executor.py 117.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
Zeng Jinle 已提交
17
import logging
18 19
import os
import multiprocessing
C
chengduo 已提交
20
import sys
21
import warnings
D
dzhwinter 已提交
22
import numpy as np
S
rename  
sneaxiy 已提交
23
from .wrapped_decorator import signature_safe_contextmanager
24
import six
25
from .data_feeder import convert_dtype
26
from .framework import Program, default_main_program, Variable, Operator
27
from .framework import convert_np_dtype_to_dtype_, _apply_pass
L
Leo Chen 已提交
28

29
from . import core
30
from . import unique_name
31 32
from . import compiler
from .. import compat as cpt
33
from .trainer_factory import TrainerFactory
34
from .trainer_factory import FetchHandlerMonitor
35
import copy
36
from . import framework
37
from .incubate.checkpoint import auto_checkpoint as acp
38
from .compiler import _prune_feed_ops
39

R
Ruibiao Chen 已提交
40 41
from functools import lru_cache

T
Tink_Y 已提交
42
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
43

Y
Yu Yang 已提交
44
g_scope = core.Scope()
F
flame 已提交
45 46
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
47

Y
Yu Yang 已提交
48

Y
Yang Yu 已提交
49
def global_scope():
Y
yuyang18 已提交
50
    """
51 52
    :api_attr: Static Graph

Y
yuyang18 已提交
53 54 55
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

C
chengduo 已提交
56 57 58
    Returns:
        Scope: The global/default scope instance.

59 60 61
    Examples:
        .. code-block:: python

62
          import paddle
63 64
          import numpy

65 66
          paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
          numpy.array(paddle.static.global_scope().find_var("data").get_tensor())
Y
yuyang18 已提交
67
    """
Y
Yang Yu 已提交
68 69 70
    return g_scope


71
def _switch_scope(scope):
Y
Yang Yu 已提交
72 73 74 75 76 77
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
78
@signature_safe_contextmanager
Y
Yang Yu 已提交
79
def scope_guard(scope):
Y
yuyang18 已提交
80
    """
81

82 83 84 85 86 87 88 89 90 91 92 93
    This function switches scope through python `with` statement.
    Scope records the mapping between variable names and variables ( :ref:`api_guide_Variable` ),
    similar to brackets in programming languages.
    If this function is not invoked, all variables and variable names are recorded in the default global scope.
    When users need to create variables with the same name,
    they need to switch scopes through this function
    if they do not want the mapping of variables with the same name to be overwritten.
    After switching through the `with` statement,
    all variables created in the `with` block will be assigned to a new scope.

    Parameters:
        scope: The new scope.
Y
yuyang18 已提交
94

95 96
    Returns:
        None
L
lujun 已提交
97

Y
yuyang18 已提交
98
    Examples:
99

100 101
        .. code-block:: python

102
            import paddle
L
lujun 已提交
103
            import numpy
104
            paddle.enable_static()
Y
yuyang18 已提交
105

106 107 108
            new_scope = paddle.static.Scope()
            with paddle.static.scope_guard(new_scope):
                 paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
L
lujun 已提交
109
            numpy.array(new_scope.find_var("data").get_tensor())
Y
yuyang18 已提交
110
    """
L
lujun 已提交
111

112
    ex = _switch_scope(scope)
113 114 115 116
    try:
        yield
    finally:
        _switch_scope(ex)
Y
Yang Yu 已提交
117 118


119
def as_numpy(tensor, copy=False):
120 121 122
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
123

124
    Examples:
125 126 127 128 129 130 131 132 133 134
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
135 136 137

    Args:
       tensor(Variable): a instance of Tensor
138
       copy(bool, optional): Whether to use deep copy.
139 140 141 142

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
143
    if isinstance(tensor, core.LoDTensorArray):
144
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
145
    if isinstance(tensor, list):
146
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
147 148
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
149
    if len(lod) > 0:
150 151
        raise RuntimeError(
            "Some of your fetched tensors hold LoD information. \
152 153
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
154 155
            return LoDTensor itself directly."
        )
Q
qingqing01 已提交
156
    if tensor._is_initialized():
157 158 159 160
        if copy:
            return np.array(tensor)
        else:
            return np.asarray(tensor)
Q
qingqing01 已提交
161 162
    else:
        return None
D
dzhwinter 已提交
163 164


H
Huihuang Zheng 已提交
165 166 167 168
def dtype_is_compatible_with(first, second):
    """
    Returns True if the first dtype can be compatible the second one.
    Currently, we require the two dtype's have to be same.
169

H
Huihuang Zheng 已提交
170 171
    Args:
        dtype (np.dtype|VarType|str): The type of data: float32, int64, etc.
172

H
Huihuang Zheng 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    Returns:
        True if the two types are same.
    """
    if not isinstance(first, core.VarDesc.VarType):
        first = convert_np_dtype_to_dtype_(first)
    if not isinstance(second, core.VarDesc.VarType):
        second = convert_np_dtype_to_dtype_(second)
    return first == second


def dimension_is_compatible_with(first, second):
    """
    Returns True if the two dimensions are compatible.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
189 190
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
       is compatible with any number.

    Args:
        first (list/tuple): integers representing shape. "None" or negative
            number means unknown.
        second (list/tuple): integers representing shape. "None" or negative
            number means unknown.

    Returns:
        True if the two dimensions are compatible.
    """

    dim_len = len(first)
    if dim_len != len(second):
        return False

    for i in range(dim_len):
        if first[i] is None or first[i] < 0:
            continue
        if second[i] is None or second[i] < 0:
            continue
        if first[i] != second[i]:
            return False

    return True


218
def check_feed_shape_type(var, feed, num_places=1):
H
Huihuang Zheng 已提交
219 220
    """
    Returns True if the variable doesn't require feed check or it is compatible
T
tianshuo78520a 已提交
221
    with the shape and have same dtype as the fed value.
H
Huihuang Zheng 已提交
222 223 224

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
225 226
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
227
       is compatible with any number.
228

H
Huihuang Zheng 已提交
229 230
    Args:
        var (Variable): the Variable object
T
tianshuo78520a 已提交
231
        feed (LoDTensor): the fed value, which must be a LoDTensor
232 233
        num_places: an integer value indicating the number of places.
            ParallelExecutor will divide data into devices (CPU/GPU) evenly.
H
Huihuang Zheng 已提交
234 235 236 237 238 239 240
    Returns:
        True if the shape and dtype of variable is compatible with the feed value
    Raises:
        ValueError: if the shape or dtype of the variable is not compatible with
            the feed value
    """
    if var.desc.need_check_feed():
241 242
        diff_shape = core.diff_tensor_shape(feed, var.desc, num_places)
        if diff_shape is not None:
243
            raise ValueError(
T
tianshuo78520a 已提交
244
                'The fed Variable %r should have dimensions = %d, shape = '
245 246 247
                '%r, but received fed shape %r on each device'
                % (var.name, len(var.shape), var.shape, diff_shape)
            )
H
Huihuang Zheng 已提交
248
        if not dtype_is_compatible_with(feed._dtype(), var.dtype):
249 250 251 252 253 254 255 256 257 258
            var_dtype_format = (
                convert_dtype(var.dtype)
                if isinstance(var.dtype, core.VarDesc.VarType)
                else var.dtype
            )
            feed_dtype_format = (
                convert_dtype(feed._dtype())
                if isinstance(feed._dtype(), core.VarDesc.VarType)
                else feed._dtype()
            )
259
            raise ValueError(
260 261 262
                'The data type of fed Variable %r must be %r, but received %r'
                % (var.name, var_dtype_format, feed_dtype_format)
            )
H
Huihuang Zheng 已提交
263 264 265
    return True


266
def has_feed_operators(block, feed_targets, feed_holder_name):
267
    """Check whether the block already has feed operators.
268 269 270 271 272 273 274 275 276 277

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
278 279
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
280 281 282
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
283
        A boolean value that indicates whether a block has feed operators
284 285 286 287 288 289 290 291 292 293
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
294 295
                raise Exception(
                    "'feed_targets' does not have {} variable".format(
296 297 298
                        feed_target_name
                    )
                )
299 300 301 302
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
303 304
            "Feed operators in program desc do not match 'feed_targets'"
        )
305 306 307
    return feed_count > 0


308 309 310 311
def has_fetch_operators(
    block, fetch_targets, fetch_holder_name, fetch_op='fetch'
):
    """Check whether the block already has fetch operators.
X
xuwei06 已提交
312

313 314 315 316 317 318 319 320 321
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
322 323 324
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
325
        fetch_op: the operator name of fetch
326

X
xuwei06 已提交
327 328 329
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
330 331 332 333
    """

    fetch_count = 0
    for op in block.ops:
334
        if op.desc.type() == fetch_op:
335 336 337 338
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
339
                var.desc.name() for var in fetch_targets
340
            ]:
341 342
                raise Exception(
                    "'fetch_targets' does not have {} variable".format(
343 344 345
                        fetch_target_name
                    )
                )
346 347 348 349
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
350 351
            "Fetch operators in program desc do not match 'fetch_targets'"
        )
352 353 354
    return fetch_count > 0


355 356 357
def _add_feed_fetch_ops(
    program, feed, fetch_list, feed_var_name, fetch_var_name, use_fetch_v2=False
):
R
Ruibiao Chen 已提交
358 359 360 361 362 363 364 365 366 367
    tmp_program = program.clone()

    global_block = tmp_program.global_block()

    if feed_var_name in global_block.vars:
        feed_var = global_block.var(feed_var_name)
    else:
        feed_var = global_block.create_var(
            name=feed_var_name,
            type=core.VarDesc.VarType.FEED_MINIBATCH,
368 369
            persistable=True,
        )
R
Ruibiao Chen 已提交
370 371 372 373 374 375 376

    if fetch_var_name in global_block.vars:
        fetch_var = global_block.var(fetch_var_name)
    else:
        fetch_var = global_block.create_var(
            name=fetch_var_name,
            type=core.VarDesc.VarType.FETCH_LIST,
377 378
            persistable=True,
        )
R
Ruibiao Chen 已提交
379 380 381 382 383 384

    # prepend feed operators
    if not has_feed_operators(global_block, feed, feed_var_name):
        for i, name in enumerate(feed):
            if global_block.has_var(name):
                out = global_block.var(name)
385 386 387 388 389 390
                global_block._prepend_op(
                    type='feed',
                    inputs={'X': [feed_var]},
                    outputs={'Out': [out]},
                    attrs={'col': i},
                )
R
Ruibiao Chen 已提交
391 392 393
            else:
                warnings.warn(
                    "The variable %s is not found in program. It is not declared or is pruned."
394 395
                    % name
                )
R
Ruibiao Chen 已提交
396 397 398 399 400 401 402

    if use_fetch_v2:
        fetch_op = 'fetch_v2'
    else:
        fetch_op = 'fetch'

    # append fetch_operators
403 404 405
    if not has_fetch_operators(
        global_block, fetch_list, fetch_var_name, fetch_op
    ):
R
Ruibiao Chen 已提交
406 407
        for i, var in enumerate(fetch_list):
            assert isinstance(var, Variable) or isinstance(
408 409 410 411 412 413 414 415
                var, six.string_types
            ), "Wrong type for fetch_list[%s]: %s" % (i, type(var))
            global_block.append_op(
                type=fetch_op,
                inputs={'X': [var]},
                outputs={'Out': [fetch_var]},
                attrs={'col': i},
            )
R
Ruibiao Chen 已提交
416 417 418 419

    return tmp_program


420 421 422
def _apply_inplace_addto_pass(
    program, enable_inplace, enable_addto, skip_var_names
):
R
Ruibiao Chen 已提交
423 424 425 426 427 428 429 430
    use_cuda = True if core.is_compiled_with_cuda() else False

    attrs = {"use_cuda": use_cuda, "mem_opt_skip_vars": skip_var_names}
    attr_types = {"use_cuda": "bool", "mem_opt_skip_vars": "list[str]"}

    empty_startup_program = Program()
    if enable_inplace:
        pass_name = "buffer_shared_inplace_pass"
431 432 433
        _apply_pass(
            program, empty_startup_program, pass_name, attrs, attr_types
        )
R
Ruibiao Chen 已提交
434 435
    if enable_addto and use_cuda:
        pass_name = "inplace_addto_op_pass"
436 437 438
        _apply_pass(
            program, empty_startup_program, pass_name, attrs, attr_types
        )
R
Ruibiao Chen 已提交
439 440


