adam.py 29.4 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .optimizer import Optimizer
from ..fluid import core
from ..fluid import framework
18
from ..fluid.framework import Variable, in_dygraph_mode
19 20 21 22
from ..fluid import layers
from ..fluid import unique_name
from ..fluid.layer_helper import LayerHelper
import warnings
W
WangXi 已提交
23
from ..fluid.dygraph import base as imperative_base
24
from collections import defaultdict
M
MRXLT 已提交
25

26
import paddle
27
from paddle import _C_ops, _legacy_C_ops
28

29 30
__all__ = []

M
MRXLT 已提交
31 32

class Adam(Optimizer):
33
    r"""
M
MRXLT 已提交
34 35 36 37
    The Adam optimizer uses an optimization described at the end
    of section 2 of `Adam paper <https://arxiv.org/abs/1412.6980>`_ ,
    it can dynamically adjusts the learning rate of each parameter using
    the 1st moment estimates and the 2nd moment estimates of the gradient.
38

M
MRXLT 已提交
39 40 41 42 43 44
    The parameter ``param_out`` update rule with gradient ``grad``:

    .. math::

        t & = t + 1

45
        moment\_1\_out & = {\beta}_1 * moment\_1 + (1 - {\beta}_1) * grad
M
MRXLT 已提交
46

47
        moment\_2\_out & = {\beta}_2 * moment\_2 + (1 - {\beta}_2) * grad * grad
M
MRXLT 已提交
48

49 50
        learning\_rate & = learning\_rate * \
                          \frac{\sqrt{1 - {\beta}_2^t}}{1 - {\beta}_1^t}
M
MRXLT 已提交
51

52
        param\_out & = param - learning\_rate * \frac{moment\_1}{\sqrt{moment\_2} + \epsilon}
M
MRXLT 已提交
53 54 55 56

    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

    Args:
57 58
        learning_rate (float|LRScheduler, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a LRScheduler. The default value is 0.001.
M
MRXLT 已提交
59 60 61 62 63 64
        beta1 (float|Tensor, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Tensor with shape [1] and data type as float32.
            The default value is 0.9.
        beta2 (float|Tensor, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Tensor with shape [1] and data type as float32.
            The default value is 0.999.
65 66
        epsilon (float|Tensor, optional): A small float value for numerical stability.
            It should be a float number or a Tensor with shape [1] and data type as float32.
M
MRXLT 已提交
67
            The default value is 1e-08.
68 69 70 71 72 73 74 75 76 77 78 79 80
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``.
            This parameter is required in dygraph mode. And you can specify different options for
            different parameter groups such as the learning rate, weight decay, etc,
            then the parameters are list of dict. Note that the learning_rate in paramter groups
            represents the scale of base learning_rate.
            The default value is None in static mode, at this time all parameters will be updated.
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization.
            It canbe a float value as coeff of L2 regularization or
            :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
            If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already,
            the regularization setting here in optimizer will be ignored for this parameter.
            Otherwise, the regularization setting here in optimizer will take effect.
            Default None, meaning there is no regularization.
81 82 83
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
M
MRXLT 已提交
84 85 86 87 88 89 90 91
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
92
        multi_precision (bool, optional): Whether to use multi-precision during weight updating. Default is false.
Z
zhangbo9674 已提交
93
        use_multi_tensor (bool, optional): Whether to use multi-tensor strategy to update all parameters at once . Default is false.
94 95 96
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
M
MRXLT 已提交
97 98 99 100 101 102 103

    Examples:
        .. code-block:: python

            import paddle

            linear = paddle.nn.Linear(10, 10)
104
            inp = paddle.rand([10,10], dtype="float32")
M
MRXLT 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118
            out = linear(inp)
            loss = paddle.mean(out)
            adam = paddle.optimizer.Adam(learning_rate=0.1,
                    parameters=linear.parameters())
            out.backward()
            adam.step()
            adam.clear_grad()

