Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
8cbf79a3
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8cbf79a3
编写于
4月 13, 2022
作者:
C
chentianyu03
提交者:
GitHub
4月 13, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Yaml]Add adam yaml (#41561)
* add adam yaml * add adam final_state api * add adam_impl
上级
a4d4c116
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
241 addition
and
1 deletion
+241
-1
paddle/phi/api/lib/api_custom_impl.cc
paddle/phi/api/lib/api_custom_impl.cc
+181
-0
paddle/phi/api/lib/api_custom_impl.h
paddle/phi/api/lib/api_custom_impl.h
+18
-0
python/paddle/fluid/tests/unittests/test_adam_op.py
python/paddle/fluid/tests/unittests/test_adam_op.py
+13
-0
python/paddle/fluid/tests/unittests/test_optimizer.py
python/paddle/fluid/tests/unittests/test_optimizer.py
+6
-0
python/paddle/optimizer/adam.py
python/paddle/optimizer/adam.py
+17
-1
python/paddle/utils/code_gen/api.yaml
python/paddle/utils/code_gen/api.yaml
+6
-0
未找到文件。
paddle/phi/api/lib/api_custom_impl.cc
浏览文件 @
8cbf79a3
...
...
@@ -33,6 +33,187 @@ limitations under the License. */
namespace
paddle
{
namespace
experimental
{
std
::
tuple
<
Tensor
,
Tensor
,
Tensor
,
Tensor
,
Tensor
,
Tensor
>
adam_impl
(
const
Tensor
&
param
,
const
Tensor
&
grad
,
const
Tensor
&
learning_rate
,
const
Tensor
&
moment1
,
const
Tensor
&
moment2
,
const
Tensor
&
beta1_pow
,
const
Tensor
&
beta2_pow
,
paddle
::
optional
<
const
Tensor
&>
master_param
,
paddle
::
optional
<
const
Tensor
&>
skip_update
,
const
Scalar
&
beta1
,
const
Scalar
&
beta2
,
const
Scalar
&
epsilon
,
bool
lazy_mode
,
int64_t
min_row_size_to_use_multithread
,
bool
multi_precision
,
bool
use_global_beta_pow
)
{
Backend
kernel_backend
=
Backend
::
UNDEFINED
;
DataLayout
kernel_layout
=
DataLayout
::
UNDEFINED
;
DataType
kernel_data_type
=
DataType
::
UNDEFINED
;
if
(
kernel_backend
==
Backend
::
UNDEFINED
||
kernel_layout
==
DataLayout
::
UNDEFINED
||
kernel_data_type
==
DataType
::
UNDEFINED
)
{
auto
kernel_key_set
=
ParseKernelKeyByInputArgs
(
param
);
auto
kernel_key
=
kernel_key_set
.
GetHighestPriorityKernelKey
();
if
(
kernel_backend
==
Backend
::
UNDEFINED
)
{
kernel_backend
=
kernel_key
.
backend
();
}
if
(
kernel_layout
==
DataLayout
::
UNDEFINED
)
{
kernel_layout
=
kernel_key
.
layout
();
}
if
(
kernel_data_type
==
DataType
::
UNDEFINED
)
{
kernel_data_type
=
kernel_key
.
dtype
();
}
}
std
::
string
kernel_name
=
"adam"
;
const
auto
&
kernel
=
phi
::
KernelFactory
::
Instance
().
SelectKernelOrThrowError
(
kernel_name
,
{
kernel_backend
,
kernel_layout
,
kernel_data_type
});
VLOG
(
6
)
<<
kernel_name
<<
" API kernel key: ["
<<
kernel_backend
<<
", "
<<
kernel_layout
<<
", "
<<
kernel_data_type
<<
"]"
;
VLOG
(
6
)
<<
kernel_name
<<
" API kernel: "
<<
kernel
;
auto
*
dev_ctx
=
GetDeviceContextByBackend
(
kernel_backend
);
auto
input_param
=
PrepareData
(
param
,
kernel
.
InputAt
(
0
),
{});
auto
input_grad
=
PrepareData
(
grad
,
kernel
.
InputAt
(
1
),
{});
auto
input_lr
=
PrepareData
(
learning_rate
,
kernel
.
InputAt
(
2
),
{});
auto
input_moment1
=
PrepareData
(
moment1
,
kernel
.