W
Wu Yi 已提交
441
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
442
    """
C
chengduoZH 已提交
443 444 445
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
446
    Args:
447 448 449 450
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
451 452 453 454
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
455 456 457
    Returns:
       LodTensor|numpy.ndarray
    """
458
    assert isinstance(name, six.string_types)
X
xuwei06 已提交
459 460
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
461
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
462

463
    var = scope.find_var(_to_name_str(name))
464 465 466
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
467 468
        " program."
    )
X
xuwei06 已提交
469 470
    tensor = var.get_tensor()
    if return_numpy:
471
        tensor = as_numpy(tensor, copy=True)
X
xuwei06 已提交
472 473 474
    return tensor


X
polish  
Xin Pan 已提交
475
def _to_name_str(var):
476 477 478 479 480 481 482 483
    def _to_str(var):
        if isinstance(var, Variable):
            return var.desc.name()
        elif isinstance(var, str):
            return var
        elif isinstance(var, six.string_types):
            return str(var)
        elif isinstance(var, Operator):
484
            return str(id(var))
485 486 487 488 489 490 491 492 493 494
        else:
            raise TypeError(str(var) + " should be Variable, Operator or str")

    # NOTEz(zhiqiu): The item in fetch_list may be tuple returned by Optimizer.minimize(),
    # see comments in _split_optimize_ops_in_fetch_list for more details.
    if isinstance(var, tuple):
        var = var[0]
    if isinstance(var, list):
        s = [_to_str(item) for item in var]
        return ','.join(s)
X
polish  
Xin Pan 已提交
495
    else:
496
        return _to_str(var)
Q
qiaolongfei 已提交
497 498


499
def _is_enable_standalone_executor():
500 501 502 503 504
    return (
        framework._enable_standalone_executor_ is None
        or framework._enable_standalone_executor_
        in [1, '1', True, 'True', 'true']
    )
505 506


507 508
def _is_dy2st_enable_standalone_executor():
    return framework._dy2st_enable_standalone_executor_ in [
509 510 511 512 513
        1,
        '1',
        True,
        'True',
        'true',
514 515 516
    ]


517 518
def _prepare_fleet_executor():
    from ..distributed.fleet.proto import fleet_executor_desc_pb2
519

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
    trainer_endpoints_str = os.getenv("PADDLE_TRAINER_ENDPOINTS", "")
    trainer_endpoints = trainer_endpoints_str.split(',')
    fleet_exe_desc = fleet_executor_desc_pb2.FleetExecutorDesc()
    cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
    fleet_exe_desc.cur_rank = cur_rank
    nrank = len(trainer_endpoints)
    for rank, endpoint in enumerate(trainer_endpoints):
        rank_info = fleet_executor_desc_pb2.RankInfo()
        rank_info.rank = rank
        rank_info.ip_port = endpoint
        fleet_exe_desc.cluster_info.append(rank_info)
    fleet_exe = core.FleetExecutor(fleet_exe_desc.SerializeToString())
    return fleet_exe


L
Leo Chen 已提交
535 536
def _get_strong_program_cache_key_for_new_exe(program, feed, fetch_list):
    return program.desc.cached_hash_str() + _get_program_cache_key(
537 538
        feed, fetch_list
    )
L
Leo Chen 已提交
539 540


541
def _get_strong_program_cache_key(program, feed, fetch_list):
L
Leo Chen 已提交
542
    # TODO(zhiqiu): use hash_str to generate cache key as above
543 544 545 546 547 548
    def _get_varname_from_block(block):
        block_str = []
        for var_name in list(block.vars.keys()):
            block_str.append(var_name)
        return "\n".join(block_str)

549 550 551 552 553 554 555 556 557 558
    inner_program = (
        program._program
        if isinstance(program, compiler.CompiledProgram)
        else program
    )
    return (
        _get_varname_from_block(inner_program.blocks[0])
        + str(id(program))
        + _get_program_cache_key(feed, fetch_list)
    )
559 560


X
polish  
Xin Pan 已提交
561
def _get_program_cache_key(feed, fetch_list):
562 563 564 565 566 567
    feed_var_names = []
    if isinstance(feed, dict):
        feed_var_names = list(feed.keys())
    elif isinstance(feed, list) or isinstance(feed, tuple):
        for i, each in enumerate(feed):
            feed_var_names += list(each.keys())
X
polish  
Xin Pan 已提交
568
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
569 570 571
    return str(feed_var_names + fetch_var_names)


572
def _as_lodtensor(data, place, dtype=None):
W
Wu Yi 已提交
573
    """
574 575
    Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
W
Wu Yi 已提交
576

577 578 579 580 581 582 583
    Examples:
        >>> import paddle.fluid as fluid
        >>> place = fluid.CPUPlace()
        >>> exe = fluid.executor(place)
        >>> data = np.array(size=(100, 200, 300))
        >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
        >>>     ...
W
Wu Yi 已提交
584

585 586 587 588
    Args:
        data(numpy.ndarray|list|tuple|scalar): a instance of array, scalar, list or tuple
        data(core.Place): the place of created tensor
        dtype(core.VarDesc.VarType|str): the expected data type of created tensor
W
Wu Yi 已提交
589

590 591 592 593
    Returns:
        LoDTensor
    """
    # NOTE(zhiqiu): convert python builtin, like float, int, and list, to numpy ndarray
594
    if not isinstance(data, np.ndarray):
595 596 597 598 599 600 601 602
        assert (
            dtype is not None
        ), 'The dtype should be given when feed data is not np.ndarray'
        dtype = (
            convert_dtype(dtype)
            if isinstance(dtype, core.VarDesc.VarType)
            else dtype
        )
603 604
        if np.isscalar(data):
            data = np.array([data]).astype(dtype)
605 606
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
607
            if data.dtype == np.object_:
608 609 610 611 612 613 614 615 616
                raise TypeError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                    "this means the input data contains nested lists with different lengths. "
                    "Please consider using 'fluid.create_lod_tensor' to convert it to a LoD-Tensor."
                )
            data = data.astype(dtype)
        else:
            raise TypeError(
                "Convert data of type {} to Tensor is not supported".format(
617 618 619
                    type(data)
                )
            )
620

621
    # convert numpy.ndarray to tensor
W
Wu Yi 已提交
622 623 624 625 626
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


627
class FetchHandler(object):
D
Dong Daxiang 已提交
628 629 630
    def __init__(self, var_dict=None, period_secs=60):
        assert var_dict != None
        self.var_dict = var_dict
631 632
        self.period_secs = period_secs

D
Dong Daxiang 已提交
633 634 635 636 637
    def handler(self, res_dict):
        for key in res_dict:
            if type(res_dict[key]) is np.ndarray:
                sys.stdout.write("{}[0]: {} ".format(key, res_dict[key][0]))
        sys.stdout.write("\n")
638 639 640

    @staticmethod
    def help():
641 642
        print(
            """
D
Dong Daxiang 已提交
643 644 645 646 647 648 649 650
class FetchHandlerExample(FetchHandler):
    def handler(self, res_dict):
        print(res_dict["auc"])
        print("auc: {}, {}".format(res_dict["auc"], time.ctime()))

auc = Variable()
var_dict = {"auc": auc}
handler = FetchHandlerExample(var_dict=var_dict)
651 652
"""
        )
653 654


655
class _StandaloneExecutor(object):
656
    def __init__(self, place, main_program, scope):
657 658 659
        self._place = core.Place()
        self._place.set_place(place)
        self._main_program = main_program
660
        self._scope = scope
661 662
        self._new_exe = self._create_new_executor()

663
    def run(self, scope, feed_names, fetch_list, return_numpy=True):
664 665
        """
        Args:
666
            feed_names(list): This parameter represents the input names of the model.
667
            fetch_list(list): This parameter represents the Tensors that need to be returned
668
                after the model runs. The default is None.
669 670 671 672 673 674
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
        """
        fetch_list = self._check_fetch(fetch_list)

675 676 677
        tensors = self._new_exe.run(
            scope, feed_names, fetch_list
        )._move_to_list()
678 679 680 681 682 683
        if return_numpy:
            return as_numpy(tensors, copy=True)
        else:
            return tensors

    def _create_new_executor(self):
L
Leo Chen 已提交
684
        new_exe = core.StandaloneExecutor(self._place, self._main_program.desc)
685 686 687 688 689

        return new_exe

    def _update_feed(self, feed):
        """
690
        Update the feed dict, remove the feed item which is pruned in program.
691 692

        Notes: This is a very low level API. Users should not use this API
693
        directly.
694 695 696 697 698 699 700 701 702

        Args:
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        if feed is None:
            feed = {}
703 704 705 706 707 708
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

        if not isinstance(feed, dict):
            raise TypeError(
709 710 711
                "feed requires dict as its Parameter. But you passed in %s"
                % (type(feed))
            )
712 713 714 715 716 717 718

        global_block = self._main_program.global_block()
        for feed_name in list(feed.keys()):
            if not global_block.has_var(feed_name):
                feed.pop(feed_name)
                warnings.warn(
                    "The variable %s is not found in program. It is not declared or is pruned."
719 720
                    % feed_name
                )
721 722 723 724 725 726 727 728 729 730 731 732 733

        return feed

    def _check_fetch(self, fetch_list):
        if fetch_list is None:
            fetch_list = []

        res = []
        for fetch_var in fetch_list:
            if isinstance(fetch_var, Variable):
                fetch_var = fetch_var.name
            elif not isinstance(fetch_var, str):
                raise TypeError(
734 735 736 737
                    "Required fetch_var shall be str|Variable, but received {}".format(
                        type(fetch_var).__name__
                    )
                )
738 739 740 741 742 743

            res.append(fetch_var)
        return res


class _ExecutorCache(object):
R
Ruibiao Chen 已提交
744
    class _CachedData(object):
745 746 747 748 749 750 751 752 753 754
        def __init__(
            self,
            program,
            feed,
            fetch_list,
            feed_var_name,
            fetch_var_name,
            place,
            scope,
        ):
R
Ruibiao Chen 已提交
755 756 757 758 759 760 761 762 763 764 765
            self.program = program
            self.feed = feed
            self.fetch_list = fetch_list
            self.feed_var_name = feed_var_name
            self.fetch_var_name = fetch_var_name
            self.place = place
            self.scope = scope

            # NOTE(Ruibiao): Not all changeable item is considered for key at present,
            # ONLY: program, feed, and fetch_list
            if isinstance(self.program, compiler.CompiledProgram):
766 767 768 769
                if not self.program._program:
                    # The program holds no _program, maybe it is constructed by graph.
                    # Convert graph to program in order to generate key.
                    self.program._program = framework.IrGraph(
770 771
                        self.program._graph
                    ).to_program()
R
Ruibiao Chen 已提交
772 773
                self.key = hash(
                    _get_strong_program_cache_key_for_new_exe(
774 775 776
                        self.program._program, feed, fetch_list
                    )
                )
R
Ruibiao Chen 已提交
777 778 779
            else:
                self.key = hash(
                    _get_strong_program_cache_key_for_new_exe(
780 781 782
                        self.program, feed, fetch_list
                    )
                )
R
Ruibiao Chen 已提交
783 784

        def __eq__(self, other):
785 786 787 788
            return (
                isinstance(other, _ExecutorCache._CachedData)
                and self.key == other.key
            )
R
Ruibiao Chen 已提交
789 790 791 792 793 794 795 796 797

        def __hash__(self):
            return self.key

    def __init__(self):
        # NOTE(Ruibiao): Wrap the lru_cache in constructor so that the cache is local to
        # the _ExecutorCache instance, otherwise a global cache may not be released after
        # the Executor instance deleted
        self._get_cached_program_and_executor = lru_cache(maxsize=8)(
798 799
            self._get_program_and_executor
        )
R
Ruibiao Chen 已提交
800 801 802 803

    def clear(self):
        self._get_cached_program_and_executor.cache_clear()

804 805 806 807 808 809 810 811 812 813
    def get_program_and_executor(
        self,
        program,
        feed,
        fetch_list,
        feed_var_name,
        fetch_var_name,
        place,
        scope,
    ):
R
Ruibiao Chen 已提交
814
        return self._get_cached_program_and_executor(
815 816 817 818 819 820 821 822 823 824
            self._CachedData(
                program,
                feed,
                fetch_list,
                feed_var_name,
                fetch_var_name,
                place,
                scope,
            )
        )
R
Ruibiao Chen 已提交
825 826 827

    def _get_program_and_executor(self, cached_data):
        program = cached_data.program
828 829 830 831 832
        inner_program = (
            program._program
            if isinstance(program, compiler.CompiledProgram)
            else program
        )
R
Ruibiao Chen 已提交
833 834 835 836 837 838 839 840 841
        feed = cached_data.feed
        fetch_list = cached_data.fetch_list
        feed_var_name = cached_data.feed_var_name
        fetch_var_name = cached_data.fetch_var_name
        place = cached_data.place
        scope = cached_data.scope

