nn.py 185.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17 18 19 20
"""

from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
21
from ..param_attr import ParamAttr
Y
yuyang18 已提交
22
from layer_function_generator import autodoc, templatedoc
Y
yangyaming 已提交
23
from tensor import concat
C
chengduoZH 已提交
24
import utils
Y
yuyang18 已提交
25
import random
Y
Yu Yang 已提交
26 27

__all__ = [
Y
ying 已提交
28 29 30
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
31
    'dynamic_lstmp',
G
guosheng 已提交
32
    'dynamic_gru',
Y
ying 已提交
33 34 35 36 37 38 39 40 41
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
Y
yuyang18 已提交
42
    'conv3d',
Y
ying 已提交
43
    'sequence_pool',
44 45
    'sequence_softmax',
    'softmax',
Y
ying 已提交
46
    'pool2d',
Y
yuyang18 已提交
47
    'pool3d',
Y
ying 已提交
48 49 50
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
Y
yuyang18 已提交
51
    'conv3d_transpose',
Y
ying 已提交
52 53 54 55 56 57
    'sequence_expand',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
58
    'reduce_prod',
Y
ying 已提交
59 60 61 62
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
63 64
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
65 66
    'l2_normalize',
    'matmul',
Q
qingqing01 已提交
67
    'topk',
Y
ying 已提交
68 69
    'warpctc',
    'sequence_reshape',
70
    'transpose',
71
    'im2sequence',
72
    'nce',
Q
Qiao Longfei 已提交
73
    'beam_search',
74
    'row_conv',
75
    'multiplex',
G
guosheng 已提交
76
    'layer_norm',
77 78
    'softmax_with_cross_entropy',
    'smooth_l1',
79
    'one_hot',
Y
Yu Yang 已提交
80
    'autoincreased_step_counter',
C
caoying03 已提交
81
    'reshape',
Y
yangyaming 已提交
82
    'lod_reset',
D
dragonwarrior 已提交
83
    'lrn',
G
guosheng 已提交
84
    'pad',
85
    'label_smooth',
86
    'roi_pool',
W
whs 已提交
87
    'dice_loss',
F
fengjiayi 已提交
88 89
    'image_resize',
    'image_resize_short',
B
baiyf 已提交
90
    'resize_bilinear',
W
whs 已提交
91
    'gather',
92
    'random_crop',
Y
yuyang18 已提交
93 94 95
    'mean_iou',
    'relu',
    'log',
96
    'crop',
Y
Yu Yang 已提交
97 98 99 100 101 102 103 104
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
105
       use_mkldnn=False,
Y
Yu Yang 已提交
106
       act=None,
J
Jacek Czaja 已提交
107
       is_test=False,
108
       name=None):
Y
Yu Yang 已提交
109
    """
110
    **Fully Connected Layer**
Y
Yu Yang 已提交
111

112 113 114 115 116 117 118 119
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
120
    to the output as well.
C
caoying03 已提交
121

C
caoying03 已提交
122
    This process can be formulated as follows:
123 124 125

    .. math::

126
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
127 128 129

    In the above equation:

C
caoying03 已提交
130 131 132 133
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
134
    * :math:`Act`: The activation function.
C
caoying03 已提交
135
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
136 137

    Args:
R
ranqiu 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
            of this layer. If it is set to None, no bias will be added to the output units.
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
155
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
156 157
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
158
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
159

160
    Returns:
F
fengjiayi 已提交
161
        Variable: The transformation result.
162 163

    Raises:
C
caoying03 已提交
164
        ValueError: If rank of the input tensor is less than 2.
165 166 167 168

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
169
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
170
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
171
    """
C
caoying03 已提交
172

C
caoying03 已提交
173
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
174 175 176 177

    dtype = helper.input_dtype()

    mul_results = []
178 179
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
180 181 182
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
183

Y
Yu Yang 已提交
184
        w = helper.create_parameter(
185 186
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
187
        helper.append_op(
188 189 190
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
191
            outputs={"Out": tmp},
M
mozga-intel 已提交
192 193
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
194 195 196 197
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
198
    else:
199 200
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
201 202 203 204
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": use_mkldnn})
205 206 207 208
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
209 210


211 212 213
def embedding(input,
              size,
              is_sparse=False,
214
              is_distributed=False,
215 216 217
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
218
    """
219 220
    **Embedding Layer**

221
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
222 223
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
224 225 226

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
227 228

    Args:
229 230 231 232 233
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
234
        is_distributed(bool): Whether to run lookup table from remote parameter server.
235 236
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
237
            with zeros whenever lookup encounters it in :attr:`input`. If
238
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
239 240
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
241
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
242

243 244 245
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
246

247 248
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
249

C
chengduoZH 已提交
250
          dict_size = len(dataset.ids)
251
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
252
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
253 254 255 256 257 258
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
259 260
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
261 262 263 264 265
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
266 267 268 269 270
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
271 272 273
    return tmp


Y
yi.wu 已提交
274
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
275 276
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
277 278
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
279 280 281 282 283 284 285
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
286 287
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
288
    """
Y
yi.wu 已提交
289
    ${comment}
Y
Yibing Liu 已提交
290 291

    Args:
Y
yi.wu 已提交
292 293
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
294 295 296 297 298 299 300
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

301
        param_attr(ParamAttr|None): The parameter attribute for the learnable
302
                               hidden-hidden weights.
Y
Yibing Liu 已提交
303 304 305

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
306 307
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
308
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
309 310 311
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
312

313
                              1. `use_peepholes = False`
Y
yi.wu 已提交
314 315
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
316
                              2. `use_peepholes = True`
Y
yi.wu 已提交
317
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
318
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
319
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
320 321 322 323 324 325 326 327
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
328 329

    Returns:
Y
Yibing Liu 已提交
330 331
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
332

Y
Yibing Liu 已提交
333
    Examples:
Y
Yibing Liu 已提交
334 335
        .. code-block:: python

Y
Yibing Liu 已提交
336 337
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
338
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
339 340
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
341
    """
342

Y
Yu Yang 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
357 358 359 360 361 362 363 364 365 366
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
367 368 369

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
370
        inputs=inputs,
Y
Yu Yang 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
387 388 389 390 391 392 393 394 395 396 397
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
398 399
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
400 401 402
    """
    **Dynamic LSTMP Layer**

403 404 405 406 407 408
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
409 410 411 412 413

    The formula is as follows:

    .. math::

414
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
415

416
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
417

418
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
419

420
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
421

422
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
423

424
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
425

426
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
427

Y
Yibing Liu 已提交
428 429 430 431 432 433
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
434
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
435
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
436
          bias vector).
Y
Yibing Liu 已提交
437 438 439
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
440
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
441
    * :math:`h`: The hidden state.
442
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
443 444
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
445
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
446
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
447
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
448 449
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
450 451 452 453

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
454

Y
Yibing Liu 已提交
455 456 457 458 459 460 461 462 463 464 465 466
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
467
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
468 469
                               hidden-hidden weight and projection weight.