        .. code-block:: python

            # Adam with beta1/beta2 as Tensor and weight_decay as float
            import paddle

            linear = paddle.nn.Linear(10, 10)
119
            inp = paddle.rand([10,10], dtype="float32")
M
MRXLT 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
            out = linear(inp)
            loss = paddle.mean(out)

            beta1 = paddle.to_tensor([0.9], dtype="float32")
            beta2 = paddle.to_tensor([0.99], dtype="float32")

            adam = paddle.optimizer.Adam(learning_rate=0.1,
                    parameters=linear.parameters(),
                    beta1=beta1,
                    beta2=beta2,
                    weight_decay=0.01)
            out.backward()
            adam.step()
            adam.clear_grad()

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
            adam = paddle.optimizer.Adam(
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1,
                    'beta1': 0.8
                }],
                weight_decay=0.01,
153
                beta1=0.9)
154 155 156 157
            out.backward()
            adam.step()
            adam.clear_grad()

M
MRXLT 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-8,
                 parameters=None,
                 weight_decay=None,
                 grad_clip=None,
172
                 lazy_mode=False,
173
                 multi_precision=False,
Z
zhangbo9674 已提交
174
                 use_multi_tensor=False,
175
                 name=None):
M
MRXLT 已提交
176 177 178 179
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
180 181 182 183 184 185 186 187 188 189 190 191
        if not isinstance(beta1, Variable):
            if not 0 <= beta1 < 1:
                raise ValueError(
                    "Invaild value of beta1, expect beta1 in [0,1).")
        if not isinstance(beta2, Variable):
            if not 0 <= beta2 < 1:
                raise ValueError(
                    "Invaild value of beta2, expect beta2 in [0,1).")
        if not isinstance(epsilon, Variable):
            if not 0 <= epsilon:
                raise ValueError(
                    "Invaild value of epsilon, expect epsilon >= 0.")
192 193 194 195 196
        super(Adam, self).__init__(learning_rate=learning_rate,
                                   parameters=parameters,
                                   weight_decay=weight_decay,
                                   grad_clip=grad_clip,
                                   name=name)
M
MRXLT 已提交
197 198 199 200 201
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
        self._lazy_mode = lazy_mode
202 203
        self._multi_precision = multi_precision
        self._master_weights = {}
204 205 206 207 208 209
        self._default_dict = {
            'beta1': beta1,
            'beta2': beta2,
            'epsilon': epsilon,
            'lazy_mode': lazy_mode,
        }
210

Z
zhangbo9674 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
        self._use_multi_tensor = use_multi_tensor
        if self._use_multi_tensor:
            self._param_dict = {'FP32_LODTensor': [], 'FP16_LODTensor': []}
            self._moment1_dict = {'FP32_LODTensor': [], 'FP16_LODTensor': []}
            self._moment2_dict = {'FP32_LODTensor': [], 'FP16_LODTensor': []}
            self._beta1_pow_acc_dict = {
                'FP32_LODTensor': [],
                'FP16_LODTensor': []
            }
            self._beta2_pow_acc_dict = {
                'FP32_LODTensor': [],
                'FP16_LODTensor': []
            }
            self._master_weight_dict = {
                'FP32_LODTensor': None,
                'FP16_LODTensor': []
            }

229
    def _create_master_weight(self, param):
230 231 232 233 234 235 236
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + "_fp32_master"
            var_name = unique_name.generate(var_name)
237 238 239 240 241
            var = layers.create_global_var(name=var_name,
                                           shape=param.shape,
                                           value=0,
                                           dtype='float32',
                                           persistable=True)
242
            block = self.helper.startup_program.global_block()
243 244 245 246 247 248 249
            block.append_op(type="cast",
                            inputs={"X": [param]},
                            outputs={"Out": [var]},
                            attrs={
                                "in_dtype": param.dtype,
                                "out_dtype": core.VarDesc.VarType.FP32
                            })
250
            self._master_weights[param.name] = var
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
        find_master = self._multi_precision and param.dtype == core.VarDesc.VarType.FP16
        target_param = self._master_weights[
            param.name] if find_master else param
        target_name = target_param.name
267 268 269 270 271
        if (name not in self._accumulators
                or target_name not in self._accumulators[name]):
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
                    name, target_name))
272 273 274 275
        return self._accumulators[name][target_name]