        # To apply IR pass, compile the Program to IrGraph and convert it back to Program
        if isinstance(program, compiler.CompiledProgram) or isinstance(
842 843 844 845 846 847 848
            program._graph, compiler.CompiledProgram
        ):
            compiled_program = (
                program
                if isinstance(program, compiler.CompiledProgram)
                else program._graph
            )
R
Ruibiao Chen 已提交
849 850 851 852 853 854 855 856 857 858 859 860 861 862
            build_strategy = compiled_program._build_strategy
            # print(f"Program before convert:\n {inner_program}", flush=True)
            compiled_program._compile(scope, place)
            ir_graph = framework.IrGraph(compiled_program._graph)
            converted_program = ir_graph.to_program()

            if hasattr(inner_program, 'lr_sheduler'):
                converted_program.lr_sheduler = inner_program.lr_sheduler

            inner_program = converted_program
            # print(f"Program after convert:\n {inner_program}", flush=True)
        else:
            build_strategy = None
            from paddle.incubate.autograd import prim_enabled, prim2orig
863

R
Ruibiao Chen 已提交
864 865 866 867 868
            if prim_enabled() and program == default_main_program():
                prim2orig()

            inner_program = program

869 870 871 872 873 874 875 876
        program = _add_feed_fetch_ops(
            program=inner_program,
            feed=feed,
            fetch_list=fetch_list,
            feed_var_name=feed_var_name,
            fetch_var_name=fetch_var_name,
            use_fetch_v2=True,
        )
R
Ruibiao Chen 已提交
877

878 879 880 881 882
        if (
            os.environ.get('FLAGS_CONVERT_GRAPH_TO_PROGRAM', None)
            in [1, '1', True, 'True', 'true']
            and not program._is_start_up_program_
        ):
P
pangyoki 已提交
883 884 885 886 887 888 889
            if program.num_blocks > 1:
                # If there are multiple blocks in the program, subblock will not be executed with the new executor in temporary
                logging.warning("There are more than 1 block in program.")
            elif program.num_blocks == 1:
                logging.warning("There are 1 block in program.")
            else:
                logging.warning("There are no block in program.")
R
Ruibiao Chen 已提交
890 891 892

        # standalone executor will apply buffer_shared_inplace_pass and
        # inplace_addto_op_pass to program according to build_strategy
893 894 895 896 897 898 899 900 901 902
        enable_inplace = (
            True
            if build_strategy is None or build_strategy.enable_inplace
            else False
        )
        enable_addto = (
            True
            if build_strategy is not None and build_strategy.enable_addto
            else False
        )
R
Ruibiao Chen 已提交
903 904 905
        if enable_inplace or enable_addto:
            # inplace should skip feed and fetch var
            skip_var_names = eval(_get_program_cache_key(feed, fetch_list))
906 907 908
            _apply_inplace_addto_pass(
                program, enable_inplace, enable_addto, skip_var_names
            )
R
Ruibiao Chen 已提交
909 910 911 912

        new_program = program.clone()
        new_exe = _StandaloneExecutor(place, new_program, scope)
        return new_program, new_exe
913 914


Y
Yu Yang 已提交
915
class Executor(object):
916
    """
917 918
    :api_attr: Static Graph

919
    An Executor in Python, supports single/multiple-GPU running,
920
    and single/multiple-CPU running.
C
chengduo 已提交
921 922

    Args:
923
        place(paddle.CPUPlace()|paddle.CUDAPlace(n)|str|None): This parameter represents
924 925 926 927
            which device the executor runs on. When this parameter is None, PaddlePaddle
            will set the default device according to its installation version. If Paddle
            is CPU version, the default device would be set to `CPUPlace()` . If Paddle is
            GPU version, the default device would be set to `CUDAPlace(0)` . Default is None.
928
            If ``place`` is string, it can be ``cpu``, and ``gpu:x``, where ``x``
929 930
            is the index of the GPUs. Note: users only pass one Place or None to initialize
            Executor when using multiple-cards. Other APIs will override the cards. See
931
            `document for multiple-cards <https://www.paddlepaddle.org.cn/documentation/docs/en/develop/guides/01_paddle2.0_introduction/update_en.html#stand-alone-multi-card-launch>`_
C
chengduo 已提交
932 933 934

    Returns:
        Executor
S
Fix doc  
sneaxiy 已提交
935

936
    Examples:
S
Fix doc  
sneaxiy 已提交
937 938
        .. code-block:: python

939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
            import paddle
            import numpy
            import os

            # Executor is only used in static graph mode
            paddle.enable_static()

            # Set place explicitly.
            # use_cuda = True
            # place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            # exe = paddle.static.Executor(place)

            # If you don't set place, PaddlePaddle sets the default device.
            exe = paddle.static.Executor()

            train_program = paddle.static.Program()
            startup_program = paddle.static.Program()
            with paddle.static.program_guard(train_program, startup_program):
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)

            # Run the startup program once and only once.
            # Not need to optimize/compile the startup program.
            exe.run(startup_program)

            # Run the main program directly without compile.
            x = numpy.random.random(size=(10, 1)).astype('float32')
            loss_data, = exe.run(train_program, feed={"X": x}, fetch_list=[loss.name])

            # Or, compiled the program and run. See `CompiledProgram`
            # for more details.
            # NOTE: If you use CPU to run the program or Paddle is
            # CPU version, you need to specify the CPU_NUM, otherwise,
            # PaddlePaddle will use all the number of the logic core as
            # the CPU_NUM, in that case, the batch size of the input
            # should be greater than CPU_NUM, if not, the process will be
            # failed by an exception.

            # Set place explicitly.
            # if not use_cuda:
            #     os.environ['CPU_NUM'] = str(2)

            # If you don't set place and PaddlePaddle is CPU version
            os.environ['CPU_NUM'] = str(2)

            compiled_prog = paddle.static.CompiledProgram(
                train_program).with_data_parallel(loss_name=loss.name)
            loss_data, = exe.run(compiled_prog, feed={"X": x}, fetch_list=[loss.name])

990 991
    """

992 993
    def __init__(self, place=None):
        if place is None:
994 995
            expected_place = framework._current_expected_place()
            self.place = expected_place
996
        else:
997
            self.place = framework._get_paddle_place(place)
Q
qiaolongfei 已提交
998
        self.program_caches = dict()
999
        self.ctx_caches = dict()
1000
        self.trainer_caches = dict()
1001
        self.scope_caches = dict()
1002
        self.micro_scope_cache = dict()
1003
        self.var_caches = dict()
1004
        self.pruned_program_caches = dict()
1005 1006 1007
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
1008
        self._closed = False
1009
        self.pruned_program_scope_caches = dict()
1010
        self._prepare_to_run_called = False
D
dzhwinter 已提交
1011

1012
        self._auto_checkpoint_name = unique_name.generate(
1013 1014
            "__auto_checkpoint_executor__"
        )
1015

1016 1017
        # NOTE: Whether to use experimental executor `StandaloneExecutor`.
        self._enable_interpreter_core = _is_enable_standalone_executor()
R
Ruibiao Chen 已提交
1018
        self._executor_cache = _ExecutorCache()
1019

1020
        self._fleet_executor = None
1021 1022 1023
        # TODO(liyurui): This option will be removed and always true when the functionality
        # of fleet executor with standalone executor is ready.
        self._fleet_executor_with_standalone = False
1024

R
Ruibiao Chen 已提交
1025 1026 1027 1028 1029 1030
    def __del__(self):
        # NOTE(Ruibiao): The manually call of clear is required. Because in Python, executor_cache
        # may not immediately destructed after Executor instance deleted (so does not the _StandaloneExecutor),
        # that brings errors to mkl-dnn unit tests (see ClearMKLDNNCache in interpretercore.cc for why).
        self._executor_cache.clear()

1031 1032 1033
    def _get_scope_cache(self, program_cache_key):
        return self.scope_caches.get(program_cache_key, None)

1034 1035 1036
    def _get_ctx_cache(self, program_cache_key):
        return self.ctx_caches.get(program_cache_key, None)

1037 1038 1039
    def _get_trainer_cache(self, program_cache_key):
        return self.trainer_caches.get(program_cache_key, None)

Q
Qiao Longfei 已提交
1040 1041 1042 1043 1044 1045
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
    def _get_pruned_program_cache(self, program_cache_key):
        return self.pruned_program_caches.get(program_cache_key, None)

    def _add_pruned_program_cache(self, program_cache_key, program):
        self.pruned_program_caches[program_cache_key] = program

    def _get_pruned_program_scope_cache(self, program_cache_key):
        return self.pruned_program_scope_caches.get(program_cache_key, None)

    def _add_pruned_program_scope_cache(self, program_cache_key, program):
        self.pruned_program_scope_caches[program_cache_key] = program

1058 1059 1060
    def _add_ctx_cache(self, ctx_cache_key, ctx):
        self.ctx_caches[ctx_cache_key] = ctx

1061 1062 1063
    def _add_trainer_cache(self, trainer_cache_key, ctx):
        self.trainer_caches[trainer_cache_key] = ctx

1064 1065 1066
    def _add_scope_cache(self, scope_cache_key, scope):
        self.scope_caches[scope_cache_key] = scope

1067 1068 1069 1070 1071 1072
    def _add_micro_scopes_cache(self, program_cache_key, micro_scopes: list):
        self.micro_scope_cache[program_cache_key] = micro_scopes

    def _get_micro_scopes_cache(self, program_cache_key):
        return self.micro_scope_cache.get(program_cache_key, None)

1073 1074 1075 1076 1077 1078 1079
    # just for testing, will be removed later
    @lru_cache()
    def _log_force_set_program_cache(self, use_program_cache):
        logging.warning(
            f"use_program_cache is force set to {use_program_cache} by FLAGS_FORCE_USE_PROGRAM_CACHE"
        )

Q
Qiao Longfei 已提交
1080 1081
    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
H
Huihuang Zheng 已提交
1082 1083
        global_block = program.global_block()
        for op in global_block.ops:
Q
Qiao Longfei 已提交
1084 1085 1086
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
H
Huihuang Zheng 已提交
1087
                var = global_block.var(feed_target_name)
S
Steffy-zxf 已提交
1088 1089
                if var.dtype != core.VarDesc.VarType.STRINGS:
                    if not isinstance(cur_feed, core.LoDTensor):
1090 1091 1092
                        cur_feed = _as_lodtensor(
                            cur_feed, self.place, var.dtype
                        )
S
Steffy-zxf 已提交
1093
                    check_feed_shape_type(var, cur_feed)
Q
Qiao Longfei 已提交
1094 1095 1096 1097 1098 1099 1100 1101
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
M
minqiyang 已提交
1102
            for i in six.moves.range(len(fetch_list))
Q
Qiao Longfei 已提交
1103 1104 1105
        ]
        return outs

1106 1107
    @classmethod
    def _split_optimize_ops_in_fetch_list(cls, fetch_list):
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
        """
        Split optimize_ops from fetch_list, which provided to specify program prunning.
        Args:
            fetch_list(list): The original fetch_list.
            Possible types of fetch_list are:
                fetch_list = ['loss']
                fetch_list = [[sgd, sgd], 'loss']
                fetch_list = [([sgd, sgd], [(param, grad)]), 'loss']

        Returns:
            optimize_ops(list): The optimize operators splited from fetch_list.
1119
            fetch_list(list):  The updated fetch_list which does not contain optimize operators.
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
        """
        _optimize_ops = []
        _fetch_list = []

        def _get_targets(_optimize_ops, _fetch_list, item):
            if isinstance(item, Operator):
                if item._is_optimize_op():
                    _optimize_ops.append(item)
                else:
                    raise TypeError(
1130 1131 1132 1133 1134 1135 1136
                        "The operator in fetch_list is not an optimize_op"
                    )
            elif (
                isinstance(item, Variable)
                or isinstance(item, str)
                or isinstance(item, six.string_types)
            ):
1137 1138 1139
                _fetch_list.append(item)
            else:
                raise TypeError(
1140
                    "The item in fetch_list should be str, variable or optimize_op, but received %s.",
1141 1142
                    type(item),
                )
1143

