad in parameters_and_grads['params']:
                if param_and_grad[1] is None:
                    continue
                if param_and_grad[0].stop_gradient is False:
                    param_grad_dict = dict()
                    param_grad_dict['params'] = param_and_grad
653 654 655 656 657 658 659
                    param_grad_dict.update(
                        {
                            k: v
                            for k, v in parameters_and_grads.items()
                            if k != 'params'
                        }
                    )
Z
zhangbo9674 已提交
660
                    param_and_grad = self._update_param_group(param_grad_dict)
661 662 663 664 665
                    if (
                        param_and_grad[0].dtype == paddle.float32
                        and param_and_grad[1].type
                        == core.VarDesc.VarType.LOD_TENSOR
                    ):
Z
zhangbo9674 已提交
666 667 668
                        grad_dict['FP32_LODTensor'].append(param_and_grad[1])
                        lr = self._create_param_lr(param_and_grad)
                        lr_dict['FP32_LODTensor'].append(lr)
669 670 671 672 673
                    elif (
                        param_and_grad[0].dtype == paddle.float16
                        and param_and_grad[1].type
                        == core.VarDesc.VarType.LOD_TENSOR
                    ):
Z
zhangbo9674 已提交
674 675 676 677 678 679 680
                        grad_dict['FP16_LODTensor'].append(param_and_grad[1])
                        lr = self._create_param_lr(param_and_grad)
                        lr_dict['FP16_LODTensor'].append(lr)

        multi_tensor_list = ['FP32_LODTensor', 'FP16_LODTensor']
        for key in multi_tensor_list:
            if len(self._param_dict[key]) > 0:
681
                find_master = self._multi_precision and key == 'FP16_LODTensor'
Z
zhangbo9674 已提交
682

683 684 685 686 687 688 689 690 691 692
                _beta1 = (
                    self._beta1
                    if not isinstance(self._beta1, Variable)
                    else self._beta1.numpy().item(0)
                )
                _beta2 = (
                    self._beta2
                    if not isinstance(self._beta2, Variable)
                    else self._beta2.numpy().item(0)
                )
Z
zhangbo9674 已提交
693

J
Jiabin Yang 已提交
694
                if framework._non_static_mode():
695 696
                    if in_dygraph_mode():
                        _, _, _, _, _, _ = _C_ops.merged_adam_(
697 698 699 700 701
                            self._param_dict[key],
                            grad_dict[key],
                            lr_dict[key],
                            self._moment1_dict[key],
                            self._moment2_dict[key],
702 703
                            self._beta1_pow_acc_dict[key],
                            self._beta2_pow_acc_dict[key],
704 705 706 707 708 709 710
                            self._master_weight_dict[key],
                            _beta1,
                            _beta2,
                            self._epsilon,
                            find_master,
                            False,
                        )
711 712
                    else:
                        _, _, _, _, _, _ = _legacy_C_ops.merged_adam(
713 714 715 716 717
                            self._param_dict[key],
                            grad_dict[key],
                            lr_dict[key],
                            self._moment1_dict[key],
                            self._moment2_dict[key],
718 719 720
                            self._beta1_pow_acc_dict[key],
                            self._beta2_pow_acc_dict[key],
                            self._master_weight_dict[key],
721 722
                            self._param_dict[key],
                            self._moment1_dict[key],
723 724 725
                            self._moment2_dict[key],
                            self._beta1_pow_acc_dict[key],
                            self._beta2_pow_acc_dict[key],
726 727 728 729 730 731 732 733 734 735
                            self._master_weight_dict[key],
                            'epsilon',
                            self._epsilon,
                            'beta1',
                            _beta1,
                            'beta2',
                            _beta2,
                            'multi_precision',
                            find_master,
                        )
Z
zhangbo9674 已提交
736 737 738 739 740 741 742 743
                else:
                    inputs = {
                        "Param": self._param_dict[key],
                        "Grad": grad_dict[key],
                        "LearningRate": lr_dict[key],
                        "Moment1": self._moment1_dict[key],
                        "Moment2": self._moment2_dict[key],
                        "Beta1Pow": self._beta1_pow_acc_dict[key],
744
                        "Beta2Pow": self._beta2_pow_acc_dict[key],
Z
zhangbo9674 已提交
745 746 747 748 749 750
                    }
                    outputs = {
                        "ParamOut": self._param_dict[key],
                        "Moment1Out": self._moment1_dict[key],
                        "Moment2Out": self._moment2_dict[key],
                        "Beta1PowOut": self._beta1_pow_acc_dict[key],
751
                        "Beta2PowOut": self._beta2_pow_acc_dict[key],
Z
zhangbo9674 已提交
752 753 754 755
                    }
                    attrs = {
                        "epsilon": self._epsilon,
                        "beta1": _beta1,
756
                        "beta2": _beta2,
Z
zhangbo9674 已提交
757
                    }
758
                    if find_master:
Z
zhangbo9674 已提交
759 760
                        inputs["MasterParam"] = self._master_weight_dict[key]
                        outputs["MasterParamOut"] = self._master_weight_dict[
761 762
                            key
                        ]
763
                        attrs["multi_precision"] = find_master
764 765 766 767 768 769 770
                    target_block.append_op(
                        type="merged_adam",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
Z
zhangbo9674 已提交
771 772
        return None

773 774 775 776
    def _update_param_group(self, parameters):
        self._beta1 = parameters.get('beta1', self._default_dict['beta1'])
        self._beta2 = parameters.get('beta2', self._default_dict['beta2'])
        self._epsilon = parameters.get('epsilon', self._default_dict['epsilon'])
777 778 779
        self._lazy_mode = parameters.get(
            'lazy_mode', self._default_dict['lazy_mode']
        )
780 781
        parameters = parameters.get('params')
        return parameters