InputAt
(
3
),
{});
auto
input_moment2
=
PrepareData
(
moment2
,
kernel
.
InputAt
(
4
),
{});
auto
input_beta1_pow
=
PrepareData
(
beta1_pow
,
kernel
.
InputAt
(
5
),
{});
auto
input_beta2_pow
=
PrepareData
(
beta2_pow
,
kernel
.
InputAt
(
6
),
{});
paddle
::
optional
<
const
phi
::
DenseTensor
&>
input_master_param
(
paddle
::
none
);
auto
input_master_param_ptr
=
PrepareData
(
master_param
,
kernel
.
InputAt
(
7
),
{});
paddle
::
optional
<
const
phi
::
DenseTensor
&>
input_skip_update
(
paddle
::
none
);
auto
input_skip_update_ptr
=
PrepareData
(
skip_update
,
kernel
.
InputAt
(
8
),
{});
std
::
tuple
<
Tensor
,
Tensor
,
Tensor
,
Tensor
,
Tensor
,
Tensor
>
api_output
;
auto
kernel_out_0
=
input_param
.
get
();
auto
kernel_out_1
=
input_moment1
.
get
();
auto
kernel_out_2
=
input_moment2
.
get
();
auto
kernel_out_3
=
input_beta1_pow
.
get
();
auto
kernel_out_4
=
input_beta2_pow
.
get
();
phi
::
DenseTensor
*
kernel_out_5
=
nullptr
;
if
(
input_master_param_ptr
)
{
input_master_param
=
paddle
::
make_optional
<
const
phi
::
DenseTensor
&>
(
*
input_master_param_ptr
);
kernel_out_5
=
paddle
::
make_optional
<
phi
::
DenseTensor
&>
(
*
input_master_param_ptr
)
.
get_ptr
();
}
if
(
input_skip_update_ptr
)
{
input_skip_update
=
paddle
::
make_optional
<
const
phi
::
DenseTensor
&>
(
*
input_skip_update_ptr
);
}
paddle
::
optional
<
const
phi
::
MetaTensor
&>
input_meta_ref_master_param
(
paddle
::
none
);
phi
::
DenseTensor
dt
;
phi
::
MetaTensor
input_meta_tmp_master_param
(
dt
);
if
(
input_master_param_ptr
)
{
input_meta_tmp_master_param
.
set_dtype
(
input_master_param_ptr
->
dtype
());
input_meta_tmp_master_param
.
set_dims
(
input_master_param_ptr
->
dims
());
input_meta_tmp_master_param
.
set_layout
(
input_master_param_ptr
->
layout
());
input_meta_ref_master_param
=
input_meta_tmp_master_param
;
}
paddle
::
optional
<
const
phi
::
MetaTensor
&>
input_meta_ref_skip_update
(
paddle
::
none
);
phi
::
DenseTensor
dt1
;
phi
::
MetaTensor
input_meta_tmp_skip_update
(
dt1
);
if
(
input_skip_update_ptr
)
{
input_meta_tmp_skip_update
.
set_dtype
(
input_skip_update_ptr
->
dtype
());
input_meta_tmp_skip_update
.
set_dims
(
input_skip_update_ptr
->
dims
());
input_meta_tmp_skip_update
.