    def _add_moments_pows(self, p):
        acc_dtype = p.dtype
276
        if acc_dtype == core.VarDesc.VarType.FP16 or acc_dtype == core.VarDesc.VarType.BF16:
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
            acc_dtype = core.VarDesc.VarType.FP32
        self._add_accumulator(self._moment1_acc_str, p, dtype=acc_dtype)
        self._add_accumulator(self._moment2_acc_str, p, dtype=acc_dtype)
        self._add_accumulator(
            name=self._beta1_pow_acc_str,
            param=p,
            dtype=acc_dtype,
            fill_value=0.9 if isinstance(self._beta1, Variable) \
                    else self._beta1,
            shape=[1],
            type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
        self._add_accumulator(
            name=self._beta2_pow_acc_str,
            param=p,
            dtype=acc_dtype,
            fill_value=0.999 if isinstance(self._beta2, Variable) \
                    else self._beta2,
            shape=[1],
            type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
M
MRXLT 已提交
296 297 298

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)
299 300
        if isinstance(parameters, dict):
            parameters = self._update_param_group(parameters)
M
MRXLT 已提交
301 302 303

        # Create accumulator tensors for first and second moments
        for p in parameters:
304 305 306 307 308 309 310
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                self._add_moments_pows(master_p)
                continue
            if p.dtype == core.VarDesc.VarType.FP16 and not self._multi_precision:
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
311
                    "Consider using multi_precision=True option of the Adam optimizer."
312 313
                )
            self._add_moments_pows(p)
M
MRXLT 已提交
314 315 316

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
317 318
        if isinstance(param_and_grad, dict):
            param_and_grad = self._update_param_group(param_and_grad)
M
MRXLT 已提交
319 320 321 322 323 324 325 326 327

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])
328 329 330 331
        find_master = self._multi_precision and param_and_grad[
            0].dtype == core.VarDesc.VarType.FP16
        master_weight = (self._master_weights[param_and_grad[0].name]
                         if find_master else None)
M
MRXLT 已提交
332 333 334
        lr = self._create_param_lr(param_and_grad)
        # create the adam optimize op

C
chentianyu03 已提交
335 336 337 338 339 340 341 342
        if framework.in_dygraph_mode():
            found_inf = self._get_auxiliary_var('found_inf')

            _beta1 = self._beta1 if not isinstance(
                self._beta1, Variable) else self._beta1.numpy().item(0)
            _beta2 = self._beta2 if not isinstance(
                self._beta2, Variable) else self._beta2.numpy().item(0)

343
            _, _, _, _, _, _ = _C_ops.adam_(
C
chentianyu03 已提交
344 345 346 347 348 349 350 351
                param_and_grad[0], param_and_grad[1], lr, moment1, moment2,
                beta1_pow_acc, beta2_pow_acc, master_weight, found_inf, _beta1,
                _beta2, self._epsilon, self._lazy_mode, 1000, find_master,
                False)

            return None

        if framework._in_legacy_dygraph():
352

M
MRXLT 已提交
353 354 355 356
            _beta1 = self._beta1 if not isinstance(
                self._beta1, Variable) else self._beta1.numpy().item(0)
            _beta2 = self._beta2 if not isinstance(
                self._beta2, Variable) else self._beta2.numpy().item(0)
357
            _, _, _, _, _, _ = _legacy_C_ops.adam(
M
MRXLT 已提交
358
                param_and_grad[0], param_and_grad[1], lr, moment1, moment2,
359 360 361 362 363
                beta1_pow_acc, beta2_pow_acc, master_weight, param_and_grad[0],
                moment1, moment2, beta1_pow_acc, beta2_pow_acc, master_weight,
                'epsilon', self._epsilon, 'lazy_mode', self._lazy_mode,
                'min_row_size_to_use_multithread', 1000, 'beta1', _beta1,
                'beta2', _beta2, 'multi_precision', find_master)
M
MRXLT 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384