470 471
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
472 473
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
474 475
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
476 477
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
478 479 480 481 482 483
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
484
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
485 486 487
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
488
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
489 490 491 492 493 494 495 496 497
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
498
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
499 500
                              default "tanh".
        proj_activation(str): The activation for projection output.
501
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
502 503
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
504 505
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
506 507

    Returns:
508 509 510 511
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
512 513

    Examples:
514

Y
Yibing Liu 已提交
515 516
        .. code-block:: python

517 518 519 520
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
521
            hidden_dim, proj_dim = 512, 256
522
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
523
                                     act=None, bias_attr=None)
524 525 526
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
527 528 529 530
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
531
    """
532

Y
Yibing Liu 已提交
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
    helper = LayerHelper('lstmp', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
579 580 581 582 583 584 585 586 587
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
588
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
589

590
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
591
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
592

G
guosheng 已提交
593 594 595 596 597 598 599 600 601
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
602

G
guosheng 已提交
603
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
604

G
guosheng 已提交
605
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
606 607
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
608 609 610 611
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
612
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
613 614

    Args:
615 616
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
617
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
618
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
619 620
            is the hidden size.
        size(int): The dimension of the gru cell.
621
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
622 623
            hidden-hidden weight matrix. Note:

624
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
625
              :math:`D` is the hidden size.
626
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
627
              The first part are weights of the update gate and reset gate with
628
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
629
              candidate hidden state with shape :math:`(D \\times D)`.
630
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
631
            hidden-hidden bias.
632
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
633 634 635
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
636
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
637
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
638 639 640 641
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
642 643

    Returns:
G
guosheng 已提交
644
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
645
            and sequence length is the same with the input.
646

G
guosheng 已提交
647
    Examples:
648

G
guosheng 已提交
649 650
        .. code-block:: python

651 652 653 654
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
655
            hidden_dim = 512
656
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
657 658 659 660 661 662 663 664 665 666
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
667
    batch_size = input.shape[0]
G
guosheng 已提交
668 669 670
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
671 672 673
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
697 698 699
def gru_unit(input,
             hidden,
             size,
700 701
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
702
             activation='tanh',
703
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
704
    """
705
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
706

707 708
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
709

710
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
711

712
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
713

714
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
715 716

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
717 718 719
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
720 721
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

722 723
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
724 725 726
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
727 728 729 730 731

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
732 733
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
734 735 736 737
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
738

739 740 741 742 743 744
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
745

746
             # assuming we have x_t_data and prev_hidden of size=10
747
             x_t = fluid.layers.fc(input=x_t_data, size=30)
748 749
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
    size = size / 3

    # create weight
765 766
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
767

768 769 770 771
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
772
    # create bias
773
    if helper.bias_attr:
Y
Yu Yang 已提交
774 775 776
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
777
        inputs['Bias'] = bias
Y
Yu Yang 已提交
778 779 780

    helper.append_op(
        type='gru_unit',
781
        inputs=inputs,
Y
Yu Yang 已提交
782 783 784 785 786 787
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
788 789
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
790 791 792 793 794
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
795
@templatedoc()
796
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
797 798 799 800 801 802 803
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
804
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
805 806 807 808
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
809 810 811
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
812 813

    """
Y
Yu Yang 已提交
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
839
@templatedoc()
840
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
841 842 843 844 845
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
846

Y
yuyang18 已提交
847
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
848

Y
yuyang18 已提交
849 850 851
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
852
        Variable: ${viterbi_path_comment}
853

Y
yi.wu 已提交
854 855 856 857 858
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
859
    """
Y
Yu Yang 已提交
860 861 862 863 864 865 866 867 868 869 870 871 872
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
873
@templatedoc()
F
fengjiayi 已提交
874
def cos_sim(X, Y):
Y
Yu Yang 已提交
875
    """
Y
yi.wu 已提交
876 877 878
    ${comment}

    Args:
879 880
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
881

Y
yi.wu 已提交
882
    Returns:
883
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
884
    """
F
fengjiayi 已提交
885
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
886 887 888 889 890 891 892 893 894 895 896 897 898
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


899
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
900 901 902 903 904
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
905
    training. The dropout operator randomly sets (according to the given dropout
906 907 908 909
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
910 911
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
912 913 914 915 916 917 918
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
919 920

    Returns:
921
        Variable: A tensor variable is the shape with `x`.
922 923

    Examples:
924

925 926
        .. code-block:: python

927 928
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
929 930
    """

F
fengjiayi 已提交
931
    helper = LayerHelper('dropout', **locals())
932 933 934 935 936 937 938
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
939 940 941 942 943 944
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
945 946 947
    return out


F
fengjiayi 已提交
948
def cross_entropy(input, label, soft_label=False):
Y
Yu Yang 已提交
949
    """
Y
Yibing Liu 已提交
950 951
    **Cross Entropy Layer**

952 953 954
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
955 956

    1) One-hot cross-entropy:
F
fengjiayi 已提交
957
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
958

Y
Yibing Liu 已提交
959
        .. math::
Y
yangyaming 已提交
960

Y
Yibing Liu 已提交
961 962 963
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
964 965
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
966 967 968 969 970

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
971
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
972 973 974
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
975 976
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
977
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
978

Y
Yibing Liu 已提交
979
    Args:
Y
yangyaming 已提交
980
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
981 982 983 984
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
985
        label (Variable|list): the ground truth which is a 2-D tensor. When
986 987 988 989
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
990
        soft_label (bool): a flag indicating whether to
991 992
                                           interpretate the given labels as soft
                                           labels, default `False`.
Y
Yibing Liu 已提交
993 994 995 996 997

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
998 999 1000 1001 1002
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1003 1004 1005 1006 1007 1008

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1009
    """
F
fengjiayi 已提交
1010
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1011 1012 1013 1014 1015 1016
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
F
fengjiayi 已提交
1017
        attrs={"soft_label": soft_label})
Y
Yu Yang 已提交
1018 1019 1020
    return out


F
fengjiayi 已提交
1021
def square_error_cost(input, label):
Y
Yu Yang 已提交
1022
    """
1023 1024
    **Square error cost layer**

1025 1026
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1027

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1041 1042
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1043 1044

    Returns:
G
guosheng 已提交
1045
        Variable: The tensor variable storing the element-wise squared error \
1046
                  difference of input and label.
1047 1048 1049 1050 1051 1052 1053 1054

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1055
    """
F
fengjiayi 已提交
1056
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1066 1067
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1068 1069 1070
    return square_out


Y
yi.wu 已提交
1071
@templatedoc()
Y
Yu Yang 已提交
1072 1073 1074 1075
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1076
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1077
    """
Y
yi.wu 已提交
1078
    **Chunk Evaluator**
Y
yi.wu 已提交
1079

Y
yangyaming 已提交
1080
    This function computes and outputs the precision, recall and
1081
    F1-score of chunk detection.
Y
yi.wu 已提交
1082

Y
yi.wu 已提交
1083 1084 1085 1086 1087 1088 1089 1090
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1091

Y
yi.wu 已提交
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1117

Y
yi.wu 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1142
    Args:
1143 1144 1145 1146 1147
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1148

Y
yi.wu 已提交
1149
    Returns:
Y
update  
yi.wu 已提交
1150 1151 1152
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1153

Y
yi.wu 已提交
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1166
    """
F
fengjiayi 已提交
1167
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1168 1169 1170 1171 1172

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1173 1174 1175
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1176 1177 1178 1179 1180 1181 1182 1183

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1184 1185 1186 1187
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1188 1189 1190
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1191 1192
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1193
        })
1194 1195
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1196 1197


1198
@templatedoc()
Y
Yu Yang 已提交
1199 1200 1201 1202 1203 1204 1205
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1206
                  act=None):
Y
Yu Yang 已提交
1207 1208 1209 1210
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1221

1222 1223
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
            'contextStart': -int(filter_size / 2),
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1249
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
1250 1251 1252
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1253
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed. Default: True
1273

1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1296
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
    """
    The input of the softmax layer is a 2-D tensor with shape N x K (N is the
    batch_size, K is the dimension of input feature). The output tensor has the
    same shape as the input tensor.