1144
        for index, item in enumerate(fetch_list):
1145 1146 1147 1148 1149 1150 1151
            # NOTE(zhiqiu): to support (optimizer_ops, param_and_grads) and optimizer_ops in fetch_list
            # we should handle tuple and list in fetch_list.
            # TODO(zhiqiu): find a better way to handle that.
            if isinstance(item, list):
                for i in item:
                    _get_targets(_optimize_ops, _fetch_list, i)
            elif isinstance(item, tuple):
1152 1153
                if not isinstance(item[0], (list, tuple)):
                    raise TypeError(
1154 1155 1156 1157
                        "Requires fetch_list[{}][0] shall be one of (list, tuple) when type(fetch_list[{}]) is `tuple`, but received fetch_list[{}][0]'s type is `{}`.".format(
                            index, index, index, type(item[0]).__name__
                        )
                    )
1158 1159 1160 1161 1162 1163 1164
                for i in item[0]:
                    _get_targets(_optimize_ops, _fetch_list, i)
            else:
                _get_targets(_optimize_ops, _fetch_list, item)

        return _fetch_list, _optimize_ops

1165
    @classmethod
1166 1167 1168
    def _prune_program(
        cls, program, feed=None, fetch_list=None, optimize_ops=None
    ):
1169 1170
        """
        Prune operators and variables which are not needed to generate
1171 1172 1173
        :code:`fetch_list` and optimize operators.
        Prune operators and variables which are needed
        to generate variables to be feeded.
1174 1175

        Notes: This is a very low level API. Users should not use this API
1176
        directly.
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226

        Args:
            program(Program): the origin program
            feed(list|dict): feed dict or list.
            fetch_list(list|Variable): A list of variables need to be fetched
            optimize_ops(list[Operator]): A list of optimizer operators

        Returns:
            Program:  A new, pruned program.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                origin_program = program._program
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph, which can't be pruned yet."
                )
                return
        else:
            origin_program = program

        feed_names = []
        if isinstance(feed, dict):
            feed_names = list(feed.keys())
        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                feed_names += list(each.keys())

        # if optimize_ops is [], all optimize ops in the program is used.
        if not optimize_ops:
            for block in origin_program.blocks:
                for op in block.ops:
                    if op._is_optimize_op():
                        optimize_ops.append(op)

        targets = fetch_list + optimize_ops
        pruned_program = origin_program._prune_with_input(feed_names, targets)

        if compiled:
            # for compiled program, update the underlying program, re-generate graph,
            # and reset the flag so it can be compiled again.
            program._program = pruned_program
            program._graph = core.Graph(pruned_program.desc)
            program._compiled = False
        else:
            program = pruned_program

        return program

1227 1228
    @classmethod
    def _update_feed(cls, program, feed):
1229
        """
1230
        Update the feed dict, remove the feed item which is pruned in program.
1231 1232

        Notes: This is a very low level API. Users should not use this API
1233
        directly.
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249

        Args:
            program(Program): the pruned program.
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                global_block = program._program.global_block()
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph."
                )
1250
                return feed
1251 1252 1253 1254 1255 1256 1257 1258 1259
        else:
            global_block = program.global_block()

        if isinstance(feed, dict):
            for feed_name in list(feed.keys()):
                if not global_block.has_var(feed_name):
                    feed.pop(feed_name)
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
1260 1261
                        % feed_name
                    )
1262 1263 1264 1265 1266 1267 1268 1269

        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                for feed_name in list(each.keys()):
                    if not global_block.has_var(feed_name):
                        each.pop(feed_name)
                        warnings.warn(
                            "The variable %s is not found in program. It is not declared or is pruned."
1270 1271
                            % feed_name
                        )
1272 1273
        return feed

S
Fix doc  
sneaxiy 已提交
1274 1275 1276 1277 1278 1279
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
1280 1281
    def close(self):
        """
C
chengduo 已提交
1282 1283 1284
        Close the executor. This interface is used for distributed training (PServers mode).
        This executor can not be used after calling the interface, because
        this interface releases resources associated with the current Trainer.
Y
Yancey1989 已提交
1285

C
chengduo 已提交
1286 1287
        Returns:
            None
1288 1289 1290 1291

        Examples:
            .. code-block:: python

1292
              import paddle
1293

1294 1295
              cpu = paddle.CPUPlace()
              exe = paddle.static.Executor(cpu)
1296 1297
              # execute training or testing
              exe.close()
Y
Yancey1989 已提交
1298
        """
1299
        if not self._closed:
Y
Yancey1989 已提交
1300
            self._closed = True
1301 1302 1303 1304
            for k, trainer_instance in self.trainer_caches.items():
                self._default_executor.release_trainer(trainer_instance)
                del trainer_instance
            self._default_executor.close()
Y
Yancey1989 已提交
1305

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
    def _run_parallel(
        self,
        program,
        scope,
        feed,
        fetch_list,
        fetch_var_name,
        return_numpy,
        return_merged,
    ):
1316
        from paddle.optimizer.lr import LRScheduler
1317

1318
        exe = program._executor
H
Huihuang Zheng 已提交
1319 1320 1321 1322 1323
        # TODO(zhenghuihuang): quantization uses Graph in CompiledProgram
        # instead of program. We will add support for checking Vars in Graph
        need_check_feed = program._program is not None
        if need_check_feed:
            global_block = program._program.global_block()
1324 1325 1326 1327
        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
1328
                var = global_block.var(feed_name) if need_check_feed else None
1329
                if not isinstance(feed_tensor, core.LoDTensor):
1330
                    # always set to CPU place, since the tensor need to be split
1331
                    # it is fast in CPU
1332 1333 1334 1335 1336
                    feed_tensor = _as_lodtensor(
                        feed[feed_name],
                        core.CPUPlace(),
                        var.dtype if var else None,
                    )
H
Huihuang Zheng 已提交
1337
                if need_check_feed:
1338
                    check_feed_shape_type(var, feed_tensor, exe.device_count())
1339
                feed_tensor_dict[feed_name] = feed_tensor
1340
            exe.feed_and_split_tensor_into_local_scopes(feed_tensor_dict)
1341 1342 1343 1344 1345 1346

        elif isinstance(feed, list) or isinstance(feed, tuple):
            res = list()
            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
1347 1348
                        "Each element of feed list should be a dict"
                    )
1349 1350 1351
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
1352 1353 1354
                    var = (
                        global_block.var(feed_name) if need_check_feed else None
                    )
1355
                    if not isinstance(tensor, core.LoDTensor):
1356 1357 1358 1359 1360
                        tensor = _as_lodtensor(
                            each[feed_name],
                            program._places[i],
                            var.dtype if var else None,
                        )
H
Huihuang Zheng 已提交
1361 1362
                    if need_check_feed:
                        check_feed_shape_type(var, tensor)
1363 1364
                    res_dict[feed_name] = tensor
                res.append(res_dict)
1365

1366
            exe.feed_tensors_into_local_scopes(res)
1367

1368 1369
        if hasattr(program._program, 'lr_sheduler'):
            lr_sheduler = program._program.lr_sheduler
1370
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
1371 1372 1373
            lr_value = lr_sheduler()
            lr_var = program._program.global_block().vars[lr_sheduler._var_name]
            lr_tensor = _as_lodtensor(lr_value, core.CPUPlace(), lr_var.dtype)
1374 1375 1376 1377 1378 1379
            if core.is_cuda_graph_capturing():
                warnings.warn(
                    "Caution!!! When capturing CUDA Graph, the learning rate scheduler would not "
                    "take any effect! Please set the learning rate manually before each batch!"
                )
            else:
1380
                exe.feed_and_split_tensor_into_local_scopes(
1381 1382
                    {lr_sheduler._var_name: lr_tensor}
                )
1383

X
polish  
Xin Pan 已提交
1384
        fetch_var_names = list(map(_to_name_str, fetch_list))
Z
Zhen Wang 已提交
1385
        tensors = exe.run(fetch_var_names, return_merged)._move_to_list()
1386
        return as_numpy(tensors) if return_numpy else tensors
1387

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
    def run(
        self,
        program=None,
        feed=None,
        fetch_list=None,
        feed_var_name='feed',
        fetch_var_name='fetch',
        scope=None,
        return_numpy=True,
        use_program_cache=False,
        return_merged=True,
        use_prune=False,
    ):
1401
        """
C
chengduo 已提交
1402 1403 1404
        Run the specified :code:`Program` or :code:`CompiledProgram`. It should be noted that the executor
        will execute all the operators in :code:`Program` or :code:`CompiledProgram` without pruning some
        operators of the :code:`Program` or :code:`CompiledProgram` according to fetch_list. And you could
1405 1406
        specify the scope to store the :code:`Tensor` during the executor running if the scope
        is not set, the executor will use the global scope, i.e. :code:`paddle.static.global_scope()`.
1407

C
chengduo 已提交
1408 1409 1410
        Args:
            program(Program|CompiledProgram): This parameter represents the :code:`Program` or
                :code:`CompiledProgram` to be executed. If this parameter is not provided, that
1411
                parameter is None, the program will be set to :code:`paddle.static.default_main_program()`.
C
chengduo 已提交
1412
                The default is None.
1413
            feed(list|dict): This parameter represents the input Tensors of the model.
C
chengduo 已提交
1414
                If it is single card training, the feed is dict type, and if it is multi-card
1415
                training, the parameter feed can be dict or list of Tensors. If the
C
chengduo 已提交
1416 1417 1418 1419 1420 1421 1422
                parameter type is dict, the data in the feed will be split and sent to
                multiple devices (CPU/GPU), that is to say, the input data will be evenly
                sent to different devices, so you should make sure the number of samples of
                the current mini-batch must be greater than the number of places;
                if the parameter type is list, those data are copied directly to each device,
                so the length of this list should be equal to the number of places.
                The default is None.
1423
            fetch_list(list): This parameter represents the Tensors that need to be returned
1424
                after the model runs. The default is None.
1425
            feed_var_name(str): This parameter represents the name of the input Tensor of
C
chengduo 已提交
1426
                the feed operator. The default is "feed".
1427
            fetch_var_name(str): This parameter represents the name of the output Tensor of
C
chengduo 已提交
1428
                the fetch operator. The default is "fetch".
1429
            scope(Scope): the scope used to run this program, you can switch
1430 1431 1432
                it to different scope. default is :code:`paddle.static.global_scope()`
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
C
chengduo 已提交
1433 1434 1435
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
            use_program_cache(bool): This parameter indicates whether the input :code:`Program` is cached.
                If the parameter is True, the model may run faster in the following cases:
1436 1437
                the input program is :code:`paddle.static.Program`, and the parameters(program, feed Tensor name
                and fetch_list Tensor) of this interface remains unchanged during running.
C
chengduo 已提交
1438
                The default is False.
1439
            return_merged(bool): This parameter indicates whether fetched Tensors (the Tensors
Z
Zhen Wang 已提交
1440 1441
                specified in the fetch list) should be merged according to the execution device dimension.
                If :code:`return_merged` is False, the type of the return value is a two-dimensional list
1442 1443 1444 1445 1446 1447 1448 1449
                of :code:`Tensor` / :code:`LoDTensorArray` ( :code:`return_numpy` is False) or a two-dimensional
                list of :code:`numpy.ndarray` ( :code:`return_numpy` is True). If :code:`return_merged` is True,
                the type of the return value is an one-dimensional list of :code:`Tensor` / :code:`LoDTensorArray`
                ( :code:`return_numpy` is False) or an one-dimensional list of :code:`numpy.ndarray`
                ( :code:`return_numpy` is True). Please see Examples 2 for more details. If the lengths of fetched
                results are variant, please set :code:`return_merged` as False, which denotes that the fetched
                results will not be merged. The default is True, but it is just for the compatibility, and may
                use False as default value in the future version.
1450
            use_prune(bool): This parameter indicates whether the input :code:`Program` will be pruned.
1451
                If the parameter is True, the program will be pruned accroding to the given feed and fetch_list,
1452 1453
                which means the operators and variables in program that generate :code:`feed` and are not
                needed to generate :code:`fetch_list` will be pruned. The default is False, which means the
1454
                program will not pruned and all the operators and variables will be executed during running.
1455
                Note that if the tuple returned from :code:`Optimizer.minimize()` is passed to :code:`fetch_list`,
1456
                :code:`use_prune` will be overrided to True, and the program will be pruned.
1457

C
chengduo 已提交
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
        Returns:

            List: The fetched result list.