            return None

        inputs = {
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "LearningRate": [lr],
            "Moment1": [moment1],
            "Moment2": [moment2],
            "Beta1Pow": [beta1_pow_acc],
            "Beta2Pow": [beta2_pow_acc]
        }
        outputs = {
            "ParamOut": [param_and_grad[0]],
            "Moment1Out": [moment1],
            "Moment2Out": [moment2],
            "Beta1PowOut": [beta1_pow_acc],
            "Beta2PowOut": [beta2_pow_acc],
        }
        attrs = {
            "lazy_mode": self._lazy_mode,
385 386
            "min_row_size_to_use_multithread": 1000,
            "multi_precision": find_master
M
MRXLT 已提交
387 388 389 390 391 392 393 394 395 396
        }

        if isinstance(self._beta1, Variable):
            inputs['Beta1Tensor'] = self._beta1
        else:
            attrs['beta1'] = self._beta1
        if isinstance(self._beta2, Variable):
            inputs['Beta2Tensor'] = self._beta2
        else:
            attrs['beta2'] = self._beta2
397 398 399 400
        if isinstance(self._epsilon, Variable):
            inputs['EpsilonTensor'] = self._epsilon
        else:
            attrs['epsilon'] = self._epsilon
M
MRXLT 已提交
401

402 403 404 405
        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

406 407 408 409 410
        adam_op = block.append_op(type=self.type,
                                  inputs=inputs,
                                  outputs=outputs,
                                  attrs=attrs,
                                  stop_gradient=True)
M
MRXLT 已提交
411 412

        return adam_op
413

W
WangXi 已提交
414
    @imperative_base.no_grad
415 416 417 418
    @framework.dygraph_only
    def step(self):
        """
        Execute the optimizer and update parameters once.
419

420 421 422 423 424 425 426
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
427

428
                a = paddle.rand([2,13], dtype="float32")
429 430
                linear = paddle.nn.Linear(13, 5)
                # This can be any optimizer supported by dygraph.
431
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
432 433 434 435 436 437
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()
        """
438 439 440 441 442 443 444
        if not isinstance(self._parameter_list[0], dict):
            params_grads = []
            for param in self._parameter_list:
                if param.stop_gradient:
                    continue
                if param._grad_ivar() is not None:
                    grad_var = param._grad_ivar()
445 446 447 448 449 450 451 452
                    if in_dygraph_mode():
                        if hasattr(grad_var, "is_selected_rows"
                                   ) and grad_var.is_selected_rows(
                                   ) and self.regularization is not None:
                            raise RuntimeError(
                                "Adam don't support weight_decay with sparse parameters, please set it to None."
                            )
                    else:
453 454 455
                        if hasattr(
                                grad_var, "_is_sparse") and grad_var._is_sparse(
                                ) and self.regularization is not None:
456 457 458
                            raise RuntimeError(
                                "Adam don't support weight_decay with sparse parameters, please set it to None."
                            )
459 460
                    params_grads.append((param, grad_var))

461 462 463
            optimize_ops = self._apply_optimize(loss=None,
                                                startup_program=None,
                                                params_grads=params_grads)
464 465 466 467 468 469 470 471 472 473 474 475 476
        else:
            # optimize parameters in groups
            for param_group in self._param_groups:
                params_grads = defaultdict(lambda: list())
                for param in param_group['params']:
                    if param.stop_gradient:
                        continue
                    if param._grad_ivar() is not None:
                        grad_var = param._grad_ivar()
                        params_grads['params'].append((param, grad_var))
                params_grads.update(
                    {k: v
                     for k, v in param_group.items() if k != 'params'})
477 478 479
                self._apply_optimize(loss=None,
                                     startup_program=None,
                                     params_grads=params_grads)
480