    For each row of the input tensor, the softmax operator squashes the
    K-dimensional vector of arbitrary real values to a K-dimensional vector of real
    values in the range [0, 1] that add up to 1.

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in Input(X), we have:

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1347 1348 1349
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1350 1351
           stride=1,
           padding=0,
1352
           dilation=1,
Y
Yu Yang 已提交
1353 1354 1355
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1356
           use_cudnn=True,
1357
           use_mkldnn=False,
1358 1359
           act=None,
           name=None):
Y
Yu Yang 已提交
1360
    """
C
chengduoZH 已提交
1361
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1362 1363
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1364
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1365 1366 1367 1368 1369 1370 1371
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1372 1373 1374
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1375

1376
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1377

C
chengduoZH 已提交
1378 1379
    .. math::

C
refine  
chengduoZH 已提交
1380
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1381

T
tensor-tang 已提交
1382
    Where:
C
chengduoZH 已提交
1383

1384 1385 1386 1387 1388
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1389
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1390 1391 1392

    Example:

1393 1394
        - Input:

W
weixing02 已提交
1395
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1396

W
weixing02 已提交
1397
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1398

1399
        - Output:
T
tensor-tang 已提交
1400

W
weixing02 已提交
1401
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1402

C
chengduoZH 已提交
1403
        Where
1404 1405

        .. math::
C
chengduoZH 已提交
1406

W
weixing02 已提交
1407 1408
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1409 1410

    Args:
1411
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1412
        num_filters(int): The number of filter. It is as same as the output
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1435 1436
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1437 1438 1439
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1440 1441

    Returns:
G
guosheng 已提交
1442
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1443 1444
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1445
    Raises:
1446 1447
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1448

C
chengduoZH 已提交
1449 1450 1451
    Examples:
        .. code-block:: python

1452 1453
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1454 1455 1456
    """

    num_channels = input.shape[1]
1457 1458

    l_type = 'conv2d'
X
xzl 已提交
1459 1460
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1461
        l_type = 'depthwise_conv2d'
1462 1463 1464 1465

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1466 1467 1468 1469 1470 1471 1472
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

C
chengduoZH 已提交
1473 1474 1475
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1476
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1477

C
chengduoZH 已提交
1478 1479
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1497
        type=l_type,
Y
Yu Yang 已提交
1498 1499 1500 1501 1502
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1503 1504 1505
        attrs={
            'strides': stride,
            'paddings': padding,
1506
            'dilations': dilation,
C
chengduoZH 已提交
1507
            'groups': groups,
1508 1509
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1510
        })
Y
Yu Yang 已提交
1511 1512 1513 1514 1515 1516

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1535 1536 1537 1538 1539 1540
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1541 1542 1543 1544 1545 1546 1547 1548 1549

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1550 1551
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1552 1553 1554
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1555
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1581
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1582 1583
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1584
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1585 1586
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1587
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1588 1589
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1590
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1617 1618
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1674
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1675 1676 1677 1678

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1679
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1680
    """
Y
yangyaming 已提交
1681 1682 1683
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1695
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1696 1697 1698 1699 1700
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1701
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1702 1703 1704 1705 1706 1707 1708

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1709 1710
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1711

L
Luo Tao 已提交
1712 1713
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1714
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1715 1716 1717 1718 1719 1720 1721 1722
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1723

Y
yangyaming 已提交
1724
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1725 1726 1727 1728 1729
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1730 1731
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1732
    """
F
fengjiayi 已提交
1733
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1745 1746 1747 1748 1749
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1750 1751 1752
    return pool_out


F
fengjiayi 已提交
1753
def sequence_first_step(input):
L
Luo Tao 已提交
1754
    """
L
Luo Tao 已提交
1755
    This function gets the first step of sequence.
L
Luo Tao 已提交
1756 1757 1758 1759

    .. code-block:: text

       x is a 1-level LoDTensor:
1760
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1761 1762 1763 1764 1765
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1766
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1767
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1768

L
Luo Tao 已提交
1769 1770 1771 1772 1773 1774 1775 1776 1777
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1778

Y
yangyaming 已提交
1779
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1780 1781 1782
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1783 1784 1785
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1786
def sequence_last_step(input):
L
Luo Tao 已提交
1787
    """
L
Luo Tao 已提交
1788
    This function gets the last step of sequence.
L
Luo Tao 已提交
1789 1790 1791 1792

    .. code-block:: text

       x is a 1-level LoDTensor:
1793
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1794 1795 1796 1797 1798
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1799
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1800
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1801

L
Luo Tao 已提交
1802 1803 1804 1805 1806 1807 1808 1809 1810
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1811

Y
yangyaming 已提交
1812
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1813 1814 1815
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1816 1817 1818
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1819
@templatedoc()
Y
Yu Yang 已提交
1820
def pool2d(input,
C
chengduoZH 已提交
1821 1822
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1823 1824
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1825
           global_pooling=False,
C
chengduoZH 已提交
1826
           use_cudnn=True,
1827
           ceil_mode=False,
1828
           use_mkldnn=False,
C
caoying03 已提交
1829
           name=None):
Y
Yu Yang 已提交
1830
    """
F
fengjiayi 已提交
1831
    ${comment}
1832 1833

    Args:
1834 1835 1836
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1837
                          feature, and W is the width of the feature.
1838
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1839
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1840
        pool_type: ${pooling_type_comment}
1841 1842
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1843 1844 1845 1846
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
1847
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1848 1849
                        layer will be named automatically.

1850
    Returns:
F
fengjiayi 已提交
1851
        Variable: The pooling result.
F
fengjiayi 已提交
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1865 1866 1867 1868
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1869
                            global_pooling=False)
Y
Yu Yang 已提交
1870 1871 1872 1873 1874
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1875

C
chengduoZH 已提交
1876 1877 1878 1879 1880
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1881 1882 1883 1884
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1885 1886
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1887

C
Add doc  
chengduoZH 已提交
1888
    l_type = 'pool2d'
1889 1890

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1891 1892 1893 1894
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
1924
    pooling configurations mentioned in input parameters.
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
1938

1939
    Returns:
1940
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
1941 1942 1943 1944 1945
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1946

C
chengduoZH 已提交
1947 1948 1949 1950 1951
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

1952 1953 1954
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
1955

C
chengduoZH 已提交
1956 1957
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1958

1959 1960
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1961 1962 1963 1964
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1965
        type=l_type,
Y
Yu Yang 已提交
1966 1967 1968 1969 1970 1971 1972
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1973
            "paddings": pool_padding,
1974
            "use_cudnn": use_cudnn,
1975 1976
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
1989
               data_layout='NCHW',
Y
Yang Yang 已提交
1990
               in_place=False,
1991
               use_mkldnn=False,
1992 1993
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
1994
               moving_variance_name=None,
W
wanghaoshuang 已提交
1995
               do_model_average_for_mean_and_var=False):
Y
Yu Yang 已提交
1996
    """
Q
qiaolongfei 已提交
1997 1998 1999 2000
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2001

Q
qiaolongfei 已提交
2002
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2003

Q
qiaolongfei 已提交
2004 2005
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2006 2007 2008
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2021 2022

    Args:
Q
qiaolongfei 已提交
2023
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2024 2025 2026 2027
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2028 2029 2030
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
Q
qiaolongfei 已提交
2031
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2032 2033 2034 2035 2036
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2037
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2038 2039

    Returns:
Q
qiaolongfei 已提交
2040
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2041 2042 2043 2044 2045 2046 2047

