adam.py 33.5 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .optimizer import Optimizer
from ..fluid import core
from ..fluid import framework
18
from ..fluid.framework import Variable, in_dygraph_mode
19 20 21 22
from ..fluid import layers
from ..fluid import unique_name
from ..fluid.layer_helper import LayerHelper
import warnings
W
WangXi 已提交
23
from ..fluid.dygraph import base as imperative_base
24
from collections import defaultdict
M
MRXLT 已提交
25

26
import paddle
27
from paddle import _C_ops, _legacy_C_ops
28

29 30
__all__ = []

31
GRAD_TYPES = [int(paddle.float32), int(paddle.float16), int(paddle.bfloat16)]
32

M
MRXLT 已提交
33 34

class Adam(Optimizer):
35
    r"""
M
MRXLT 已提交
36 37 38 39
    The Adam optimizer uses an optimization described at the end
    of section 2 of `Adam paper <https://arxiv.org/abs/1412.6980>`_ ,
    it can dynamically adjusts the learning rate of each parameter using
    the 1st moment estimates and the 2nd moment estimates of the gradient.
40

M
MRXLT 已提交
41 42 43 44 45 46
    The parameter ``param_out`` update rule with gradient ``grad``:

    .. math::

        t & = t + 1

47
        moment\_1\_out & = {\beta}_1 * moment\_1 + (1 - {\beta}_1) * grad
M
MRXLT 已提交
48

49
        moment\_2\_out & = {\beta}_2 * moment\_2 + (1 - {\beta}_2) * grad * grad
M
MRXLT 已提交
50

51 52
        learning\_rate & = learning\_rate * \
                          \frac{\sqrt{1 - {\beta}_2^t}}{1 - {\beta}_1^t}
M
MRXLT 已提交
53

54
        param\_out & = param - learning\_rate * \frac{moment\_1}{\sqrt{moment\_2} + \epsilon}
M
MRXLT 已提交
55 56 57 58

    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

    Args:
59 60
        learning_rate (float|LRScheduler, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a LRScheduler. The default value is 0.001.
M
MRXLT 已提交
61 62 63 64 65 66
        beta1 (float|Tensor, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Tensor with shape [1] and data type as float32.
            The default value is 0.9.
        beta2 (float|Tensor, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Tensor with shape [1] and data type as float32.
            The default value is 0.999.
67 68
        epsilon (float|Tensor, optional): A small float value for numerical stability.
            It should be a float number or a Tensor with shape [1] and data type as float32.
M
MRXLT 已提交
69
            The default value is 1e-08.
70 71 72 73 74 75 76 77 78 79 80 81 82
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``.
            This parameter is required in dygraph mode. And you can specify different options for
            different parameter groups such as the learning rate, weight decay, etc,
            then the parameters are list of dict. Note that the learning_rate in paramter groups
            represents the scale of base learning_rate.
            The default value is None in static mode, at this time all parameters will be updated.
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization.
            It canbe a float value as coeff of L2 regularization or
            :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
            If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already,
            the regularization setting here in optimizer will be ignored for this parameter.
            Otherwise, the regularization setting here in optimizer will take effect.
            Default None, meaning there is no regularization.
83 84 85
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
M
MRXLT 已提交
86 87 88 89 90 91 92 93
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
94
        multi_precision (bool, optional): Whether to use multi-precision during weight updating. Default is false.
Z
zhangbo9674 已提交
95
        use_multi_tensor (bool, optional): Whether to use multi-tensor strategy to update all parameters at once . Default is false.
96 97 98
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
M
MRXLT 已提交
99 100 101 102 103 104 105

    Examples:
        .. code-block:: python

            import paddle

            linear = paddle.nn.Linear(10, 10)
106
            inp = paddle.rand([10,10], dtype="float32")
M
MRXLT 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120
            out = linear(inp)
            loss = paddle.mean(out)
            adam = paddle.optimizer.Adam(learning_rate=0.1,
                    parameters=linear.parameters())
            out.backward()
            adam.step()
            adam.clear_grad()