        NOTES:
            1. If it is multi-card running and the feed parameter is dict type, the input data
               will be evenly sent to different cards. For example, using two GPUs to run the model,
               the input sample number is 3, that is, [0, 1, 2], the sample number on GPU0 is 1,
               that is, [0], and the sample number on GPU1 is 2, that is, [1, 2].
               If the number of samples is less than the number of devices, the program will
               throw an exception, so when running the model, you should make sure that the
               number of samples of the last batch of the data set should be greater than the
               number of CPU cores or GPU cards, if it is less than, it is recommended that
               the batch be discarded.
            2. If the number of CPU cores or GPU cards available is greater than 1, the fetch
1473 1474
               results are spliced together in dimension 0 for the same Tensor values
               (Tensors in fetch_list) on different devices.
1475

1476
        Examples:
1477
            .. code-block:: python
1478
                :name: code-example-1
1479

1480 1481
                import paddle
                import numpy
1482

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
                # First create the Executor.
                paddle.enable_static()
                place = paddle.CPUPlace()  # paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)

                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                adam = paddle.optimizer.Adam()
                adam.minimize(loss)
                i = paddle.zeros(shape=[1], dtype='int64')
                array = paddle.fluid.layers.array_write(x=loss, i=i)
1495

1496 1497
                # Run the startup program once and only once.
                exe.run(paddle.static.default_startup_program())
1498

1499 1500 1501 1502 1503
                x = numpy.random.random(size=(10, 1)).astype('float32')
                loss_val, array_val = exe.run(feed={'X': x},
                                              fetch_list=[loss.name, array.name])
                print(array_val)
                # [array([0.02153828], dtype=float32)]
Z
Zhen Wang 已提交
1504 1505

            .. code-block:: python
1506
                :name: code-example-2
Z
Zhen Wang 已提交
1507

1508
                # required: gpu
1509
                import paddle
Z
Zhen Wang 已提交
1510 1511 1512
                import numpy as np

                # First create the Executor.
1513 1514 1515
                paddle.enable_static()
                place = paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)
Z
Zhen Wang 已提交
1516

1517
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
Z
Zhen Wang 已提交
1518
                class_dim = 2
1519 1520 1521
                prediction = paddle.static.nn.fc(data, class_dim)
                loss = paddle.mean(prediction)
                adam = paddle.optimizer.Adam()
Z
Zhen Wang 已提交
1522 1523 1524
                adam.minimize(loss)

                # Run the startup program once and only once.
1525 1526 1527 1528 1529
                exe.run(paddle.static.default_startup_program())
                build_strategy = paddle.static.BuildStrategy()
                binary = paddle.static.CompiledProgram(
                    paddle.static.default_main_program()).with_data_parallel(
                        loss_name=loss.name, build_strategy=build_strategy)
Z
Zhen Wang 已提交
1530 1531 1532 1533
                batch_size = 6
                x = np.random.random(size=(batch_size, 1)).astype('float32')

                # Set return_merged as False to fetch unmerged results:
1534 1535 1536 1537
                unmerged_prediction, = exe.run(binary,
                                               feed={'X': x},
                                               fetch_list=[prediction.name],
                                               return_merged=False)
Z
Zhen Wang 已提交
1538 1539 1540 1541
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (2, 3, class_dim). The first dimension value of the printed result is the number of used
                # GPU cards, and the second dimension value is the quotient of batch_size and the
                # number of used GPU cards.
1542 1543
                print("The unmerged prediction shape: {}".format(
                    np.array(unmerged_prediction).shape))
Z
Zhen Wang 已提交
1544 1545 1546
                print(unmerged_prediction)

                # Set return_merged as True to fetch merged results:
1547 1548 1549 1550
                merged_prediction, = exe.run(binary,
                                             feed={'X': x},
                                             fetch_list=[prediction.name],
                                             return_merged=True)
Z
Zhen Wang 已提交
1551 1552
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (6, class_dim). The first dimension value of the printed result is the batch_size.
1553 1554
                print("The merged prediction shape: {}".format(
                    np.array(merged_prediction).shape))
Z
Zhen Wang 已提交
1555
                print(merged_prediction)
1556

Z
Zhen Wang 已提交
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
                # Out:
                # The unmerged prediction shape: (2, 3, 2)
                # [array([[-0.37620035, -0.19752218],
                #        [-0.3561043 , -0.18697084],
                #        [-0.24129935, -0.12669306]], dtype=float32), array([[-0.24489994, -0.12858354],
                #        [-0.49041364, -0.25748932],
                #        [-0.44331917, -0.23276259]], dtype=float32)]
                # The merged prediction shape: (6, 2)
                # [[-0.37789783 -0.19921964]
                #  [-0.3577645  -0.18863106]
                #  [-0.24274671 -0.12814042]
                #  [-0.24635398 -0.13003758]
                #  [-0.49232286 -0.25939852]
                #  [-0.44514108 -0.2345845 ]]
1571

1572
        """
1573 1574
        # Temporary FLAGS, just for testing the performance of program cache
        force_use_program_cache = os.environ.get(
1575 1576
            'FLAGS_FORCE_USE_PROGRAM_CACHE', None
        )
1577 1578
        if force_use_program_cache is not None:
            use_program_cache = force_use_program_cache in [
1579 1580 1581 1582 1583
                1,
                '1',
                True,
                'True',
                'true',
1584
            ]
1585
            self._log_force_set_program_cache(use_program_cache)
1586

C
chengduo 已提交
1587
        try:
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
            res = self._run_impl(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
                use_program_cache=use_program_cache,
                use_prune=use_prune,
                return_merged=return_merged,
            )
1600 1601
            core.update_autotune_status()
            return res
C
chengduo 已提交
1602
        except Exception as e:
1603
            six.reraise(*sys.exc_info())
C
chengduo 已提交
1604

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
    def _run_impl(
        self,
        program,
        feed,
        fetch_list,
        feed_var_name,
        fetch_var_name,
        scope,
        return_numpy,
        use_program_cache,
        return_merged,
        use_prune,
    ):
Y
Yancey1989 已提交
1618 1619 1620
        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

C
chengduo 已提交
1621
        use_default_main_program = program is None
1622 1623
        if program is None:
            program = default_main_program()
1624

1625
        fetch_list = self._check_fetch_list(fetch_list)
1626 1627

        if isinstance(program, Program) and program._pipeline_opt:
L
LiYuRio 已提交
1628
            if "fleet_opt" in program._pipeline_opt:
1629 1630 1631
                # Move prepare here for port conflict with nccl in startup program
                if self._fleet_executor is None:
                    self._fleet_executor = _prepare_fleet_executor()
1632 1633 1634 1635
                return self._run_using_fleet_executor(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
1636 1637 1638
                    with_standalone_executor=self._fleet_executor_with_standalone,
                    return_numpy=return_numpy,
                )
1639 1640 1641
            if "startup_program" in program._pipeline_opt:
                program = program._pipeline_opt["startup_program"]
            else:
1642 1643 1644 1645 1646
                return self._run_pipeline(
                    program,
                    fetch_list=fetch_list,
                    use_program_cache=use_program_cache,
                )
1647 1648

        if isinstance(program, Program) and program._heter_pipeline_opt:
1649
            # print("program._heter_pipeline_opt: {}".format(
1650
            #    program._heter_pipeline_opt))
1651
            ## change default executor
1652 1653 1654 1655 1656 1657
            heter_place = program._heter_pipeline_opt["heter_place"]
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
            # TODO(zhangminxu): support heterps pipeline training using exe.run
1658
            if "startup_program" in program._heter_pipeline_opt:
1659
                # print("get startup_program from _pipeline_opt")
1660 1661
                program = program._heter_pipeline_opt["startup_program"]

1662 1663 1664 1665
        if (
            isinstance(program, Program)
            and len(program.global_block().ops) == 0
        ):
C
chengduo 已提交
1666
            if use_default_main_program:
1667 1668 1669 1670
                error_info = (
                    "Now you are using default_main_program, "
                    "but there are no operators in the program to be executed. "
                    "Please ensure you create model correctly or you can pass "
1671
                    "the Program or the CompiledProgram manually."
1672
                )
1673
            else:
1674 1675 1676
                error_info = (
                    "There are no operators in the program to be executed. "
                    "If you pass Program manually, please use fluid.program_guard "
1677
                    "to ensure the current Program is being used."
1678
                )
C
chengduo 已提交
1679
            warnings.warn(error_info)
1680

1681 1682
        if scope is None:
            scope = global_scope()
1683

1684 1685 1686 1687
        # use_prune can be overrided by putting optimize_ops in fetch_list
        _origin_fetch_list = fetch_list
        _origin_program = program
        fetch_list, optimize_ops = self._split_optimize_ops_in_fetch_list(
1688 1689
            fetch_list
        )
1690 1691 1692
        if optimize_ops:
            use_prune = True
        if use_prune:
1693 1694 1695
            cache_key = _get_strong_program_cache_key(
                program, feed, _origin_fetch_list
            )
1696 1697 1698 1699
            cached_pruned_program = self._get_pruned_program_cache(cache_key)
            if cached_pruned_program is None:
                if isinstance(program, compiler.CompiledProgram):
                    program_scope_cache = self._get_pruned_program_scope_cache(
1700 1701
                        str(id(_origin_program))
                    )
1702 1703 1704 1705
                    # copy the original program, so it can be cached.
                    program = copy.copy(program)
                    # share the local scopes for same original CompiledProgram.
                    program._share_vars_from = program_scope_cache
1706 1707 1708 1709 1710 1711
                    if (
                        self._get_pruned_program_scope_cache(
                            str(id(_origin_program))
                        )
                        is None
                    ):
1712
                        self._add_pruned_program_scope_cache(
1713 1714 1715 1716 1717
                            str(id(_origin_program)), program
                        )
                pruned_program = self._prune_program(
                    program, feed, fetch_list, optimize_ops
                )
1718 1719 1720 1721 1722 1723 1724
                self._add_pruned_program_cache(cache_key, pruned_program)
            else:
                pruned_program = cached_pruned_program

            feed = self._update_feed(pruned_program, feed)
            program = pruned_program

1725
        def _can_use_interpreter_core(program, place):
1726
            if core.is_compiled_with_mlu() or isinstance(
1727 1728
                place, core.CustomPlace
            ):
1729 1730
                return False

1731
            use_standalone_executor_for_compiled_program = os.environ.get(
1732 1733
                'FLAGS_CONVERT_GRAPH_TO_PROGRAM', None
            ) in [1, '1', True, 'True', 'true']
1734 1735 1736

            # Only support fleet when 'FLAGS_CONVERT_GRAPH_TO_PROGRAM' is set to true
            from paddle.distributed.fleet import fleet
1737 1738 1739 1740 1741 1742 1743 1744

            if (
                fleet._role_maker is not None
                and not use_standalone_executor_for_compiled_program
            ):
                warnings.warn(
                    "Standalone executor is not used for fleet", UserWarning
                )
1745 1746
                return False

1747 1748 1749
            compiled = isinstance(
                program, compiler.CompiledProgram
            ) or isinstance(program._graph, compiler.CompiledProgram)
1750
            if compiled:
1751 1752 1753 1754 1755
                compiled_program = (
                    program
                    if isinstance(program, compiler.CompiledProgram)
                    else program._graph
                )
1756
                # Unsupported case 1: data parallel
1757 1758 1759
                if (
                    compiled_program._is_data_parallel
                    and len(
1760
                        compiled_program._get_places(
1761 1762 1763 1764 1765
                            place, compiled_program._places
                        )
                    )
                    != 1
                ):
1766 1767
                    warnings.warn(
                        "Standalone executor is not used for data parallel",
1768 1769
                        UserWarning,
                    )
1770
                    return False
1771

1772
                # Unsupported case 2: parallel graph
P
pangyoki 已提交
1773
                if core.globals()['FLAGS_enable_parallel_graph'] in [
1774 1775 1776 1777 1778
                    1,
                    '1',
                    True,
                    'True',
                    'true',
P
pangyoki 已提交
1779
                ]:
1780 1781
                    warnings.warn(
                        "Standalone executor is not used for parallel graph",
1782 1783
                        UserWarning,
                    )
P
pangyoki 已提交
1784 1785
                    return False

1786
                # Unsupported case 3: inference
1787
                if compiled_program._is_inference:
1788 1789
                    warnings.warn(
                        "Standalone executor is not used for inference",
1790 1791
                        UserWarning,
                    )
1792
                    return False
1793

1794
                # Unsupported case 4: CUDA Graph
1795 1796 1797 1798
                if (
                    compiled_program._build_strategy is not None
                    and compiled_program._build_strategy.allow_cuda_graph_capture
                ):
1799 1800
                    warnings.warn(
                        "Standalone executor is not used for CUDA Graph",
1801 1802
                        UserWarning,
                    )
1803 1804
                    return False

1805
                # Unsupported case 5: async mode
1806 1807 1808 1809
                if (
                    compiled_program._build_strategy is not None
                    and compiled_program._build_strategy.async_mode
                ):
1810
                    warnings.warn(
1811
                        "Standalone executor is not used for async mode",
1812 1813
                        UserWarning,
                    )
1814 1815
                    return False