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2071
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2072

2073 2074
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2075 2076 2077
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2078
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2079
        shape=param_shape,
2080 2081 2082 2083 2084 2085 2086
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2087
            trainable=False,
W
wanghaoshuang 已提交
2088
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2089
        shape=param_shape,
2090 2091
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2092 2093 2094 2095 2096 2097

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2098 2099
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2100

Y
Yang Yang 已提交
2101
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2119 2120 2121 2122 2123 2124
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
            "use_mkldnn": use_mkldnn
        })
Y
Yu Yang 已提交
2125 2126 2127 2128

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2129
@templatedoc()
G
guosheng 已提交
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2140
    ${comment}
G
guosheng 已提交
2141 2142 2143

    The formula is as follows:

Y
yuyang18 已提交
2144
    ..  math::
G
guosheng 已提交
2145 2146 2147 2148 2149 2150 2151

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2152 2153 2154 2155 2156 2157 2158 2159
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2160

G
guosheng 已提交
2161 2162
    Args:
        input(Variable): The input tensor variable.
2163
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2164
            normalization.
2165
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2166
            normalization.
2167
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2168
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2169
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2170 2171 2172 2173 2174 2175
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2176
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2177 2178

    Returns:
Y
yuyang18 已提交
2179
        ${y_comment}
G
guosheng 已提交
2180 2181 2182

    Examples:

Y
yuyang18 已提交
2183 2184 2185
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2201
    if shift:
G
guosheng 已提交
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


C
caoying03 已提交
2226
def beam_search_decode(ids, scores, name=None):
2227
    """
D
dzhwinter 已提交
2228 2229
    Beam Search Decode

D
dzhwinter 已提交
2230 2231
    This layers is to pack the output of beam search layer into sentences and
    associated scores. It is usually called after the beam search layer.
D
dzhwinter 已提交
2232
    Typically, the output of beam search layer is a tensor of selected ids, with
2233 2234 2235
    a tensor of the score of each id. Beam search layer's output ids, however,
    are generated directly during the tree search, and they are stacked by each
    level of the search tree. Thus we need to reorganize them into sentences,
D
dzhwinter 已提交
2236 2237
    based on the score of each id. This layer takes the output of beam search
    layer as input and repack them into sentences.
2238 2239

    Args:
2240
        ids (Variable): The selected ids, output of beam search layer.
D
dzhwinter 已提交
2241 2242
        scores (Variable): The associated scores of the ids, out put of beam
            search layer.
2243
        name (str): The name of this layer. It is optional.
F
fengjiayi 已提交
2244

2245
    Returns:
D
dzhwinter 已提交
2246 2247
        tuple(Variable): a tuple of two output tensors: sentence_ids, sentence_scores.
        sentence_ids is a tensor with shape [size, length], where size is the
2248
        beam size of beam search, and length is the length of each sentence.
D
dzhwinter 已提交
2249 2250
        Note that the length of sentences may vary.
        sentence_scores is a tensor with the same shape as sentence_ids.
D
dzhwinter 已提交
2251 2252 2253

    Examples:
        .. code-block:: python
D
dzhwinter 已提交
2254

D
dzhwinter 已提交
2255 2256 2257 2258
            ids, scores = fluid.layers.beam_search(
                pre_ids, ids, scores, beam_size, end_id)
            sentence_ids, sentence_scores = fluid.layers.beam_search_decode(
                ids, scores)
2259
    """
Y
Yu Yang 已提交
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        })

    return sentence_ids, sentence_scores


def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2280 2281 2282
                     padding=0,
                     stride=1,
                     dilation=1,
2283
                     groups=None,
C
caoying03 已提交
2284
                     param_attr=None,
2285
                     bias_attr=None,
C
chengduoZH 已提交
2286
                     use_cudnn=True,
2287
                     act=None,
C
caoying03 已提交
2288
                     name=None):
Y
Yu Yang 已提交
2289
    """
2290 2291 2292 2293 2294 2295 2296 2297
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2298 2299
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2300 2301 2302
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2303 2304 2305 2306 2307

    For each input :math:`X`, the equation is:

    .. math::

2308
        Out = \sigma (W \\ast X + b)
2309

2310
    Where:
2311 2312 2313

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2314 2315 2316 2317
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2318

2319 2320 2321 2322
    Example:

        - Input:

2323
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2324

2325
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2326 2327 2328

        - Output:

2329
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2330 2331

        Where
Y
Yu Yang 已提交
2332

2333 2334 2335 2336
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Y
Yu Yang 已提交
2337 2338

    Args:
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2372 2373

    Returns:
2374
        Variable: The tensor variable storing the convolution transpose result.
2375 2376

    Raises:
2377 2378
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2379 2380 2381 2382

    Examples:
       .. code-block:: python

2383 2384
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2385 2386 2387 2388 2389 2390
    """
    helper = LayerHelper("conv2d_transpose", **locals())
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")
    input_channel = input.shape[1]

C
chengduoZH 已提交
2391 2392 2393
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2394

C
chengduoZH 已提交
2395 2396
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2397

Y
Yu Yang 已提交
2398 2399 2400 2401 2402
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2403

Y
Yu Yang 已提交
2404 2405
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2406

C
chengduoZH 已提交
2407 2408 2409 2410
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
                         padding[0] - 1) / dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
                         padding[1] - 1) / dilation[1] + 1
Y
Yu Yang 已提交
2411
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2412 2413 2414
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2415

2416 2417
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters / groups] + filter_size
Y
Yu Yang 已提交
2418 2419 2420
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2421
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2422 2423 2424 2425
    helper.append_op(
        type='conv2d_transpose',
        inputs={'Input': [input],
                'Filter': [img_filter]},
2426
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2427
        attrs={
2428 2429 2430 2431 2432
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2433 2434
        })

2435 2436 2437
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2438 2439


2440
def conv3d_transpose(input,
Y
Yu Yang 已提交
2441 2442 2443
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2444 2445 2446
                     padding=0,
                     stride=1,
                     dilation=1,
2447
                     groups=None,
C
caoying03 已提交
2448
                     param_attr=None,
2449
                     bias_attr=None,
C
chengduoZH 已提交
2450
                     use_cudnn=True,
2451
                     act=None,
C
caoying03 已提交
2452
                     name=None):
Y
Yu Yang 已提交
2453
    """
2454
    **Convlution3D transpose layer**
2455

2456
    The convolution3D transpose layer calculates the output based on the input,
2457
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2458 2459 2460 2461 2462 2463
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2464 2465 2466
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2467 2468 2469 2470 2471

    For each input :math:`X`, the equation is:

    .. math::

2472
        Out = \sigma (W \\ast X + b)
2473 2474 2475

    In the above equation:

2476 2477
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2478 2479 2480 2481
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2482

2483 2484 2485 2486
    Example:

        - Input:

2487
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2488

2489
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2490 2491 2492

        - Output:

2493
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2494 2495

        Where
Y
Yu Yang 已提交
2496

2497 2498
        .. math::

2499 2500 2501
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2502 2503

    Args:
2504
        input(Variable): The input image with [N, C, D, H, W] format.
2505 2506 2507
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2508
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2509 2510
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2511
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2512 2513 2514
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2515 2516
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2517
        stride(int|tuple): The stride size. If stride is a tuple, it must
2518 2519
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2520
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2521 2522 2523
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2524 2525 2526 2527 2528
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2529 2530 2531
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2532 2533 2534 2535 2536
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2537 2538