        .. code-block:: python

            # Adam with beta1/beta2 as Tensor and weight_decay as float
            import paddle

            linear = paddle.nn.Linear(10, 10)
121
            inp = paddle.rand([10,10], dtype="float32")
M
MRXLT 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
            out = linear(inp)
            loss = paddle.mean(out)

            beta1 = paddle.to_tensor([0.9], dtype="float32")
            beta2 = paddle.to_tensor([0.99], dtype="float32")

            adam = paddle.optimizer.Adam(learning_rate=0.1,
                    parameters=linear.parameters(),
                    beta1=beta1,
                    beta2=beta2,
                    weight_decay=0.01)
            out.backward()
            adam.step()
            adam.clear_grad()

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
            adam = paddle.optimizer.Adam(
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1,
                    'beta1': 0.8
                }],
                weight_decay=0.01,
155
                beta1=0.9)
156 157 158 159
            out.backward()
            adam.step()
            adam.clear_grad()

M
MRXLT 已提交
160 161 162 163 164 165
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

166 167 168 169 170 171 172 173 174 175 176 177 178 179
    def __init__(
        self,
        learning_rate=0.001,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-8,
        parameters=None,
        weight_decay=None,
        grad_clip=None,
        lazy_mode=False,
        multi_precision=False,
        use_multi_tensor=False,
        name=None,
    ):
M
MRXLT 已提交
180 181 182 183
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
184 185 186
        if not isinstance(beta1, Variable):
            if not 0 <= beta1 < 1:
                raise ValueError(
187 188
                    "Invaild value of beta1, expect beta1 in [0,1)."
                )
189 190 191
        if not isinstance(beta2, Variable):
            if not 0 <= beta2 < 1:
                raise ValueError(
192 193
                    "Invaild value of beta2, expect beta2 in [0,1)."
                )
194 195 196
        if not isinstance(epsilon, Variable):
            if not 0 <= epsilon:
                raise ValueError(
197 198
                    "Invaild value of epsilon, expect epsilon >= 0."
                )
199
        super().__init__(
200 201 202 203 204 205
            learning_rate=learning_rate,
            parameters=parameters,
            weight_decay=weight_decay,
            grad_clip=grad_clip,
            name=name,
        )
M
MRXLT 已提交
206 207 208 209 210
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
        self._lazy_mode = lazy_mode
211 212
        self._multi_precision = multi_precision
        self._master_weights = {}
213 214 215 216 217 218
        self._default_dict = {
            'beta1': beta1,
            'beta2': beta2,
            'epsilon': epsilon,
            'lazy_mode': lazy_mode,
        }
219

Z
zhangbo9674 已提交
220 221
        self._use_multi_tensor = use_multi_tensor
        if self._use_multi_tensor:
222 223 224 225 226 227 228
            self._param_dict = self._create_multi_tensor_dict()
            self._moment1_dict = self._create_multi_tensor_dict()
            self._moment2_dict = self._create_multi_tensor_dict()
            self._beta1_pow_acc_dict = self._create_multi_tensor_dict()
            self._beta2_pow_acc_dict = self._create_multi_tensor_dict()
            self._master_weight_dict = self._create_multi_tensor_dict()
            self._master_weight_dict['FP32_LODTensor'] = None
Z
zhangbo9674 已提交
229

230
    def _create_master_weight(self, param):
231 232 233 234 235 236 237
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + "_fp32_master"
            var_name = unique_name.generate(var_name)
238 239 240 241 242 243 244
            var = layers.create_global_var(
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
245
            block = self.helper.startup_program.global_block()
246 247 248 249 250 251 252 253 254
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
255
            self._master_weights[param.name] = var
256 257 258 259 260 261 262 263 264 265 266 267
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
268 269
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param.dtype
270 271 272 273
        )
        target_param = (
            self._master_weights[param.name] if find_master else param
        )
274
        target_name = target_param.name
275 276 277 278
        if (
            name not in self._accumulators
            or target_name not in self._accumulators[name]
        ):
279 280
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
281 282 283
                    name, target_name
                )
            )
284 285 286 287
        return self._accumulators[name][target_name]