1816
                return use_standalone_executor_for_compiled_program
1817 1818 1819 1820
            else:
                assert isinstance(program, Program)
                return True

1821 1822
        # NOTE: This is an experimental feature. If `export FLAGS_USE_STANDALONE_EXECUTOR=1 `,
        # use StandaloneExecutor to run the program.
1823 1824 1825 1826 1827
        if (
            return_merged
            and self._enable_interpreter_core
            and _can_use_interpreter_core(program, self.place)
        ):
1828

1829 1830 1831 1832 1833 1834 1835 1836
            if feed is None:
                feed = {}
            elif isinstance(feed, (list, tuple)):
                assert len(feed) == 1, "Not compiled with data parallel"
                feed = feed[0]
            if not isinstance(feed, dict):
                raise TypeError(
                    "feed requires dict as its Parameter. But you passed in %s"
1837 1838
                    % (type(feed))
                )
1839 1840 1841
            feed = self._update_feed(program, feed)

            program, new_exe = self._executor_cache.get_program_and_executor(
1842 1843 1844 1845 1846 1847 1848 1849
                program,
                feed,
                fetch_list,
                feed_var_name,
                fetch_var_name,
                self.place,
                scope,
            )
1850 1851 1852 1853

            self._feed_data(program, feed, feed_var_name, scope)
            if hasattr(program, 'lr_sheduler'):
                from paddle.optimizer.lr import LRScheduler
1854 1855 1856 1857

                assert isinstance(
                    program.lr_sheduler, LRScheduler
                ), "must be LRScheduler"
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
                lr_sheduler = program.lr_sheduler
                lr_value = lr_sheduler()
                lr_var = program.global_block().vars[lr_sheduler._var_name]
                data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
                tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
                # NOTE(dev): `tensor.set(data, self.place)` always call TensorCopySync that is a blocking behavior. So we use `_copy_from` to replace it.
                cpu_tensor = _as_lodtensor(data, core.CPUPlace())
                # for ipu, tensor is allocated on cpu
                if core.is_compiled_with_ipu():
                    tensor._copy_from(cpu_tensor, tensor._place())
                else:
                    tensor._copy_from(cpu_tensor, self.place)

1871 1872 1873
            return new_exe.run(
                scope, list(feed.keys()), fetch_list, return_numpy
            )
1874

X
polish  
Xin Pan 已提交
1875
        compiled = isinstance(program, compiler.CompiledProgram)
H
Huihuang Zheng 已提交
1876

1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
        # Check if fluid.data() variable no feed data
        if use_prune:
            if compiled:
                global_block = program._program.global_block()
            else:
                global_block = program.global_block()
            for varname in global_block.vars:
                vardesc = global_block.desc.find_var(cpt.to_bytes(varname))
                varobj = global_block.vars[varname]

                # Can not check var build by fluid.layers.data(), bucause fluid.layers.data() had not set need_check_feed
1888 1889 1890 1891 1892 1893 1894 1895 1896
                if (
                    vardesc.persistable() == False
                    and vardesc.type() == core.VarDesc.VarType.LOD_TENSOR
                    and vardesc.need_check_feed() == True
                    and varobj.stop_gradient == True
                    and varobj.is_data == True
                    and varobj.belong_to_optimizer == False
                    and varname not in feed
                ):
1897 1898
                    raise ValueError('Need feed data for variable %s' % varname)

1899 1900
        acp._auto_checkpoint(self, program)

X
polish  
Xin Pan 已提交
1901
        # For backward compatibility, run directly.
1902
        if not compiled:
1903
            # In distributed training, the compiled program is saved in Program._graph
1904 1905 1906
            has_compiled_graph = isinstance(
                program._graph, compiler.CompiledProgram
            )
1907

1908 1909 1910 1911 1912
            if has_compiled_graph:
                program._graph._compile(scope, self.place)
                # _graph in program does not support inference since the _graph is optimized
                # through optimizer.minimize function and should not be used as inference graph
                # assert not program._graph._is_inference
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
                return self._run_parallel(
                    program._graph,
                    scope=scope,
                    feed=feed,
                    fetch_list=fetch_list,
                    fetch_var_name=fetch_var_name,
                    return_numpy=return_numpy,
                    return_merged=return_merged,
                )

            return self._run_program(
                program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
                use_program_cache=use_program_cache,
            )
1933 1934

        program._compile(scope, self.place)
C
chengduo 已提交
1935 1936 1937
        if program._is_inference:
            return self._run_inference(program._executor, feed)
        else:
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
            return self._run_parallel(
                program,
                scope=scope,
                feed=feed,
                fetch_list=fetch_list,
                fetch_var_name=fetch_var_name,
                return_numpy=return_numpy,
                return_merged=return_merged,
            )

    def _run_program(
        self,
        program,
        feed,
        fetch_list,
        feed_var_name,
        fetch_var_name,
        scope,
        return_numpy,
        use_program_cache,
    ):
1959
        from paddle.optimizer.lr import LRScheduler
1960

1961 1962
        if feed is None:
            feed = {}
S
sneaxiy 已提交
1963 1964 1965 1966
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

Q
qiaolongfei 已提交
1967
        if not isinstance(feed, dict):
D
dzhwinter 已提交
1968
            raise TypeError(
1969 1970 1971
                "feed requires dict as its Parameter. But you passed in %s"
                % (type(feed))
            )
Y
Yu Yang 已提交
1972

1973
        assert program is not None, "The program should not be Empty"
Y
Yu Yang 已提交
1974
        if not isinstance(program, Program):
D
dzhwinter 已提交
1975 1976
            raise TypeError(
                "Executor requires Program as its Parameter. But you passed in %s"
1977 1978
                % (type(program))
            )
Y
Yu Yang 已提交
1979

1980 1981 1982
        if not isinstance(fetch_var_name, str):
            raise TypeError(
                "The name of fetch variable requires string as its Parameter. But you passed in %s"
1983 1984
                % (type(fetch_var_name))
            )
1985

1986
        if use_program_cache:
1987
            cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
Q
Qiao Longfei 已提交
1988
            cached_program = self._get_program_cache(cache_key)
1989
            cached_ctx = self._get_ctx_cache(cache_key)
1990
            cached_scope = self._get_scope_cache(cache_key)
Q
Qiao Longfei 已提交
1991
            if cached_program is None:
R
Ruibiao Chen 已提交
1992
                cached_program = _add_feed_fetch_ops(
Q
Qiao Longfei 已提交
1993 1994 1995 1996
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    feed_var_name=feed_var_name,
1997 1998
                    fetch_var_name=fetch_var_name,
                )
Q
Qiao Longfei 已提交
1999
                self._add_program_cache(cache_key, cached_program)
2000
                fetch_list_str = list(map(_to_name_str, fetch_list))
2001
                cached_ctx = self._default_executor.prepare(
2002 2003
                    cached_program.desc, 0, fetch_list_str, False
                )
2004 2005 2006 2007 2008 2009
                # currently, we cache program, vars, sub_scope here
                # we suppose that in a life cycle of training, a user
                # will not create many programs. So, here the basic
                # rule of caching is to cache all unseen (program, var, scope)
                # when a user use use_program_cache.
                cached_scope = scope.new_scope()
2010 2011 2012
                self._default_executor.create_variables(
                    cached_program.desc, cached_scope, 0
                )
2013
                self._add_ctx_cache(cache_key, cached_ctx)
2014
                self._add_scope_cache(cache_key, cached_scope)
Q
Qiao Longfei 已提交
2015
            program = cached_program
2016
            ctx = cached_ctx
2017
            scope = cached_scope
2018
        else:
2019 2020 2021 2022 2023 2024 2025
            program = _add_feed_fetch_ops(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
            )
Q
Qiao Longfei 已提交
2026 2027

        self._feed_data(program, feed, feed_var_name, scope)
2028
        if hasattr(program, 'lr_sheduler'):
2029 2030 2031
            assert isinstance(
                program.lr_sheduler, LRScheduler
            ), "must be LRScheduler"
2032 2033 2034 2035 2036 2037 2038
            lr_sheduler = program.lr_sheduler
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
            tensor.set(data, self.place)

2039
        if not use_program_cache:
2040 2041 2042
            self._default_executor.run(
                program.desc, scope, 0, True, True, [fetch_var_name]
            )
2043
        else:
2044 2045 2046
            self._default_executor.run_prepared_ctx(
                ctx, scope, False, False, False
            )
2047
        arr = scope.find_var(fetch_var_name).get_fetch_list()
2048
        tensors = arr._move_to_list()
D
dzhwinter 已提交
2049
        if return_numpy:
2050 2051 2052
            return as_numpy(tensors)
        else:
            return tensors
F
flame 已提交
2053

X
Xin Pan 已提交
2054 2055
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
2056

2057
    def _check_fetch_list(self, fetch_list):
2058 2059 2060
        is_fetch_var = lambda var: isinstance(
            var, (Variable, str, six.string_types)
        )
2061 2062
        is_tuple_list = lambda var: isinstance(var, (tuple, list))

2063 2064 2065 2066
        if fetch_list is None:
            return []
        if is_fetch_var(fetch_list):
            return [fetch_list]
2067

2068 2069 2070
        assert is_tuple_list(fetch_list), (
            "Currently , The fetch_list type only should be list or tuple, \n"
            "but the input type is {}. For more information please refer to \n"
2071
            "the executor.run(...).".format(type(fetch_list))
2072
        )
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085

        res = []
        for i, var in enumerate(fetch_list):
            if is_fetch_var(var):
                res.append(var)
            # such as [x, 'mean_out', loss]
            elif is_tuple_list(var):
                if all(is_fetch_var(v) for v in var):
                    res.extend(list(var))
                else:
                    res.append(var)
            else:
                raise TypeError(
2086 2087 2088 2089
                    "Require fetch_list[{}] 's type shall be one of (Variable, str), but received {}.".format(
                        i, type(var).__name__
                    )
                )
2090 2091 2092

        return res

2093
    def _dump_debug_info(self, program=None, trainer=None):
Z
ziyoujiyi 已提交
2094 2095
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
            fout.write(str(trainer))
2096
        if program._fleet_opt and "fleet_desc" in program._fleet_opt:
2097 2098 2099
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

2100 2101 2102 2103 2104 2105
    def _adjust_pipeline_resource(self, pipeline_opt, dataset, pipeline_num):
        filelist_length = len(dataset.dataset.get_filelist())
        if filelist_length < pipeline_num:
            pipeline_num = filelist_length
            print(
                "Pipeline training: setting the pipeline num to %d is enough because there are only %d files"
2106 2107
                % (filelist_length, filelist_length)
            )
2108 2109 2110
        if filelist_length < pipeline_num * pipeline_opt["concurrency_list"][0]:
            print(
                "Pipeline training: setting the 1st element in concurrency_list to %d is enough because there are only %d files"
2111 2112 2113 2114 2115
                % (filelist_length // pipeline_num, filelist_length)
            )
            pipeline_opt["concurrency_list"][0] = (
                filelist_length // pipeline_num
            )
2116 2117 2118
        dataset.set_thread(pipeline_opt["concurrency_list"][0] * pipeline_num)
        return pipeline_num

2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
    def _prepare_trainer(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
    ):
T
Thunderbrook 已提交
2130
        is_heter = 0
T
Thunderbrook 已提交
2131
        use_ps_gpu = 0
T
Thunderbrook 已提交
2132 2133 2134
        if not program._fleet_opt is None:
            if program._fleet_opt.get("worker_class", "") == "HeterCpuWorker":
                is_heter = 1
T
Thunderbrook 已提交
2135
            if program._fleet_opt.get("trainer", "") == "HeterXpuTrainer":
T
Thunderbrook 已提交
2136
                is_heter = 1
T
Thunderbrook 已提交
2137 2138
            if program._fleet_opt.get("use_ps_gpu", False):
                use_ps_gpu = True
D
dongdaxiang 已提交
2139 2140 2141 2142
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
2143 2144 2145
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
2146
        compiled = isinstance(program, compiler.CompiledProgram)
T
Thunderbrook 已提交
2147 2148 2149
        if is_heter:
            from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
            from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
2150