    Returns:
2539
        Variable: The tensor variable storing the convolution transpose result.
2540 2541

    Raises:
2542 2543
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2544 2545 2546 2547

    Examples:
       .. code-block:: python

2548 2549
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2550
    """
2551 2552
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2553
    if not isinstance(input, Variable):
2554
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2555 2556
    input_channel = input.shape[1]

2557 2558 2559
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2560

C
chengduoZH 已提交
2561 2562 2563
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2564 2565 2566 2567 2568 2569
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2570 2571 2572
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2573

2574
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
C
chengduoZH 已提交
2575
                         padding[0] - 1) / dilation[0] + 1
2576
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
C
chengduoZH 已提交
2577
                         padding[1] - 1) / dilation[1] + 1
2578 2579 2580
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
                         padding[2] - 1) / dilation[2] + 1
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2581
    else:
2582 2583
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2584

2585 2586
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters / groups] + filter_size
Y
Yu Yang 已提交
2587 2588 2589
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2590
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2591
    helper.append_op(
2592
        type=l_type,
Y
Yu Yang 已提交
2593 2594
        inputs={'Input': [input],
                'Filter': [img_filter]},
2595
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2596 2597 2598 2599
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2600
            'groups': groups,
C
chengduoZH 已提交
2601 2602
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2603

2604 2605
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2606
    return out
Y
yangyaming 已提交
2607 2608


Y
yangyaming 已提交
2609
def sequence_expand(x, y, ref_level=-1, name=None):
2610
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2611 2612 2613 2614
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2615 2616 2617 2618 2619

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2620
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2621
                x.data = [[a], [b], [c], [d]]
2622 2623 2624
                x.dims = [4, 1]

            y is a LoDTensor:
2625 2626
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2627

Y
yangyaming 已提交
2628
            ref_level: 0
2629

Y
yangyaming 已提交
2630
            then output is a 1-level LoDTensor:
2631
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2632
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2633 2634 2635 2636
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2637
                x.data = [[a], [b], [c]]
2638 2639 2640
                x.dims = [3, 1]

            y is a LoDTensor:
2641
                y.lod = [[2, 0, 3]]
2642

Y
yangyaming 已提交
2643
            ref_level: -1
2644

Y
yangyaming 已提交
2645 2646 2647
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2648 2649 2650
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2651 2652
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2653
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2654
                        will be named automatically.
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2665
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2666
    """
Y
yangyaming 已提交
2667
    helper = LayerHelper('sequence_expand', input=x, **locals())
2668 2669 2670
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2671 2672 2673 2674 2675
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2676
    return tmp
2677 2678


Q
Qiao Longfei 已提交
2679 2680
def beam_search(pre_ids, ids, scores, beam_size, end_id, level=0):
    '''
Y
Yan Chunwei 已提交
2681 2682
    **beam search**

Q
Qiao Longfei 已提交
2683
    This function implements the beam search algorithm.
2684

Y
Yan Chunwei 已提交
2685 2686 2687 2688 2689 2690
    Beam search is a classical algorithm for selecting candidate words
    in a machine translation task.

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.

2691
    Args:
Y
Yan Chunwei 已提交
2692 2693 2694 2695 2696 2697
        pre_ids (Variable): ids in previous step.
        ids (Variable): a LoDTensor of shape of [None,k]
        scores (Variable): a LoDTensor that has the same shape and LoD with `ids`
        beam_size (int): beam size for beam search
        end_id (int): the token id which indicates the end of a sequence
        level (int): the level of LoDTensor
F
fengjiayi 已提交
2698

2699
    Returns:
Y
Yan Chunwei 已提交
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
        tuple: a tuple of beam_search output variables: `selected_ids`, `selected_scores`

    Examples:
        .. code-block:: python

             # current_score is a Tensor of shape (num_batch_size, embed_size), which
             # consists score of each candidate word.
             topk_scores, topk_indices = pd.topk(current_score, k=50)
             selected_ids, selected_scores = pd.beam_search(
                 pre_ids, topk_indices, topk_scores, beam_size, end_id=10, level=0)
Q
Qiao Longfei 已提交
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
    '''
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


Y
yangyaming 已提交
2739 2740 2741 2742
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2743
              param_attr=None,
C
caoying03 已提交
2744 2745
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2746 2747 2748 2749
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2750
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2751

2752
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
2753

2754
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
2755

2756
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
2757 2758 2759

            h_t & = o_t tanh(c_t)

2760 2761 2762 2763 2764 2765
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
2766 2767 2768

        .. math::

2769
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2770 2771 2772 2773 2774 2775 2776 2777

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2778
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2779 2780

    Args:
Y
yangyaming 已提交
2781 2782 2783 2784 2785 2786
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2787
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2788 2789
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2790 2791
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2792 2793
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2794 2795

    Returns:
Y
yangyaming 已提交
2796
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
2797 2798

    Raises:
2799 2800 2801 2802
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
2803 2804 2805 2806 2807 2808

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2809
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
2810
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
2811
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
2828
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
2829 2830 2831 2832
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
2833 2834
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
2835 2836 2837
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
2838
    size = cell_t_prev.shape[1]
2839
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
2840 2841
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
2842
                param_attr=param_attr,
2843
                bias_attr=bias_attr)
Y
yangyaming 已提交
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
2856
    return h, c
G
guosheng 已提交
2857 2858


C
caoying03 已提交
2859
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2860
    """
Y
yangyaming 已提交
2861
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2862 2863 2864

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2865
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
2866 2867
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2868 2869
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2870
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
2871
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2872
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2873 2874
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2875 2876 2877

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2878

G
guosheng 已提交
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
2890 2891 2892 2893 2894 2895 2896 2897

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
2898 2899 2900
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2901 2902
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2903 2904 2905 2906 2907
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2908
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2909 2910 2911 2912
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2913 2914


C
caoying03 已提交
2915
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2916
    """
Y
Yibing Liu 已提交
2917
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
2918 2919 2920

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
2921 2922 2923
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
2924
            must be in the range :math:`[-rank(input), rank(input))`. If
2925
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
2926
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
2927 2928
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2929
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
2930
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
2931
                       will be named automatically.
G
guosheng 已提交
2932 2933

    Returns:
Y
Yibing Liu 已提交
2934
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
2935

G
guosheng 已提交
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
2946 2947
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
2948 2949 2950 2951 2952 2953 2954

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
2955 2956 2957
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2958 2959
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2960 2961 2962 2963 2964
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2965
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2966 2967 2968 2969
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
2970 2971


C
caoying03 已提交
2972
def reduce_max(input, dim=None, keep_dim=False, name=None):
2973
    """
Y
yangyaming 已提交
2974
    Computes the maximum of tensor elements over the given dimension.
2975 2976 2977

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2978
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
2979 2980 2981
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
2982
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
2983 2984
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
2985
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2986 2987
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
2988 2989 2990

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
2991

2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3003 3004 3005 3006 3007 3008 3009

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3010 3011 3012
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3013 3014
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3015 3016 3017 3018 3019
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3020
            'dim': dim if dim != None else [0],
3021 3022 3023 3024 3025 3026
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3027
def reduce_min(input, dim=None, keep_dim=False, name=None):
3028
    """
Y
yangyaming 已提交
3029
    Computes the minimum of tensor elements over the given dimension.
3030 3031 3032

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3033
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3034 3035 3036
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3037
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3038 3039
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3040
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3041 3042
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3043 3044 3045

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3046

3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3058 3059 3060 3061 3062 3063 3064