    def _add_moments_pows(self, p):
        acc_dtype = p.dtype
288
        if self._is_dtype_fp16_or_bf16(acc_dtype):
289 290 291 292 293 294 295
            acc_dtype = core.VarDesc.VarType.FP32
        self._add_accumulator(self._moment1_acc_str, p, dtype=acc_dtype)
        self._add_accumulator(self._moment2_acc_str, p, dtype=acc_dtype)
        self._add_accumulator(
            name=self._beta1_pow_acc_str,
            param=p,
            dtype=acc_dtype,
296 297 298
            fill_value=0.9
            if isinstance(self._beta1, Variable)
            else self._beta1,
299
            shape=[1],
300 301 302
            type=core.VarDesc.VarType.LOD_TENSOR,
            device='cpu',
        )
303 304 305 306
        self._add_accumulator(
            name=self._beta2_pow_acc_str,
            param=p,
            dtype=acc_dtype,
307 308 309
            fill_value=0.999
            if isinstance(self._beta2, Variable)
            else self._beta2,
310
            shape=[1],
311 312 313
            type=core.VarDesc.VarType.LOD_TENSOR,
            device='cpu',
        )
M
MRXLT 已提交
314 315 316

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)
317 318
        if isinstance(parameters, dict):
            parameters = self._update_param_group(parameters)
M
MRXLT 已提交
319 320 321

        # Create accumulator tensors for first and second moments
        for p in parameters:
322
            if self._multi_precision and self._is_dtype_fp16_or_bf16(p.dtype):
323 324 325
                master_p = self._create_master_weight(p)
                self._add_moments_pows(master_p)
                continue
326
            if (
327
                self._is_dtype_fp16_or_bf16(p.dtype)
328 329
                and not self._multi_precision
            ):
330
                warnings.warn(
331
                    "Accumulating with FP16 or BF16 in optimizer can lead to poor accuracy or slow convergence."
332
                    "Consider using multi_precision=True option of the Adam optimizer."
333 334
                )
            self._add_moments_pows(p)
M
MRXLT 已提交
335 336 337

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
338 339
        if isinstance(param_and_grad, dict):
            param_and_grad = self._update_param_group(param_and_grad)
M
MRXLT 已提交
340

341 342 343 344 345 346 347 348 349 350 351 352
        moment1 = self._get_accumulator(
            self._moment1_acc_str, param_and_grad[0]
        )
        moment2 = self._get_accumulator(
            self._moment2_acc_str, param_and_grad[0]
        )
        beta1_pow_acc = self._get_accumulator(
            self._beta1_pow_acc_str, param_and_grad[0]
        )
        beta2_pow_acc = self._get_accumulator(
            self._beta2_pow_acc_str, param_and_grad[0]
        )
353 354
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param_and_grad[0].dtype
355 356 357 358 359 360
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
M
MRXLT 已提交
361 362 363
        lr = self._create_param_lr(param_and_grad)
        # create the adam optimize op

C
chentianyu03 已提交
364 365 366
        if framework.in_dygraph_mode():
            found_inf = self._get_auxiliary_var('found_inf')

367 368 369 370 371 372 373 374 375 376
            _beta1 = (
                self._beta1
                if not isinstance(self._beta1, Variable)
                else self._beta1.numpy().item(0)
            )
            _beta2 = (
                self._beta2
                if not isinstance(self._beta2, Variable)
                else self._beta2.numpy().item(0)
            )
C
chentianyu03 已提交
377

378
            _, _, _, _, _, _ = _C_ops.adam_(
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
                param_and_grad[0],
                param_and_grad[1],
                lr,
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                found_inf,
                _beta1,
                _beta2,
                self._epsilon,
                self._lazy_mode,
                1000,
                find_master,
                False,
            )
C
chentianyu03 已提交
396 397 398 399