set_layout
(
input_skip_update_ptr
->
layout
());
input_meta_ref_skip_update
=
input_meta_tmp_skip_update
;
}
phi
::
MetaTensor
meta_out_0
(
kernel_out_0
);
phi
::
MetaTensor
meta_out_1
(
kernel_out_1
);
phi
::
MetaTensor
meta_out_2
(
kernel_out_2
);
phi
::
MetaTensor
meta_out_3
(
kernel_out_3
);
phi
::
MetaTensor
meta_out_4
(
kernel_out_4
);
phi
::
MetaTensor
meta_out_5
(
kernel_out_5
);
phi
::
AdamInferMeta
(
MakeMetaTensor
(
*
input_param
),
MakeMetaTensor
(
*
input_grad
),
MakeMetaTensor
(
*
input_lr
),
MakeMetaTensor
(
*
input_moment1
),
MakeMetaTensor
(
*
input_moment2
),
MakeMetaTensor
(
*
input_beta1_pow
),
MakeMetaTensor
(
*
input_beta2_pow
),
input_meta_ref_master_param
,
input_meta_ref_skip_update
,
beta1
,
beta2
,
epsilon
,
lazy_mode
,
min_row_size_to_use_multithread
,
multi_precision
,
use_global_beta_pow
,
&
meta_out_0
,
&
meta_out_1
,
&
meta_out_2
,
&
meta_out_3
,
&
meta_out_4
,
&
meta_out_5
);
using
kernel_signature
=
void
(
*
)(
const
platform
::
DeviceContext
&
,
const
phi
::
DenseTensor
&
,
const
phi
::
DenseTensor
&
,
const
phi
::
DenseTensor
&
,
const
phi
::
DenseTensor
&
,
const
phi
::
DenseTensor
&
,
const
phi
::
DenseTensor
&
,
const
phi
::
DenseTensor
&
,
paddle
::
optional
<
const
phi
::
DenseTensor
&>
,
paddle
::
optional
<
const
phi
::
DenseTensor
&>
,
const
Scalar
&
,
const
Scalar
&
,
const
Scalar
&
,
bool
,
int64_t
,
bool
,
bool
,
phi
::
DenseTensor
*
,
phi
::
DenseTensor
*
,
phi
::
DenseTensor
*
,
phi
::
DenseTensor
*
,
phi
::
DenseTensor
*
,
phi
::
DenseTensor
*
);
auto
*
kernel_fn
=
kernel
.
GetVariadicKernelFn
<
kernel_signature
>
();
(
*
kernel_fn
)(
*
dev_ctx
,
*
input_param
,
*
input_grad
,
*
input_lr
,
*
input_moment1
,
*
input_moment2
,
*
input_beta1_pow
,
*
input_beta2_pow
,
input_master_param
,
input_skip_update
,
beta1
,
beta2
,
epsilon
,
lazy_mode
,
min_row_size_to_use_multithread
,
multi_precision
,
use_global_beta_pow
,
kernel_out_0
,
kernel_out_1
,
kernel_out_2
,
kernel_out_3
,
kernel_out_4
,
kernel_out_5
);
return
api_output
;
}
////////////////// Forward api impls //////////////////////
Tensor
conv2d_impl
(
const
Tensor
&
input
,
...
...
paddle/phi/api/lib/api_custom_impl.h
浏览文件 @
8cbf79a3
...
...
@@ -30,6 +30,24 @@ namespace experimental {
////////////////// Forward api impls //////////////////////
std
::
tuple
<
Tensor
,
Tensor
,
Tensor
,
Tensor
,
Tensor
,
Tensor
>
adam_impl
(
const
Tensor
&
param
,
const
Tensor
&
grad
,
const
Tensor
&
learning_rate
,
const
Tensor
&
moment1
,
const
Tensor
&
moment2
,
const
Tensor
&
beta1_pow
,
const
Tensor
&
beta2_pow
,
paddle
::
optional
<
const
Tensor
&>
master_param
,
paddle
::
optional
<
const
Tensor
&>
skip_update
,
const
Scalar
&
beta1
,
const
Scalar
&
beta2
,
const
Scalar
&
epsilon
,
bool
lazy_mode
,
int64_t
min_row_size_to_use_multithread
,
bool
multi_precision
,
bool
use_global_beta_pow
);
std
::
tuple
<
Tensor
,
Tensor
,
Tensor
,
Tensor
,
Tensor
,
Tensor
>
batch_norm_impl
(
const
Tensor
&
x
,
const
Tensor
&
scale
,
...
...
python/paddle/fluid/tests/unittests/test_adam_op.py
浏览文件 @
8cbf79a3
...
...
@@ -21,6 +21,7 @@ from paddle.fluid import core
from
paddle.fluid.op
import
Operator
import
paddle.fluid
as
fluid
import
paddle
from
paddle.fluid.framework
import
_test_eager_guard
class
TestAdamOp1
(
OpTest
):
...
...
@@ -189,6 +190,10 @@ class TestAdamOpMultipleSteps(OpTest):
self
.
inputs
[
'Grad'
]
=
np
.
random
.
uniform
(
-
1
,
1
,
(
102
,
105
)).
astype
(
"float32"
)
def
test_api_eager_dygraph
(
self
):
with
_test_eager_guard
():
self
.
test_check_output
()
def
adam_step
(
inputs
,
attributes
):
'''
...
...