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3065 3066 3067
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3068 3069
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3070 3071 3072 3073 3074
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3075
            'dim': dim if dim != None else [0],
3076 3077 3078 3079
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3080 3081


3082 3083 3084 3085 3086 3087
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3088
        dim (list|int|None): The dimensions along which the product is performed. If
3089 3090
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3091 3092
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3093 3094 3095
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3096
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3097
            layer will be named automatically.
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3112
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3113
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3114 3115 3116 3117 3118 3119 3120

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3121 3122 3123
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3124 3125
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3126 3127 3128 3129 3130
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3131
            'dim': dim if dim != None else [0],
3132 3133 3134 3135 3136 3137
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3138
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3139
    """
C
caoying03 已提交
3140
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3141 3142 3143

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3144 3145 3146 3147 3148
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3149
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3150
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3151
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3152 3153
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3154 3155

    Returns:
D
dzhwinter 已提交
3156
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3157 3158 3159 3160 3161 3162 3163 3164 3165

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3166 3167
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3197 3198 3199 3200 3201 3202 3203 3204 3205


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3206
    .. math::
3207 3208

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3209 3210 3211 3212 3213

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3214
        x(Variable|list): The input tensor to l2_normalize layer.
3215
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3216 3217
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3218
        epsilon(float): The epsilon value is used to avoid division by zero, \
3219
            the defalut value is 1e-10.
3220
        name(str|None): A name for this layer(optional). If set None, the layer \
3221
            will be named automatically.
C
caoying03 已提交
3222 3223

    Returns:
3224
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3225 3226

    Examples:
3227

C
caoying03 已提交
3228 3229
        .. code-block:: python

3230 3231 3232 3233
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3234 3235
    """

F
fengjiayi 已提交
3236 3237
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3238 3239
    helper = LayerHelper("l2_normalize", **locals())

3240 3241
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3242
    helper.append_op(
3243 3244 3245 3246
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3247
        attrs={
3248 3249
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3250 3251
        })
    return out
3252 3253


3254
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
3255
    """
Y
ying 已提交
3256 3257 3258 3259
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3260

C
chengduoZH 已提交
3261
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3262
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3263

3264 3265 3266 3267 3268
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3269
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3270

C
chengduoZH 已提交
3271
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3272
      performs in the following way.
G
guosheng 已提交
3273

3274
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3275
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3276
        last two dimensions and a batched matrix multiply supporting broadcast
3277
        applies on the two tensors.
G
guosheng 已提交
3278

Y
ying 已提交
3279 3280
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3281
    removed after matrix multiplication.
G
guosheng 已提交
3282 3283 3284

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3285 3286 3287
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
3288
        name(str|None): A name for this layer(optional). If set None, the layer
3289
            will be named automatically.
G
guosheng 已提交
3290 3291

    Returns:
3292
        Variable: The product Tensor variable.
G
guosheng 已提交
3293

G
guosheng 已提交
3294 3295 3296
    Examples:
        .. code-block:: python

3297
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3298 3299
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3300

3301 3302
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3303

3304 3305
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3306

3307 3308
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3309 3310 3311 3312

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3313 3314
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3315

Y
ying 已提交
3316
            # x: [M], y: [N]
3317
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3318
    """
Y
ying 已提交
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3331
            y_shape = y_shape + [1]
Y
ying 已提交
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3348
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3349
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3350
    helper.append_op(
3351 3352 3353 3354 3355 3356 3357
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
3358 3359


3360
def topk(input, k, name=None):
Q
qingqing01 已提交
3361 3362 3363 3364
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3365
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3366 3367 3368 3369 3370 3371
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3393 3394 3395
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3396
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3397
                 of input.
3398
        name(str|None): A name for this layer(optional). If set None, the layer
3399
                       will be named automatically.
F
fengjiayi 已提交
3400
                       Default: None
Q
qingqing01 已提交
3401 3402

    Returns:
3403 3404 3405
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3406
        within the last dimension of input.
Q
qingqing01 已提交
3407

F
fengjiayi 已提交
3408 3409
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3410 3411 3412 3413 3414 3415 3416

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    shape = input.shape
F
fengjiayi 已提交
3417
    if k < 1 or k >= shape[-1]:
Q
qingqing01 已提交
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
        raise ValueError("k must be greater than 0 and less than %d." %
                         (shape[-1]))

    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3435
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3436
    """
Y
ying 已提交
3437 3438 3439 3440 3441 3442 3443 3444 3445
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3446

Y
ying 已提交
3447
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3448

3449
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3450 3451
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3452
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3453

3454
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3455 3456
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3457

3458 3459 3460
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3461
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3462
                          the length of reference string.
3463
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3464
                                     calculating edit distance.
3465
        name (str): The name of this layer. It is optional.
3466

W
wanghaoshuang 已提交
3467
    Returns:
W
wanghaoshuang 已提交
3468
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3469 3470 3471 3472 3473

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3474
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3475
            cost = fluid.layers.edit_distance(input=x,label=y)
3476
    """
3477
    helper = LayerHelper("edit_distance", **locals())
3478

3479
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3480
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3481 3482 3483 3484 3485 3486 3487
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3488
            attrs={"tokens": ignored_tokens})
3489 3490 3491 3492 3493
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3494
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3495
            attrs={"tokens": ignored_tokens})
3496 3497
        label = erased_label

3498 3499
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3500
    sequence_num = helper.create_tmp_variable(dtype="int64")
3501 3502 3503 3504
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3505 3506
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3507 3508
        attrs={"normalized": normalized})

3509
    return edit_distance_out, sequence_num
3510 3511 3512 3513 3514


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3515

Y
ying 已提交
3516 3517 3518 3519
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3537
        input.lod = [[4, 4]]
3538 3539 3540 3541 3542 3543 3544

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3545
        output.lod = [[2, 1]]
3546 3547 3548

    Args:

Y
ying 已提交
3549 3550 3551 3552 3553 3554 3555 3556 3557
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3558
        name (str): The name of this layer. It is optional.
3559 3560

    Returns:
3561
        Variable: CTC greedy decode result. If all the sequences in result were
3562
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3563 3564 3565 3566 3567

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3568

3569
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3570
    """
3571
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3572
    _, topk_indices = topk(input, k=1)
3573 3574 3575 3576 3577 3578

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3579
        outputs={"Output": [ctc_out]},
3580 3581
        attrs={"merge_repeated": True,
               "blank": blank})
3582
    return ctc_out
3583 3584


F
fengjiayi 已提交
3585
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3586
    """
3587 3588
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3589
    to compute Connectionist Temporal Classification (CTC) loss.
3590 3591
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3592 3593 3594
    input tensor.