Z
zhangbo9674 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
    def _multi_tensor_init(self, target_block, parameters):
        """
        All parameters used for optimizer (such as: parameters, master_weight, velocity_acc for momentum) calculations are grouped into a python list by data type (float16, float32).
        This function will be overridden in the corresponding optimizer file.
        Args:
            target_block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        self._create_accumulators(target_block, parameters)
        for param in parameters:
            moment1 = self._get_accumulator(self._moment1_acc_str, param)
            moment2 = self._get_accumulator(self._moment2_acc_str, param)
            beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                  param)
            beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                                  param)

            if param.dtype == paddle.float32:
                self._param_dict['FP32_LODTensor'].append(param)
                self._moment1_dict['FP32_LODTensor'].append(moment1)
                self._moment2_dict['FP32_LODTensor'].append(moment2)
                self._beta1_pow_acc_dict['FP32_LODTensor'].append(beta1_pow_acc)
                self._beta2_pow_acc_dict['FP32_LODTensor'].append(beta2_pow_acc)
            elif param.dtype == paddle.float16:
                self._param_dict['FP16_LODTensor'].append(param)
                self._moment1_dict['FP16_LODTensor'].append(moment1)
                self._moment2_dict['FP16_LODTensor'].append(moment2)
                self._beta1_pow_acc_dict['FP16_LODTensor'].append(beta1_pow_acc)
                self._beta2_pow_acc_dict['FP16_LODTensor'].append(beta2_pow_acc)
                if self._multi_precision:
                    self._master_weight_dict['FP16_LODTensor'].append(
                        self._master_weights[param.name])
                else:
                    self._master_weight_dict['FP16_LODTensor'] = None
            else:
                raise ValueError(
                    "Now multi_tensor_momentum only support fp32 and fp16 parameters and grad is LOD_TENSOR."
                )

    def _append_optimize_multi_tensor_op(self, target_block,
                                         parameters_and_grads):
522
        """
Z
zhangbo9674 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
        For Multi Tensor, append optimize merged_operator to block.
        """
        assert isinstance(target_block, framework.Block)

        grad_dict = {'FP32_LODTensor': [], 'FP16_LODTensor': []}
        lr_dict = {'FP32_LODTensor': [], 'FP16_LODTensor': []}

        if isinstance(parameters_and_grads, list):
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                if param_and_grad[0].stop_gradient is False:
                    if param_and_grad[
                            0].dtype == paddle.float32 and param_and_grad[
                                1].type == core.VarDesc.VarType.LOD_TENSOR:
                        grad_dict['FP32_LODTensor'].append(param_and_grad[1])
                        lr = self._create_param_lr(param_and_grad)
                        lr_dict['FP32_LODTensor'].append(lr)
                    elif param_and_grad[
                            0].dtype == paddle.float16 and param_and_grad[
                                1].type == core.VarDesc.VarType.LOD_TENSOR:
                        grad_dict['FP16_LODTensor'].append(param_and_grad[1])
                        lr = self._create_param_lr(param_and_grad)
                        lr_dict['FP16_LODTensor'].append(lr)
        else:
            for param_and_grad in parameters_and_grads['params']:
                if param_and_grad[1] is None:
                    continue
                if param_and_grad[0].stop_gradient is False:
                    param_grad_dict = dict()
                    param_grad_dict['params'] = param_and_grad
                    param_grad_dict.update({
                        k: v
                        for k, v in parameters_and_grads.items()
                        if k != 'params'
                    })
                    param_and_grad = self._update_param_group(param_grad_dict)
                    if param_and_grad[
                            0].dtype == paddle.float32 and param_and_grad[
                                1].type == core.VarDesc.VarType.LOD_TENSOR:
                        grad_dict['FP32_LODTensor'].append(param_and_grad[1])
                        lr = self._create_param_lr(param_and_grad)
                        lr_dict['FP32_LODTensor'].append(lr)
                    elif param_and_grad[
                            0].dtype == paddle.float16 and param_and_grad[
                                1].type == core.VarDesc.VarType.LOD_TENSOR:
                        grad_dict['FP16_LODTensor'].append(param_and_grad[1])
                        lr = self._create_param_lr(param_and_grad)
                        lr_dict['FP16_LODTensor'].append(lr)

        multi_tensor_list = ['FP32_LODTensor', 'FP16_LODTensor']
        for key in multi_tensor_list:
            if len(self._param_dict[key]) > 0:
576
                find_master = self._multi_precision and key == 'FP16_LODTensor'
Z
zhangbo9674 已提交
577 578 579 580 581 582