@@ -732,6 +737,14 @@ class TestAdamOpV2(unittest.TestCase):
adam
.
step
()
paddle
.
enable_static
()
def
test_api_eager_dygraph
(
self
):
with
_test_eager_guard
():
self
.
test_adam_op_dygraph
()
self
.
test_adam_op_with_state_dict
()
self
.
test_adam_with_grad_clip
()
self
.
test_adam_op_with_set_lr
()
self
.
test_adam_op_with_sparse_input_and_weight_decay
()
class
TestAdamOptimizer
(
unittest
.
TestCase
):
def
_test
(
self
,
...
...
python/paddle/fluid/tests/unittests/test_optimizer.py
浏览文件 @
8cbf79a3
...
...
@@ -24,6 +24,7 @@ import paddle.compat as cpt
import
numpy
as
np
from
paddle.fluid.backward
import
append_backward
from
paddle.fluid.framework
import
Program
,
program_guard
,
convert_np_dtype_to_dtype_
from
paddle.fluid.framework
import
_test_eager_guard
import
paddle
from
paddle.io
import
Dataset
import
numpy
...
...
@@ -1114,6 +1115,11 @@ class TestOptimizerDtype(unittest.TestCase):
def
test_float32
(
self
):
self
.
check_with_dtype
(
'float32'
)
def
test_api_eager_dygraph
(
self
):
with
_test_eager_guard
():
self
.
test_float64
()
self
.
test_float32
()
class
TestMasterWeightSaveForFP16
(
unittest
.
TestCase
):
'''
...
...
python/paddle/optimizer/adam.py
浏览文件 @
8cbf79a3
...
...
@@ -336,7 +336,23 @@ class Adam(Optimizer):
lr
=
self
.
_create_param_lr
(
param_and_grad
)
# create the adam optimize op
if
framework
.
_non_static_mode
():
if
framework
.
in_dygraph_mode
():
found_inf
=
self
.
_get_auxiliary_var
(
'found_inf'
)
_beta1
=
self
.
_beta1
if
not
isinstance
(
self
.
_beta1
,
Variable
)
else
self
.
_beta1
.
numpy
().
item
(
0
)
_beta2
=
self
.
_beta2
if
not
isinstance
(
self
.
_beta2
,
Variable
)
else
self
.
_beta2
.
numpy
().
item
(
0
)
_
,
_
,
_
,
_
,
_
,
_
=
_C_ops
.
final_state_adam
(
param_and_grad
[
0
],
param_and_grad
[
1
],
lr
,
moment1
,
moment2
,
beta1_pow_acc
,
beta2_pow_acc
,
master_weight
,
found_inf
,
_beta1
,
_beta2
,
self
.
_epsilon
,
self
.
_lazy_mode
,
1000
,
find_master
,
False
)
return
None
if
framework
.
_in_legacy_dygraph
():
_beta1
=
self
.
_beta1
if
not
isinstance
(
self
.
_beta1
,
Variable
)
else
self
.
_beta1
.
numpy
().
item
(
0
)
...
...
python/paddle/utils/code_gen/api.yaml
浏览文件 @
8cbf79a3
...
...
@@ -45,6 +45,12 @@
kernel
:
func
:
adadelta
-
api
:
adam
args
:
(Tensor param, Tensor grad, Tensor learning_rate, Tensor moment1, Tensor moment2, Tensor beta1_pow, Tensor beta2_pow, Tensor master_param, Tensor skip_update, Scalar beta1, Scalar beta2, Scalar epsilon, bool lazy_mode, int64_t min_row_size_to_use_multithread, bool multi_precision, bool use_global_beta_pow)
output
:
Tensor(param_out), Tensor(moment1_out), Tensor(moment2_out), Tensor(beta1_pow_out), Tensor(beta2_pow_out), Tensor(master_param_outs)
optional
:
master_param, skip_update
invoke
:
adam_impl(param, grad, learning_rate, moment1, moment2, beta1_pow, beta2_pow, master_param, skip_update, beta1, beta2, epsilon, lazy_mode, min_row_size_to_use_multithread, multi_precision, use_global_beta_pow)
-
api
:
adamax
args
:
(Tensor param, Tensor grad, Tensor learning_rate, Tensor moment, Tensor inf_norm, Tensor beta1_pow, float beta1, float beta2, float epsilon)
output
:
Tensor(param_out), Tensor(avg_squared_grad_out), Tensor(avg_squared_update_out)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录