    Args:
3595
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3596 3597 3598 3599
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3600
       label (Variable): The ground truth of variable-length sequence,
3601 3602 3603
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3604 3605
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3606 3607 3608
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3609
         follewed by a mean_op.
W
wanghaoshuang 已提交
3610 3611

    Returns:
3612 3613
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3614 3615

    Examples:
3616

W
wanghaoshuang 已提交
3617
        .. code-block:: python
3618

3619 3620 3621
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3622 3623

    """
F
fengjiayi 已提交
3624
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3651 3652 3653
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3654 3655 3656 3657 3658
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3659

3660
            out.lod  = [[0, 1, 3]]
3661 3662 3663 3664

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3665 3666 3667 3668 3669 3670 3671
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3672 3673 3674

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3675 3676

    Returns:
3677

3678 3679 3680 3681 3682
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3683
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3684
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3685 3686 3687 3688 3689 3690 3691 3692 3693
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3694 3695


3696 3697 3698 3699
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3700 3701 3702 3703 3704 3705 3706
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3707 3708 3709 3710 3711 3712 3713
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3714 3715
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
3716
            sample is 1.0.
3717 3718 3719
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3720

3721
    Returns:
Y
Yibing Liu 已提交
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
3749
    """
Y
Yang Yu 已提交
3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3769 3770 3771 3772 3773 3774 3775 3776 3777
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
3794
    return cost / (num_neg_samples + 1)
3795 3796


Y
fix ci.  
ying 已提交
3797
def transpose(x, perm, name=None):
Y
ying 已提交
3798 3799 3800 3801 3802 3803 3804
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
3805 3806 3807
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
3808 3809 3810 3811 3812 3813 3814 3815

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
3816
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
3817 3818
    """

Y
fix ci.  
ying 已提交
3819
    if len(perm) != len(x.shape):
Y
ying 已提交
3820 3821 3822
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
3823 3824 3825 3826 3827 3828
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
3829 3830

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
3831
    out = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
3832 3833
    helper.append_op(
        type='transpose',
Y
fix ci.  
ying 已提交
3834
        inputs={'X': [x]},
Y
ying 已提交
3835 3836 3837
        outputs={'Out': [out]},
        attrs={'axis': perm})
    return out
3838 3839


3840
def im2sequence(input, filter_size=1, stride=1, padding=0, name=None):
3841
    """
3842 3843 3844 3845 3846 3847 3848
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
3849 3850 3851 3852 3853 3854 3855 3856 3857 3858

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

3877 3878 3879
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
3880 3881 3882 3883 3884
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
3912 3913 3914
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

            output.dims = {8, 9}

3929
            output.lod = [[4, 4]]
3930

D
dzhwinter 已提交
3931
     Examples:
3932 3933 3934

        .. code-block:: python

3935 3936
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
3937 3938

    """
W
wanghaoshuang 已提交
3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])

3950
    helper = LayerHelper('im2sequence', **locals())
3951 3952
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
3953
        type='im2sequence',
3954 3955 3956
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
wanghaoshuang 已提交
3957 3958 3959
            'kernels': filter_size,
            'strides': stride,
            'paddings': padding,
3960 3961
        })
    return out
3962 3963


Y
yuyang18 已提交
3964
@templatedoc()
3965
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
3966 3967
    """
    ${comment}
3968 3969

    Args:
Y
yuyang18 已提交
3970
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
3971 3972
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
3973 3974 3975 3976 3977
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
3978
        ${out_comment}.
3979 3980

    Examples:
Y
yuyang18 已提交
3981 3982 3983 3984
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
3997
    return helper.append_activation(out)
3998 3999


Y
yuyang18 已提交
4000
@templatedoc()
4001 4002
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4003 4004 4005 4006 4007 4008 4009
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4010 4011

    Args:
Y
yuyang18 已提交
4012 4013
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4014 4015

    Returns:
Y
yuyang18 已提交
4016
        ${out_comment}.
4017 4018
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4019 4020 4021 4022 4023 4024

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4025 4026 4027 4028 4029 4030
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4031 4032 4033 4034 4035


def softmax_with_cross_entropy(logits, label, soft_label=False):
    """
    **Softmax With Cross Entropy Operator.**
4036

4037 4038 4039 4040
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4041

4042 4043 4044
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4045

4046 4047 4048
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4049

4050
    The equation is as follows:
4051

4052
    1) Hard label (one-hot label, so every sample has exactly one class)
4053

4054 4055 4056 4057
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4058

4059 4060 4061
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4062

4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4084 4085
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={'soft_label': soft_label})
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4102 4103
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4104
    For each instance, it computes the smooth L1 loss element by element first
4105
    and then sums all the losses. So the shape of ouput Variable is
4106
    [batch_size, 1].
4107

4108 4109
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4110
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4111
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4112
            L1 loss op with same shape as :attr:`x`.
4113
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4114 4115
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4116
            by this tensor element by element.
4117
        outside_weight (Variable|None): A tensor with rank at least 2. This
4118 4119
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4120
            element by element.
4121
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4122 4123
           scalar with default value 1.0.

4124
    Returns:
4125
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4126 4127 4128 4129 4130

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4131 4132
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4133
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4134
            out = fluid.layers.smooth_l1(x=fc, y=label)
4135
    """
4136

4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4152 4153 4154 4155


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4156
    This layer creates the one-hot representations for input indices.
4157 4158

    Args:
Y
Yibing Liu 已提交
4159 4160
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4161 4162

    Returns:
Y
Yibing Liu 已提交
4163
        Variable: The one-hot representations of input.
4164 4165

    Examples:
C
caoying03 已提交
4166
        .. code-block:: python
4167

Y
Yibing Liu 已提交
4168 4169
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4170 4171 4172 4173 4174 4175 4176 4177 4178
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4179 4180


Y
Yu Yang 已提交
4181
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4182
    """
Y
yi.wu 已提交
4183 4184 4185
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4186 4187 4188 4189 4190 4191

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4192 4193
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4194 4195 4196 4197 4198 4199

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4200 4201
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4202 4203
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4204 4205 4206 4207 4208
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4209
                value=begin - 1, force_cpu=True))
Y
Yu Yang 已提交
4210 4211 4212
        helper.main_program.global_block().prepend_op(
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4213 4214
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4215 4216 4217
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4218 4219


4220
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4221
    """
C
caoying03 已提交
4222 4223
    Gives a new shape to the input Tensor without changing its data.

4224 4225 4226 4227 4228
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4229

4230
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4231

4232 4233 4234 4235
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4236
    2. 0 means the actual dimension value is going to be copied from the
4237 4238 4239 4240
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4241 4242

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4243
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4244
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4245

4246
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4247 4248
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4249 4250
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4251
    dimensions.
C
caoying03 已提交
4252

4253
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4254 4255 4256 4257
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4258 4259

    Args:
4260
        x(variable): The input tensor.
C
caoying03 已提交
4261 4262
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4263 4264 4265 4266 4267
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4268 4269 4270 4271
        act (str): The non-linear activation to be applied to output variable.
        inplace(bool): If this flag is set true, a new output tensor is created
                       whose data is copied from input x, otherwise the output
                       shares data with input without copying.
4272
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4273

4274 4275
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4276 4277 4278

    Examples:
        .. code-block:: python
G
guosheng 已提交
4279

4280
            data = fluid.layers.data(
4281
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4282
            reshaped = fluid.layers.reshape(
4283
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4284 4285 4286 4287 4288
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
        raise ValueError("Input shape must be a python lsit or tuple.")

4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

C
caoying03 已提交
4304 4305 4306 4307
    helper = LayerHelper("reshape", **locals())
    reshaped = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reshape",
4308 4309 4310
        inputs={"X": x,
                "Shape": actual_shape}
        if isinstance(actual_shape, Variable) else {"X": x},
C
caoying03 已提交
4311 4312 4313 4314 4315
        attrs={"shape": shape,
               "inplace": inplace},
        outputs={"Out": reshaped})

    return helper.append_activation(reshaped)
4316 4317


Y
yangyaming 已提交
4318
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4319
    """
Y
Yibing Liu 已提交
4320
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4321 4322 4323 4324
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4325
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4326 4327 4328 4329 4330 4331

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4332
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4333 4334 4335
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4336
            target_lod: [4, 2]
Y
yangyaming 已提交
4337 4338

            then we get a 1-level LoDTensor:
4339
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4340 4341 4342 4343 4344 4345
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4346
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4347 4348 4349 4350
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4351
                y.data = [[2, 4]]
Y
yangyaming 已提交
4352 4353 4354
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4355
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4356 4357 4358 4359 4360 4361
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4362
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4363 4364 4365 4366
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4367
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4368 4369 4370 4371
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4372
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4373 4374 4375 4376 4377
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4378
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4379
                           from :attr:`y`.
Y
yangyaming 已提交
4380
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4381
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4382 4383

    Returns:
Y
Yibing Liu 已提交
4384
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4385 4386

    Raises:
Y
Yibing Liu 已提交
4387
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4423
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4452 4453
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4481 4482 4483 4484


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4485
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4486
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4487

G
guosheng 已提交
4488 4489 4490 4491
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4514
                         The length of :attr:paddings must be
G
guosheng 已提交
4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4525

G
guosheng 已提交
4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4540 4541 4542 4543 4544 4545 4546 4547 4548


def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
4549 4550
    called label-smoothing regularization (LSR).