T
Thunderbrook 已提交
2151 2152
            fu = FleetUtil()
            ret = fu.split_program_by_device(program)
D
dongdaxiang 已提交
2153
        if not compiled:
H
hutuxian 已提交
2154 2155 2156
            # TODO: Need a better way to distinguish and specify different execution mode
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
2157 2158
                    program._pipeline_opt
                )
2159 2160
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
2161 2162
                    program._heter_pipeline_opt
                )
H
hutuxian 已提交
2163 2164
            else:
                trainer = TrainerFactory()._create_trainer(program._fleet_opt)
2165
                trainer._set_thread_barrier(program._is_distributed)
2166
            trainer._set_program(program)
T
Thunderbrook 已提交
2167 2168
            if is_heter:
                trainer._set_heter_info(ret)
2169
        else:
H
hutuxian 已提交
2170 2171
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
2172 2173
                    program.program._pipeline_opt
                )
2174 2175
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
2176 2177
                    program.program._heter_pipeline_opt
                )
H
hutuxian 已提交
2178 2179
            else:
                trainer = TrainerFactory()._create_trainer(
2180 2181
                    program.program._fleet_opt
                )
2182
            trainer._set_program(program.program)
H
hutuxian 已提交
2183

2184
        if thread <= 0:
T
Thunderbrook 已提交
2185 2186 2187
            if use_ps_gpu:
                trainer._set_thread(len(program._fleet_opt["worker_places"]))
            elif dataset.thread_num <= 0:
D
dongdaxiang 已提交
2188
                raise RuntimeError(
2189
                    "You should set thread num first, either in Dataset"
2190 2191
                    "or in Executor.train_from_dataset"
                )
D
dongdaxiang 已提交
2192
            else:
2193
                trainer._set_thread(dataset.thread_num)
2194
        else:
2195
            trainer._set_thread(thread)
H
hutuxian 已提交
2196

2197 2198
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
2199
        return scope, trainer
2200

2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
    def _run_from_dataset(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        is_infer=False,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
2214 2215
        if program._pipeline_opt is not None:
            import paddle
2216

2217 2218
            if dataset is not None:
                raise RuntimeError("dataset should be None for pipeline mode")
2219
            # The following fake dataset is created to call
2220 2221 2222 2223 2224
            # the _prepare_trainer api, and it is meaningless.
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
2225 2226
            if core.is_compiled_with_npu():
                dataset = paddle.fluid.DatasetFactory().create_dataset(
2227 2228
                    'InMemoryDataset'
                )
2229 2230
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
2231 2232
                    'FileInstantDataset'
                )
2233 2234 2235 2236
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
2237 2238
        elif program._heter_pipeline_opt is not None:
            stage_id = program._heter_pipeline_opt["pipeline_stage"]
2239
            # print("test_fl_stage_id: {}".format(stage_id))
2240
            heter_place = program._heter_pipeline_opt["heter_place"]
2241
            if stage_id != 0:
2242 2243
                if "is_fl_mode" not in program._heter_pipeline_opt:
                    import paddle
2244

2245 2246
                    if dataset is not None:
                        raise RuntimeError(
2247 2248
                            "dataset should be None for heter pipeline mode"
                        )
2249
                    # The following fake dataset is created to call
2250 2251 2252 2253 2254 2255
                    # the _prepare_trainer api, and it is meaningless.
                    data_vars = []
                    for var in program.global_block().vars.values():
                        if var.is_data:
                            data_vars.append(var)
                    dataset = paddle.fluid.DatasetFactory().create_dataset(
2256 2257
                        'InMemoryDataset'
                    )
2258 2259 2260 2261
                    dataset.set_batch_size(1)
                    dataset.set_thread(1)
                    dataset.set_filelist(['None'])
                    dataset.set_use_var(data_vars)
2262 2263 2264
            else:
                if dataset is None:
                    raise RuntimeError(
2265 2266
                        "dataset is need and should be initialized"
                    )
2267 2268 2269 2270 2271
            ## change default executor
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
2272 2273 2274
        else:
            if dataset is None:
                raise RuntimeError("dataset is need and should be initialized")
2275 2276

        dataset._prepare_to_run()
2277 2278
        real_fetch_list = []
        if program._pipeline_opt:
2279
            real_program = program._pipeline_opt["section_program"]
2280 2281 2282 2283 2284 2285 2286 2287
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

R
Ruibiao Chen 已提交
2288
            program._pipeline_opt["section_program"] = _add_feed_fetch_ops(
2289 2290 2291 2292
                program=program._pipeline_opt["section_program"],
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
2293 2294
                fetch_var_name='fetch',
            )
2295 2296 2297 2298 2299 2300 2301
            main_block = program._pipeline_opt["section_program"].block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
2302 2303
                        core.op_proto_and_checker_maker.OpRole.Optimize,
                    )
2304
            fetch_list = None
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period,
        )
2315 2316 2317 2318

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

2319
        if program._pipeline_opt is None:
2320 2321
            if program._heter_pipeline_opt is None:
                self._dump_debug_info(program=program, trainer=trainer)
T
Thunderbrook 已提交
2322 2323 2324
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
2325

T
tangwei12 已提交
2326
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)
2327

2328
        if program._heter_pipeline_opt is None:
2329 2330 2331 2332 2333
            trainer_instance = (
                self._default_executor.init_for_dataset(  # -->InitForDataset
                    program.desc, trainer._desc(), scope, dataset.dataset
                )
            )
2334 2335 2336 2337 2338 2339 2340 2341
        else:
            # cache trainer instance for heterps pipeline training
            if fetch_list == None:
                fetch_list = []
            cache_key = _get_strong_program_cache_key(program, None, fetch_list)
            trainer_instance = self._get_trainer_cache(cache_key)
            if trainer_instance is None:
                trainer_instance = self._default_executor.init_for_dataset(
2342 2343 2344
                    program.desc, trainer._desc(), scope, dataset.dataset
                )
                # print("test_fl_ps - trainer_desc: {}\n".format(trainer))
2345 2346 2347
                self._add_trainer_cache(cache_key, trainer_instance)
            else:
                trainer_instance.ResetDataset(dataset.dataset)
2348

T
tangwei12 已提交
2349 2350 2351 2352 2353 2354
        if fetch_handler is not None:
            scope0 = trainer_instance.get_worker_scope(0)
            fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
            fetch_monitor.start()
            self._default_executor.run_from_dataset(trainer_instance)
            fetch_monitor.stop()
2355 2356
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
2357 2358
        else:
            self._default_executor.run_from_dataset(trainer_instance)
2359 2360
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
2361 2362

        dataset._dynamic_adjust_after_train()
2363
        dataset._finish_to_run()
2364 2365 2366 2367
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
T
tangwei12 已提交
2368

2369 2370
        return None

2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
    def _prepare_pipeline_ctx(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        is_infer=False,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
        use_program_cache=False,
    ):
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
        assert program._pipeline_opt is not None
        assert dataset is None, "dataset should be None for pipeline mode"

        cache_key = _get_strong_program_cache_key(program, None, fetch_list)
        ctx = self._get_ctx_cache(cache_key)
        if use_program_cache and ctx is not None:
            return ctx

        import paddle

        # The following fake dataset is created to call
        # the _prepare_trainer api, and it is meaningless.
        def _get_dataset():
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
            if core.is_compiled_with_npu():
                dataset = paddle.fluid.DatasetFactory().create_dataset(
2404 2405
                    'InMemoryDataset'
                )
2406 2407
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
2408 2409
                    'FileInstantDataset'
                )
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
            dataset._prepare_to_run()
            return dataset

        dataset = _get_dataset()

        def _get_real_program_fetch_list():
            real_program = program._pipeline_opt["section_program"]
            real_fetch_list = []
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

2430 2431 2432 2433 2434 2435 2436
            real_program = _add_feed_fetch_ops(
                program=real_program,
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
                fetch_var_name='fetch',
            )
2437 2438 2439 2440 2441 2442 2443
            main_block = real_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
2444 2445
                        core.op_proto_and_checker_maker.OpRole.Optimize,
                    )
2446 2447 2448 2449 2450 2451 2452
            return real_program, real_fetch_list

        real_program, real_fetch_list = _get_real_program_fetch_list()

        program._pipeline_opt["section_program"] = real_program
        fetch_list = None

2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period,
        )
2463 2464 2465 2466 2467 2468 2469

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        # NOTE: only for debug, very slow
        # self._dump_debug_info(program=program, trainer=trainer)

T
Thunderbrook 已提交
2470 2471 2472
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
2473 2474 2475
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)

        trainer_desc = trainer._desc()  # slow, cache
2476
        trainer_instance = self._default_executor.init_for_dataset(
2477 2478
            program.desc, trainer_desc, scope, dataset.dataset
        )
2479 2480

        ctx = [scope, real_fetch_list, trainer_instance]
2481 2482
        if use_program_cache:
            self._add_ctx_cache(cache_key, ctx)
2483

2484 2485
        return ctx

2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
    def _prepare_fleet_executor_carrier(
        self,
        carrier_id="",
        program=None,
        scope=None,
        fleet_opt=None,
        micro_scope_list=[],
        with_standalone_executor=False,
    ):
        num_micro_batches = (
            fleet_opt["num_micro_batches"]
            if "num_micro_batches" in fleet_opt
            else 1
        )
2500
        cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
2501
        trainer_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS", "").split(',')
2502
        nrank = len(trainer_endpoints)
2503

2504 2505
        assert 'scheduler' in fleet_opt or 'tasks' in fleet_opt, (
            "Fleet executor need configuration for scheduler, you can choose from 1F1B or Origin. "
2506
            "Or you can provide a list of task nodes to init fleet executor directly."
2507
        )
2508
        if 'tasks' in fleet_opt:
2509 2510 2511 2512
            assert 'task_id_to_rank' in fleet_opt, (
                "If you provide tasks to init fleet executor,"
                " task_id_to_rank should also be provided."
            )
2513 2514 2515
            print('fleet executor will use user defined task nodes')
            tasks = [task.task_node() for task in fleet_opt['tasks']]
            task_id_to_rank = fleet_opt['task_id_to_rank']
2516
        else:
2517 2518
            scheduler = fleet_opt['scheduler']
            if scheduler == '1F1B':
2519 2520 2521 2522 2523 2524 2525 2526 2527
                from paddle.distributed.fleet.fleet_executor_utils import (
                    run1f1b,
                )

                if (
                    "dist_strategy" not in fleet_opt
                    or "pp_degree" not in fleet_opt["dist_strategy"]
                    or fleet_opt["dist_strategy"]["pp_degree"] == 1
                ):
2528 2529
                    warnings.warn("Using 1F1B scheduler with pp_degree == 1.")
                tasks, task_id_to_rank = run1f1b(
2530 2531 2532 2533 2534 2535 2536
                    program,
                    cur_rank,
                    fleet_opt.get('num_micro_batches', 1),
                    fleet_opt.get('dist_strategy', {}),
                    nrank,
                    with_standalone_executor,
                )
2537 2538
            elif scheduler == 'Origin':
                from paddle.distributed.fleet.fleet_executor_utils import origin
2539 2540 2541 2542 2543 2544 2545 2546

                if (
                    "dist_strategy" in fleet_opt
                    and "pp_degree" in fleet_opt["dist_strategy"]
                ):
                    assert (
                        fleet_opt["dist_strategy"]["pp_degree"] == 1
                    ), "For pipeline mode, the scheduler should be 1F1B instead of Origin."
2547
                if "num_micro_batches" in fleet_opt:
2548 2549 2550
                    assert (
                        fleet_opt["num_micro_batches"] == 1
                    ), "For origin scheduler mode, the num micro batches should be 1."
2551 2552
                tasks, task_id_to_rank = origin(program, cur_rank)
            else:
2553 2554 2555
                raise "Fleet_executor only supports 1F1B and Origin scheduler, " "but received " + str(
                    scheduler
                ) + "."
2556 2557 2558
            # NOTE: have to hold these vars, otherwise will be destructed
            fleet_opt['tasks'] = tasks
            fleet_opt['task_id_to_rank'] = task_id_to_rank
2559 2560
        place = core.Place()
        place.set_place(self.place)
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586

        inference_root_scope_vars = (
            fleet_opt["fetch_var"] if "fetch_var" in fleet_opt else []
        )
        self._fleet_executor.init(
            carrier_id,
            program.desc,
            scope,
            place,
            num_micro_batches,
            tasks,
            task_id_to_rank,
            inference_root_scope_vars,
            micro_scope_list,
        )

    def _run_using_fleet_executor(
        self,
        program=None,
        feed=None,
        feed_var_name="feed",
        fetch_var_name="fetch",
        fetch_list=None,
        with_standalone_executor=False,
        return_numpy=True,
    ):
2587 2588
        cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
        cached_program = self._get_program_cache(cache_key)
2589
        cached_scope = self._get_scope_cache(cache_key)
2590 2591
        micro_cached_scopes = self._get_micro_scopes_cache(cache_key)
        fleet_opt = program._pipeline_opt["fleet_opt"]
2592 2593 2594
        if cached_scope is None:
            cached_scope = global_scope()
            self._add_scope_cache(cache_key, cached_scope)
2595 2596 2597 2598 2599 2600 2601 2602 2603
        if micro_cached_scopes is None:
            micro_cached_scopes = []
            if (
                "inference_generation" in fleet_opt
                and fleet_opt["inference_generation"]
            ):
                for _ in range(int(fleet_opt["num_micro_batches"])):
                    micro_cached_scopes.append(cached_scope.new_scope())
                self._add_micro_scopes_cache(cache_key, micro_cached_scopes)
2604
        if cached_program is None:
2605 2606 2607
            assert (
                program._pipeline_opt
            ), "program should have _pipeline_opt to start carrier"
2608
            real_feed = [] if feed is None else feed
2609 2610 2611
            real_program = program
            if "section_program" in program._pipeline_opt:
                real_program = program._pipeline_opt["section_program"]
2612 2613 2614 2615 2616 2617 2618
            cached_program = _add_feed_fetch_ops(
                program=real_program,
                feed=real_feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
            )
2619 2620 2621 2622 2623 2624 2625
            main_block = cached_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
2626 2627
                        core.op_proto_and_checker_maker.OpRole.Optimize,
                    )
2628
            self._add_program_cache(cache_key, cached_program)
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
            if 'tasks' in fleet_opt:
                # Insert feed/fetch op for cloned program in each task node,
                # these ops has already been inserted into the origin program.
                # To avoid every task nodes all have feed/fetch ops,
                # only insert feed ops into the first task node,
                # then insert fetch ops into the last task node.