            return None

        if framework._in_legacy_dygraph():
400

401 402 403 404 405 406 407 408 409 410
            _beta1 = (
                self._beta1
                if not isinstance(self._beta1, Variable)
                else self._beta1.numpy().item(0)
            )
            _beta2 = (
                self._beta2
                if not isinstance(self._beta2, Variable)
                else self._beta2.numpy().item(0)
            )
411
            _, _, _, _, _, _ = _legacy_C_ops.adam(
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
                param_and_grad[0],
                param_and_grad[1],
                lr,
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                param_and_grad[0],
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                'epsilon',
                self._epsilon,
                'lazy_mode',
                self._lazy_mode,
                'min_row_size_to_use_multithread',
                1000,
                'beta1',
                _beta1,
                'beta2',
                _beta2,
                'multi_precision',
                find_master,
            )
M
MRXLT 已提交
439 440 441 442 443 444 445 446 447 448

            return None

        inputs = {
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "LearningRate": [lr],
            "Moment1": [moment1],
            "Moment2": [moment2],
            "Beta1Pow": [beta1_pow_acc],
449
            "Beta2Pow": [beta2_pow_acc],
M
MRXLT 已提交
450 451 452 453 454 455 456 457 458 459
        }
        outputs = {
            "ParamOut": [param_and_grad[0]],
            "Moment1Out": [moment1],
            "Moment2Out": [moment2],
            "Beta1PowOut": [beta1_pow_acc],
            "Beta2PowOut": [beta2_pow_acc],
        }
        attrs = {
            "lazy_mode": self._lazy_mode,
460
            "min_row_size_to_use_multithread": 1000,
461
            "multi_precision": find_master,
M
MRXLT 已提交
462 463 464 465 466 467 468 469 470 471
        }

        if isinstance(self._beta1, Variable):
            inputs['Beta1Tensor'] = self._beta1
        else:
            attrs['beta1'] = self._beta1
        if isinstance(self._beta2, Variable):
            inputs['Beta2Tensor'] = self._beta2
        else:
            attrs['beta2'] = self._beta2
472 473 474 475
        if isinstance(self._epsilon, Variable):
            inputs['EpsilonTensor'] = self._epsilon
        else:
            attrs['epsilon'] = self._epsilon
M
MRXLT 已提交
476

477 478 479 480
        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

481 482 483 484 485 486 487
        adam_op = block.append_op(
            type=self.type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True,
        )
M
MRXLT 已提交
488 489

        return adam_op
490

W
WangXi 已提交
491
    @imperative_base.no_grad
492 493 494 495
    @framework.dygraph_only
    def step(self):
        """
        Execute the optimizer and update parameters once.
496

497 498 499 500 501 502 503
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
504

505
                a = paddle.rand([2,13], dtype="float32")
506 507
                linear = paddle.nn.Linear(13, 5)
                # This can be any optimizer supported by dygraph.
508
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
509 510 511 512 513 514
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()
        """
515 516 517 518 519 520 521
        if not isinstance(self._parameter_list[0], dict):
            params_grads = []
            for param in self._parameter_list:
                if param.stop_gradient:
                    continue
                if param._grad_ivar() is not None:
                    grad_var = param._grad_ivar()
522
                    if in_dygraph_mode():
523 524 525 526 527
                        if (
                            hasattr(grad_var, "is_selected_rows")
                            and grad_var.is_selected_rows()
                            and self.regularization is not None
                        ):
528 529 530 531
                            raise RuntimeError(
                                "Adam don't support weight_decay with sparse parameters, please set it to None."
                            )
                    else:
532 533 534 535 536
                        if (
                            hasattr(grad_var, "_is_sparse")
                            and grad_var._is_sparse()
                            and self.regularization is not None
                        ):
537 538 539
                            raise RuntimeError(
                                "Adam don't support weight_decay with sparse parameters, please set it to None."
                            )
540 541
                    params_grads.append((param, grad_var))

542
            optimize_ops = self._apply_optimize(
543 544 545 546
                loss=None,
                startup_program=None,
                params_grads=params_grads,
                param_group_idx=0,
547
            )
548 549
        else:
            # optimize parameters in groups
550
            for idx, param_group in enumerate(self._param_groups):
551 552 553 554 555 556 557 558
                params_grads = defaultdict(lambda: list())
                for param in param_group['params']:
                    if param.stop_gradient:
                        continue
                    if param._grad_ivar() is not None:
                        grad_var = param._grad_ivar()
                        params_grads['params'].append((param, grad_var))
                params_grads.update(
559 560 561
                    {k: v for k, v in param_group.items() if k != 'params'}
                )
                self._apply_optimize(
562 563 564 565
                    loss=None,
                    startup_program=None,
                    params_grads=params_grads,
                    param_group_idx=idx,
566
                )
567