                _beta1 = self._beta1 if not isinstance(
                    self._beta1, Variable) else self._beta1.numpy().item(0)
                _beta2 = self._beta2 if not isinstance(
                    self._beta2, Variable) else self._beta2.numpy().item(0)

J
Jiabin Yang 已提交
583
                if framework._non_static_mode():
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
                    if in_dygraph_mode():
                        _, _, _, _, _, _ = _C_ops.merged_adam_(
                            self._param_dict[key], grad_dict[key], lr_dict[key],
                            self._moment1_dict[key], self._moment2_dict[key],
                            self._beta1_pow_acc_dict[key],
                            self._beta2_pow_acc_dict[key],
                            self._master_weight_dict[key], _beta1, _beta2,
                            self._epsilon, find_master, False)
                    else:
                        _, _, _, _, _, _ = _legacy_C_ops.merged_adam(
                            self._param_dict[key], grad_dict[key], lr_dict[key],
                            self._moment1_dict[key], self._moment2_dict[key],
                            self._beta1_pow_acc_dict[key],
                            self._beta2_pow_acc_dict[key],
                            self._master_weight_dict[key],
                            self._param_dict[key], self._moment1_dict[key],
                            self._moment2_dict[key],
                            self._beta1_pow_acc_dict[key],
                            self._beta2_pow_acc_dict[key],
                            self._master_weight_dict[key], 'epsilon',
                            self._epsilon, 'beta1', _beta1, 'beta2', _beta2,
                            'multi_precision', find_master)
Z
zhangbo9674 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
                else:
                    inputs = {
                        "Param": self._param_dict[key],
                        "Grad": grad_dict[key],
                        "LearningRate": lr_dict[key],
                        "Moment1": self._moment1_dict[key],
                        "Moment2": self._moment2_dict[key],
                        "Beta1Pow": self._beta1_pow_acc_dict[key],
                        "Beta2Pow": self._beta2_pow_acc_dict[key]
                    }
                    outputs = {
                        "ParamOut": self._param_dict[key],
                        "Moment1Out": self._moment1_dict[key],
                        "Moment2Out": self._moment2_dict[key],
                        "Beta1PowOut": self._beta1_pow_acc_dict[key],
                        "Beta2PowOut": self._beta2_pow_acc_dict[key]
                    }
                    attrs = {
                        "epsilon": self._epsilon,
                        "beta1": _beta1,
                        "beta2": _beta2
                    }
628
                    if find_master:
Z
zhangbo9674 已提交
629 630 631
                        inputs["MasterParam"] = self._master_weight_dict[key]
                        outputs["MasterParamOut"] = self._master_weight_dict[
                            key]
632
                        attrs["multi_precision"] = find_master
633 634 635 636 637
                    target_block.append_op(type="merged_adam",
                                           inputs=inputs,
                                           outputs=outputs,
                                           attrs=attrs,
                                           stop_gradient=True)
Z
zhangbo9674 已提交
638 639
        return None

640 641 642 643 644 645 646 647
    def _update_param_group(self, parameters):
        self._beta1 = parameters.get('beta1', self._default_dict['beta1'])
        self._beta2 = parameters.get('beta2', self._default_dict['beta2'])
        self._epsilon = parameters.get('epsilon', self._default_dict['epsilon'])
        self._lazy_mode = parameters.get('lazy_mode',
                                         self._default_dict['lazy_mode'])
        parameters = parameters.get('params')
        return parameters