                # Insert feed ops
                feed_task = fleet_opt['tasks'][0]
                print("Inserting feed ops for task", feed_task.task_id())
                feed_program = feed_task.get_program()
2640 2641 2642 2643 2644
                feed_program = self._add_feed_ops(
                    program=feed_program,
                    feed=real_feed,
                    feed_var_name=feed_var_name,
                )
2645 2646 2647 2648 2649 2650 2651 2652 2653
                feed_task.set_program(feed_program)

                # Insert fetch ops
                fetch_task = fleet_opt['tasks'][-1]
                print("Inserting fetch ops for task", fetch_task.task_id())
                fetch_program = fetch_task.get_program()
                fetch_program = self._add_fetch_ops(
                    program=fetch_program,
                    fetch_list=fetch_list,
2654 2655
                    fetch_var_name=fetch_var_name,
                )
2656 2657 2658 2659 2660 2661 2662
                main_block = fetch_program.block(0)
                for op in main_block.ops:
                    # set the op_role of fetch op to Optimize to avoid
                    # erase the fetched vars by gc for pipeline
                    if op.type == 'fetch':
                        op._set_attr(
                            'op_role',
2663 2664
                            core.op_proto_and_checker_maker.OpRole.Optimize,
                        )
2665 2666
                fetch_task.set_program(fetch_program)

2667 2668 2669 2670 2671
            self._prepare_fleet_executor_carrier(
                cache_key,
                program=cached_program,
                scope=cached_scope,
                fleet_opt=fleet_opt,
2672 2673 2674
                micro_scope_list=micro_cached_scopes,
                with_standalone_executor=with_standalone_executor,
            )
2675

2676
        if feed:
2677 2678 2679
            # NOTE: don't have to traverse programs in task nodes,
            # since they all sub program of cached program and
            # cached program is also added feed fetch var
2680
            self._feed_data(cached_program, feed, feed_var_name, cached_scope)
2681 2682

        from paddle.optimizer.lr import LRScheduler
2683

2684 2685 2686 2687 2688 2689
        if hasattr(program, 'lr_sheduler'):
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
2690 2691 2692
            tensor = core.get_variable_tensor(
                cached_scope, lr_sheduler._var_name
            )
2693 2694
            tensor.set(data, self.place)

2695 2696
        self._fleet_executor.run(cache_key)

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
        if "fetch_var" in fleet_opt:
            # If we speed up the generation in evaluation, we need to generate
            # multiple queries at the same time. Each query will in separate scope in order
            # not mix up. It indicate that final result will in multiple scopes and need to
            # fetch each.
            result_list = []
            for scope in micro_cached_scopes:
                scope_result_list = []
                for varname in fleet_opt["fetch_var"]:
                    tensor = None
                    try:
                        tensor = core.get_variable_tensor(scope, varname)
                        if return_numpy:
                            tensor = as_numpy(tensor)
                    except:
                        var = scope.find_var(varname)
                        tensor = var.get_lod_tensor_array()
                        if return_numpy:
                            tensor = as_numpy(tensor)
                        else:
                            tensor = [t for t in tensor]

                    if tensor:
                        scope_result_list.append(tensor)

                if scope_result_list:
                    result_list.append(scope_result_list)
            return result_list

2726 2727 2728 2729
        if fetch_list:
            arr = cached_scope.find_var(fetch_var_name).get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
L
LiYuRio 已提交
2730 2731
        return None

2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
    def _add_feed_ops(self, program, feed, feed_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
2743 2744
                persistable=True,
            )
2745 2746 2747 2748 2749 2750

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
                if global_block.has_var(name):
                    out = global_block.var(name)
2751 2752 2753 2754 2755 2756
                    global_block._prepend_op(
                        type='feed',
                        inputs={'X': [feed_var]},
                        outputs={'Out': [out]},
                        attrs={'col': i},
                    )
2757 2758 2759
                else:
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
2760 2761
                        % name
                    )
2762 2763 2764

        return tmp_program

2765
    @classmethod
2766 2767 2768
    def _add_fetch_ops(
        cls, program, fetch_list, fetch_var_name, use_fetch_v2=False
    ):
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
2779 2780
                persistable=True,
            )
2781 2782 2783 2784 2785 2786 2787

        if use_fetch_v2:
            fetch_op = 'fetch_v2'
        else:
            fetch_op = 'fetch'

        # append fetch_operators
2788 2789 2790
        if not has_fetch_operators(
            global_block, fetch_list, fetch_var_name, fetch_op
        ):
2791 2792
            for i, var in enumerate(fetch_list):
                assert isinstance(var, Variable) or isinstance(
2793 2794 2795 2796 2797 2798 2799 2800
                    var, six.string_types
                ), "Wrong type for fetch_list[%s]: %s" % (i, type(var))
                global_block.append_op(
                    type=fetch_op,
                    inputs={'X': [var]},
                    outputs={'Out': [fetch_var]},
                    attrs={'col': i},
                )
2801 2802 2803

        return tmp_program

2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
    @classmethod
    def _remove_fetch_ops(cls, program, fetch_op_name='fetch'):
        tmp_program = program.clone()
        global_block = tmp_program.global_block()
        op_num = len(global_block.ops)
        for idx in reversed(range(op_num)):
            if global_block.ops[idx].type == fetch_op_name:
                global_block._remove_op(idx)

        return tmp_program

2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
    def _run_pipeline(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        is_infer=False,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
        use_program_cache=False,
    ):
        scope, real_fetch_list, trainer_instance = self._prepare_pipeline_ctx(
            program,
            dataset,
            scope,
            thread,
            is_infer,
            debug,
            fetch_list,
            fetch_info,
            print_period,
            fetch_handler,
            use_program_cache,
        )
2842

2843
        from paddle.optimizer.lr import LRScheduler
2844

2845 2846 2847 2848 2849 2850 2851 2852 2853
        if hasattr(program, 'lr_sheduler'):
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
            tensor.set(data, self.place)

2854 2855
        self._default_executor.run_from_dataset(trainer_instance)

2856 2857 2858
        if not use_program_cache:
            self._default_executor.release_trainer(trainer_instance)

2859 2860 2861 2862 2863 2864 2865
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)

        return None

2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
    def infer_from_dataset(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
2878
        """
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
        Infer from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, infer_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current infer task.

        The document of infer_from_dataset is almost the same as train_from_dataset,
        except that in distributed training, push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-threadvery easily.
2890

2891 2892
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2893
                if not provided, then default_main_program (not compiled) will be used.
2894
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2895 2896
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed. default is None
2897
            scope(Scope): the scope used to run this program, you can switch it to different scope
2898 2899 2900
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2901
            debug(bool): whether a user wants to run infer_from_dataset, default is False
2902
            fetch_list(Tensor List): fetch Tensor list, each Tensor will be printed during
2903
                training, default is None
2904
            fetch_info(String List): print information for each Tensor, default is None
2905
            print_period(int): the number of mini-batches for each print, default is 100
2906
            fetch_handler(FetchHandler): a user define class for fetch output.
2907

2908 2909 2910 2911
        Returns:
            None

        Examples:
2912 2913

            .. code-block:: python
2914

2915
                import paddle
2916

2917 2918 2919 2920 2921 2922
                paddle.enable_static()
                place = paddle.CPUPlace()  # you can set place = paddle.CUDAPlace(0) to use gpu
                exe = paddle.static.Executor(place)
                x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
                y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
                dataset = paddle.fluid.DatasetFactory().create_dataset()
2923
                dataset.set_use_var([x, y])
2924
                dataset.set_thread(1)
2925 2926
                # you should set your own filelist, e.g. filelist = ["dataA.txt"]
                filelist = []
2927
                dataset.set_filelist(filelist)
2928 2929 2930
                exe.run(paddle.static.default_startup_program())
                exe.infer_from_dataset(program=paddle.static.default_main_program(),
                                       dataset=dataset)
2931

2932
        """
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
        return self._run_from_dataset(
            program,
            dataset,
            scope,
            thread,
            True,
            debug,
            fetch_list,
            fetch_info,
            print_period,
            fetch_handler,
        )

    def start_heter_trainer(
        self,
        program=None,
        scope=None,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=None,
            scope=scope,
            thread=1,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period,
        )
T
Thunderbrook 已提交
2966

2967
        trainer._set_infer(False)
T
Thunderbrook 已提交
2968 2969 2970 2971 2972
        trainer._gen_trainer_desc()

        self._dump_debug_info(program=program, trainer=trainer)

        trainer_instance = self._default_executor.init_for_dataset(
2973 2974
            program.desc, trainer._desc(), scope, None
        )
T
Thunderbrook 已提交
2975

2976
        # if fetch_handler is not None:
T
Thunderbrook 已提交
2977 2978 2979 2980 2981 2982
        #    scope0 = trainer_instance.get_worker_scope(0)
        #    fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
        #    fetch_monitor.start()
        #    self._default_executor.run_from_dataset(trainer_instance)
        #    fetch_monitor.stop()
        #    self._default_executor.release_trainer(trainer_instance)
2983
        # else:
T
Thunderbrook 已提交
2984 2985

        self._default_executor.run_from_dataset(trainer_instance)
2986
        # self._default_executor.release_trainer(trainer_instance)
T
Thunderbrook 已提交
2987 2988 2989

        return trainer_instance

2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
    def train_from_dataset(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
3002 3003 3004 3005 3006 3007 3008 3009
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
3010

3011 3012 3013 3014
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
3015
                if not provided, then default_main_program (not compiled) will be used.
3016
            dataset(paddle.fluid.Dataset): dataset created outside this function,
3017 3018
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed.
3019
            scope(Scope): the scope used to run this program, you can switch it to different scope
3020 3021 3022
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
3023
            debug(bool): whether a user wants to run train_from_dataset
3024
            fetch_list(Tensor List): fetch Tensor list, each variable will be printed
3025
                during training
3026
            fetch_info(String List): print information for each Tensor, its length should be equal
3027 3028
                to fetch_list
            print_period(int): the number of mini-batches for each print, default is 100
3029
            fetch_handler(FetchHandler): a user define class for fetch output.
3030 3031 3032

        Returns:
            None
3033

3034
        Examples:
3035

3036 3037
            .. code-block:: python

3038
              import paddle
3039

3040 3041 3042 3043 3044 3045
              paddle.enable_static()
              place = paddle.CPUPlace() # you can set place = paddle.CUDAPlace(0) to use gpu
              exe = paddle.static.Executor(place)
              x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
              y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
              dataset = paddle.fluid.DatasetFactory().create_dataset()
3046
              dataset.set_use_var([x, y])
3047
              dataset.set_thread(1)
3048 3049
              # you should set your own filelist, e.g. filelist = ["dataA.txt"]
              filelist = []
3050
              dataset.set_filelist(filelist)
3051 3052
              exe.run(paddle.static.default_startup_program())
              exe.train_from_dataset(program=paddle.static.default_main_program(),
3053
                                     dataset=dataset)
3054 3055

        """
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
        return self._run_from_dataset(
            program,
            dataset,
            scope,
            thread,
            False,
            debug,
            fetch_list,
            fetch_info,
            print_period,
            fetch_handler,
        )