568
    def _multi_tensor_init(self, target_block, parameters, param_group_idx):
Z
zhangbo9674 已提交
569
        """
570
        All parameters used for optimizer (such as: parameters, master_weight, velocity_acc for momentum) calculations are grouped into a python list by data type (bfloat16, float16, float32).
Z
zhangbo9674 已提交
571 572 573 574 575 576 577 578 579
        This function will be overridden in the corresponding optimizer file.
        Args:
            target_block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        self._create_accumulators(target_block, parameters)
        for param in parameters:
            moment1 = self._get_accumulator(self._moment1_acc_str, param)
            moment2 = self._get_accumulator(self._moment2_acc_str, param)
580 581 582 583 584 585
            beta1_pow_acc = self._get_accumulator(
                self._beta1_pow_acc_str, param
            )
            beta2_pow_acc = self._get_accumulator(
                self._beta2_pow_acc_str, param
            )
Z
zhangbo9674 已提交
586 587

            if param.dtype == paddle.float32:
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
                self._param_dict['FP32_LODTensor'][param_group_idx].append(
                    param
                )
                self._moment1_dict['FP32_LODTensor'][param_group_idx].append(
                    moment1
                )
                self._moment2_dict['FP32_LODTensor'][param_group_idx].append(
                    moment2
                )
                self._beta1_pow_acc_dict['FP32_LODTensor'][
                    param_group_idx
                ].append(beta1_pow_acc)
                self._beta2_pow_acc_dict['FP32_LODTensor'][
                    param_group_idx
                ].append(beta2_pow_acc)
603
            elif self._is_dtype_fp16_or_bf16(param.dtype):
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
                self._param_dict['FP16_LODTensor'][param_group_idx].append(
                    param
                )
                self._moment1_dict['FP16_LODTensor'][param_group_idx].append(
                    moment1
                )
                self._moment2_dict['FP16_LODTensor'][param_group_idx].append(
                    moment2
                )
                self._beta1_pow_acc_dict['FP16_LODTensor'][
                    param_group_idx
                ].append(beta1_pow_acc)
                self._beta2_pow_acc_dict['FP16_LODTensor'][
                    param_group_idx
                ].append(beta2_pow_acc)
Z
zhangbo9674 已提交
619
                if self._multi_precision:
620 621 622
                    self._master_weight_dict['FP16_LODTensor'][
                        param_group_idx
                    ].append(self._master_weights[param.name])
Z
zhangbo9674 已提交
623 624 625 626
                else:
                    self._master_weight_dict['FP16_LODTensor'] = None
            else:
                raise ValueError(
627
                    "Now multi_tensor_momentum only support fp32, fp16 or bf16 parameters and grad is LOD_TENSOR."
Z
zhangbo9674 已提交
628 629
                )

630
    def _append_optimize_multi_tensor_op(
631 632 633 634
        self,
        target_block,
        parameters_and_grads,
        param_group_idx,
635
    ):
636
        """
Z
zhangbo9674 已提交
637 638 639 640 641 642 643 644
        For Multi Tensor, append optimize merged_operator to block.
        """
        assert isinstance(target_block, framework.Block)

        grad_dict = {'FP32_LODTensor': [], 'FP16_LODTensor': []}
        lr_dict = {'FP32_LODTensor': [], 'FP16_LODTensor': []}