4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
4574
                              be :math:`(1, class\_num)`.
4575 4576
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
4577
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
4605 4606


Y
yi.wu 已提交
4607
@templatedoc()
4608 4609
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
4610
    ${comment}
4611 4612

    Args:
Y
yi.wu 已提交
4613 4614
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
4615 4616 4617
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
4618 4619

    Returns:
Y
update  
yi.wu 已提交
4620
        Variable: ${out_comment}.
4621 4622

    Examples:
4623 4624
        .. code-block:: python

4625
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
4671 4672
        .. code-block:: python

W
whs 已提交
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
    reduce_dim = range(1, len(input.shape))
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
4684 4685


4686 4687 4688 4689 4690
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
4691
    """
Q
qiaolongfei 已提交
4692
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
4693

4694
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
4695 4696 4697
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
4698

4699
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
4700

4701
    Args:
4702
        input (Variable): The input tensor of image resize layer,
4703 4704
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
4705
        out_shape(list|tuple|Variable|None): Output shape of image resize
4706 4707
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
4708
        scale(float|None): The multiplier for the input height or width.
4709 4710 4711
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
4712 4713
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4714 4715
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
4716 4717

    Returns:
Q
update  
qiaolongfei 已提交
4718 4719
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
4720

4721 4722 4723
    Examples:
        .. code-block:: python

4724
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
4725
    """
4726 4727 4728 4729
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
4730 4731
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
4732 4733
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
4734 4735 4736 4737

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

4738 4739 4740
    out_h = 0
    out_w = 0
    inputs = {"X": input}
4741
    if out_shape is not None:
B
baiyf 已提交
4742 4743 4744
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
4745 4746 4747 4748 4749 4750
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
4751 4752 4753 4754
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

4755 4756
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
4757
        type=resample_methods[resample],
4758
        inputs=inputs,
4759 4760 4761 4762
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
4763 4764


Y
yuyang18 已提交
4765
@templatedoc(op_type="bilinear_interp")
4766 4767
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
4768 4769 4770 4771 4772 4773
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
4774

Y
yuyang18 已提交
4775 4776 4777 4778 4779 4780 4781 4782
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
4783 4784 4785 4786 4787 4788 4789
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
4790 4791 4792
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
4793 4794 4795 4796 4797 4798 4799
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
4800
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
4801

4802
    Returns:
Q
update  
qiaolongfei 已提交
4803
        Variable: The output is a 4-D tensor of the shape
4804
        (num_batches, channls, out_h, out_w).
4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
4815 4816 4817
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
4818 4819 4820
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
4821 4822
def gather(input, index):
    """
Q
qiaolongfei 已提交
4823 4824
    **Gather Layer**

4825
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
4826 4827 4828 4829
    of X indexed by `index` and concatenate them together.

    .. math::

4830
        Out = X[Index]
W
whs 已提交
4831 4832 4833 4834 4835 4836 4837


    .. code-block:: text


                Given:

4838 4839
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
4840 4841 4842 4843 4844 4845 4846 4847 4848 4849
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
4850
        input (Variable): The source input with rank>=1.
W
whs 已提交
4851 4852 4853 4854 4855 4856
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
4857

W
whs 已提交
4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
4886

4887 4888 4889
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
4890
    """
F
stash  
fengjiayi 已提交
4891 4892 4893
    helper = LayerHelper("random_crop", **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
4894 4895 4896
    if seed is None:
        seed = random.randint(-65536, 65535)

F
stash  
fengjiayi 已提交
4897
    if isinstance(seed, int):
F
fengjiayi 已提交
4898
        seed_value = seed
F
fengjiayi 已提交
4899 4900 4901 4902 4903 4904 4905 4906
        seed = helper.create_tmp_variable(dtype="int64")
        helper.append_op(
            type="fill_constant",
            inputs={},
            outputs={"Out": seed},
            attrs={
                "dtype": seed.dtype,
                "shape": [1],
F
fengjiayi 已提交
4907 4908
                "value": float(seed_value),
                "force_cpu": True
F
fengjiayi 已提交
4909
            })
F
stash  
fengjiayi 已提交
4910 4911
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
F
fengjiayi 已提交
4912
    seed_out = helper.create_tmp_variable(dtype="int64")
F
stash  
fengjiayi 已提交
4913 4914
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
4915
        inputs={"X": x,
F
stash  
fengjiayi 已提交
4916 4917 4918 4919 4920
                "Seed": seed},
        outputs={"Out": out,
                 "SeedOut": seed_out},
        attrs={"shape": shape})
    return out
W
whs 已提交
4921 4922


4923
def log(input):
W
wanghaoshuang 已提交
4924 4925 4926 4927 4928
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

4929
        Out = \\ln(input)
W
wanghaoshuang 已提交
4930 4931

    Args:
4932
        input (Variable): Input tensor.
W
wanghaoshuang 已提交
4933 4934 4935 4936 4937 4938 4939 4940

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

4941
            output = fluid.layers.log(input)
W
wanghaoshuang 已提交
4942 4943 4944 4945 4946 4947 4948 4949
    """
    helper = LayerHelper('log', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(type="log", inputs={"X": input}, outputs={"Out": out})
    return out


4950
def relu(input):
W
wanghaoshuang 已提交
4951 4952
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
4953
    where the rectified linear function, y = max(0, input), is applied to
W
wanghaoshuang 已提交
4954 4955 4956 4957
    the tensor elementwise.

    .. math::

4958
        Out = \\max(0, input)
W
wanghaoshuang 已提交
4959 4960

    Args:
4961
        input (Variable): The input tensor.
W
wanghaoshuang 已提交
4962 4963 4964 4965 4966 4967 4968 4969

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

4970
            output = fluid.layers.relu(input)
W
wanghaoshuang 已提交
4971 4972 4973 4974 4975 4976
    """
    helper = LayerHelper('relu', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(type="relu", inputs={"X": input}, outputs={"Out": out})
    return out
4977 4978


W
whs 已提交
4979 4980 4981
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
4982 4983 4984 4985
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
4986
    .. math::
4987 4988

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
4989

4990
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
4991 4992 4993 4994 4995
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
4996
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
4997
                           Its shape should be the same as input.
4998
        num_classes (int): The possible number of labels.
W
whs 已提交
4999 5000 5001 5002

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5003
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5004 5005 5006 5007

    Examples:

        .. code-block:: python
5008

W
whs 已提交
5009 5010 5011 5012 5013 5014 5015 5016 5017
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
5018 5019
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5020
        outputs={
5021 5022 5023
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5024 5025 5026
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
        isinstance(shape, Variable)):
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out