        if isinstance(parameters_and_grads, list):
645 646 647 648 649 650 651 652 653
            if framework.in_dygraph_mode():
                params = [pair[0] for pair in parameters_and_grads]
                grads_types = core.eager.get_grads_types(params)
                for index, tp in enumerate(grads_types):
                    if tp == GRAD_TYPES[0]:
                        grad_dict['FP32_LODTensor'].append(
                            parameters_and_grads[index][1]
                        )
                        lr = self._create_param_lr(parameters_and_grads[index])
Z
zhangbo9674 已提交
654
                        lr_dict['FP32_LODTensor'].append(lr)
655
                    elif tp == GRAD_TYPES[1] or tp == GRAD_TYPES[2]:
656 657 658 659
                        grad_dict['FP16_LODTensor'].append(
                            parameters_and_grads[index][1]
                        )
                        lr = self._create_param_lr(parameters_and_grads[index])
Z
zhangbo9674 已提交
660
                        lr_dict['FP16_LODTensor'].append(lr)
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
            else:
                for param_and_grad in parameters_and_grads:
                    if param_and_grad[1] is None:
                        continue
                    if param_and_grad[0].stop_gradient is False:
                        if (
                            param_and_grad[0].dtype == paddle.float32
                            and param_and_grad[1].type
                            == core.VarDesc.VarType.LOD_TENSOR
                        ):
                            grad_dict['FP32_LODTensor'].append(
                                param_and_grad[1]
                            )
                            lr = self._create_param_lr(param_and_grad)
                            lr_dict['FP32_LODTensor'].append(lr)
                        elif (
677
                            self._is_dtype_fp16_or_bf16(param_and_grad[0].dtype)
678 679 680 681 682 683 684 685
                            and param_and_grad[1].type
                            == core.VarDesc.VarType.LOD_TENSOR
                        ):
                            grad_dict['FP16_LODTensor'].append(
                                param_and_grad[1]
                            )
                            lr = self._create_param_lr(param_and_grad)
                            lr_dict['FP16_LODTensor'].append(lr)
Z
zhangbo9674 已提交
686 687 688 689 690 691 692
        else:
            for param_and_grad in parameters_and_grads['params']:
                if param_and_grad[1] is None:
                    continue
                if param_and_grad[0].stop_gradient is False:
                    param_grad_dict = dict()
                    param_grad_dict['params'] = param_and_grad
693 694 695 696 697 698 699
                    param_grad_dict.update(
                        {
                            k: v
                            for k, v in parameters_and_grads.items()
                            if k != 'params'
                        }
                    )
Z
zhangbo9674 已提交
700
                    param_and_grad = self._update_param_group(param_grad_dict)
701 702 703 704 705
                    if (
                        param_and_grad[0].dtype == paddle.float32
                        and param_and_grad[1].type
                        == core.VarDesc.VarType.LOD_TENSOR
                    ):
Z
zhangbo9674 已提交
706 707 708
                        grad_dict['FP32_LODTensor'].append(param_and_grad[1])
                        lr = self._create_param_lr(param_and_grad)
                        lr_dict['FP32_LODTensor'].append(lr)
709
                    elif (
710
                        self._is_dtype_fp16_or_bf16(param_and_grad[0].dtype)
711 712 713
                        and param_and_grad[1].type
                        == core.VarDesc.VarType.LOD_TENSOR
                    ):
Z
zhangbo9674 已提交
714 715 716 717 718 719
                        grad_dict['FP16_LODTensor'].append(param_and_grad[1])
                        lr = self._create_param_lr(param_and_grad)
                        lr_dict['FP16_LODTensor'].append(lr)

        multi_tensor_list = ['FP32_LODTensor', 'FP16_LODTensor']
        for key in multi_tensor_list:
720
            if len(self._param_dict[key][param_group_idx]) > 0:
721
                find_master = self._multi_precision and key == 'FP16_LODTensor'
Z
zhangbo9674 已提交
722

723 724 725 726 727 728 729 730 731 732
                _beta1 = (
                    self._beta1
                    if not isinstance(self._beta1, Variable)
                    else self._beta1.numpy().item(0)
                )
                _beta2 = (
                    self._beta2
                    if not isinstance(self._beta2, Variable)
                    else self._beta2.numpy().item(0)
                )
Z
zhangbo9674 已提交
733

J
Jiabin Yang 已提交
734
                if framework._non_static_mode():
735 736 737 738 739 740
                    master_weight = self._master_weight_dict[key]
                    master_weight = (
                        master_weight[param_group_idx]
                        if master_weight is not None
                        else None
                    )
741
                    if in_dygraph_mode():
742

743
                        _, _, _, _, _, _ = _C_ops.merged_adam_(
744
                            self._param_dict[key][param_group_idx],
745 746
                            grad_dict[key],
                            lr_dict[key],
747 748 749 750 751
                            self._moment1_dict[key][param_group_idx],
                            self._moment2_dict[key][param_group_idx],
                            self._beta1_pow_acc_dict[key][param_group_idx],
                            self._beta2_pow_acc_dict[key][param_group_idx],
                            master_weight,
752 753 754 755 756 757
                            _beta1,
                            _beta2,
                            self._epsilon,
                            find_master,
                            False,
                        )
758 759
                    else:
                        _, _, _, _, _, _ = _legacy_C_ops.merged_adam(
760
                            self._param_dict[key][param_group_idx],
761 762
                            grad_dict[key],
                            lr_dict[key],
763 764 765 766 767 768 769 770 771 772 773
                            self._moment1_dict[key][param_group_idx],
                            self._moment2_dict[key][param_group_idx],
                            self._beta1_pow_acc_dict[key][param_group_idx],
                            self._beta2_pow_acc_dict[key][param_group_idx],
                            master_weight,
                            self._param_dict[key][param_group_idx],
                            self._moment1_dict[key][param_group_idx],
                            self._moment2_dict[key][param_group_idx],
                            self._beta1_pow_acc_dict[key][param_group_idx],
                            self._beta2_pow_acc_dict[key][param_group_idx],
                            master_weight,
774 775 776 777 778 779 780 781 782
                            'epsilon',
                            self._epsilon,
                            'beta1',
                            _beta1,
                            'beta2',
                            _beta2,
                            'multi_precision',
                            find_master,
                        )
Z
zhangbo9674 已提交
783 784
                else:
                    inputs = {
785
                        "Param": self._param_dict[key][param_group_idx],
Z
zhangbo9674 已提交
786 787
                        "Grad": grad_dict[key],
                        "LearningRate": lr_dict[key],
788 789 790 791 792 793 794 795
                        "Moment1": self._moment1_dict[key][param_group_idx],
                        "Moment2": self._moment2_dict[key][param_group_idx],
                        "Beta1Pow": self._beta1_pow_acc_dict[key][
                            param_group_idx
                        ],
                        "Beta2Pow": self._beta2_pow_acc_dict[key][
                            param_group_idx
                        ],
Z
zhangbo9674 已提交
796 797
                    }
                    outputs = {
798 799 800 801 802 803 804 805 806
                        "ParamOut": self._param_dict[key][param_group_idx],
                        "Moment1Out": self._moment1_dict[key][param_group_idx],
                        "Moment2Out": self._moment2_dict[key][param_group_idx],
                        "Beta1PowOut": self._beta1_pow_acc_dict[key][
                            param_group_idx
                        ],
                        "Beta2PowOut": self._beta2_pow_acc_dict[key][
                            param_group_idx
                        ],
Z
zhangbo9674 已提交
807 808 809 810
                    }
                    attrs = {
                        "epsilon": self._epsilon,
                        "beta1": _beta1,
811
                        "beta2": _beta2,
Z
zhangbo9674 已提交
812
                    }
813
                    if find_master:
814 815 816
                        inputs["MasterParam"] = self._master_weight_dict[key][
                            param_group_idx
                        ]
Z
zhangbo9674 已提交
817
                        outputs["MasterParamOut"] = self._master_weight_dict[
818
                            key
819
                        ][param_group_idx]
820
                        attrs["multi_precision"] = find_master
821 822 823 824 825 826 827
                    target_block.append_op(
                        type="merged_adam",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
Z
zhangbo9674 已提交
828 829
        return None

830 831 832 833
    def _update_param_group(self, parameters):
        self._beta1 = parameters.get('beta1', self._default_dict['beta1'])
        self._beta2 = parameters.get('beta2', self._default_dict['beta2'])
        self._epsilon = parameters.get('epsilon', self._default_dict['epsilon'])
834 835 836
        self._lazy_mode = parameters.get(
            'lazy_mode', self._default_dict['lazy_mode']
        )
837 838
        parameters = parameters.get('params')
        return parameters