conv.py 54.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define classes of convolutional neural network
16

17 18
import numpy as np

Z
zhiboniu 已提交
19
from paddle import get_flags
L
LielinJiang 已提交
20
from ...device import get_cudnn_version
Z
zhiboniu 已提交
21 22
from .. import Layer
from ..initializer import Normal
23 24 25
from .. import functional as F
from ...fluid.layers import utils
from ..functional.conv import _update_padding_nd
Z
zhiboniu 已提交
26 27
from ...device import is_compiled_with_cuda
from ...device import is_compiled_with_rocm
28

29 30
__all__ = []

31 32 33 34

def _get_default_param_initializer(num_channels, filter_size):
    filter_elem_num = num_channels * np.prod(filter_size)
    std = (2.0 / filter_elem_num)**0.5
Z
zhiboniu 已提交
35
    return Normal(0.0, std)
36 37


38 39 40 41 42 43 44 45
def _reverse_repeat_list(t, n):
    """Reverse the order of `t` and repeat each element for `n` times.
    This can be used to translate padding arg used by Conv and Pooling modules
    to the ones used by `F.pad`.
    """
    return list(x for x in reversed(t) for _ in range(n))


Z
zhiboniu 已提交
46
class _ConvNd(Layer):
47

L
LielinJiang 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 transposed,
                 dims,
                 stride=1,
                 padding=0,
                 padding_mode='zeros',
                 output_padding=0,
                 dilation=1,
                 groups=1,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCHW"):
        super(_ConvNd, self).__init__()
        assert weight_attr is not False, "weight_attr should not be False in Conv."
        self._param_attr = weight_attr
        self._bias_attr = bias_attr
        self._groups = groups
        self._in_channels = in_channels
        self._out_channels = out_channels
        self._data_format = data_format

72 73 74 75 76 77 78
        valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}
        if padding_mode not in valid_padding_modes:
            raise ValueError(
                "padding_mode must be one of {}, but got padding_mode='{}'".
                format(valid_padding_modes, padding_mode))

        if padding_mode in {'reflect', 'replicate', 'circular'
79
                            } and not isinstance(padding, int):
80 81 82 83
            raise TypeError(
                "when padding_mode in ['reflect', 'replicate', 'circular'], type of padding must be int"
            )

84 85 86 87 88 89
        valid_format = {'NHWC', 'NCHW', 'NDHWC', 'NCDHW', 'NLC', 'NCL'}
        if data_format not in valid_format:
            raise ValueError(
                "data_format must be one of {}, but got data_format='{}'".
                format(valid_format, data_format))

90 91 92
        channel_last = (data_format == "NHWC") or (data_format
                                                   == "NDHWC") or (data_format
                                                                   == "NLC")
L
LielinJiang 已提交
93 94 95 96 97
        if channel_last:
            self._channel_dim = len(data_format) - 1
        else:
            self._channel_dim = 1

L
LielinJiang 已提交
98 99 100 101 102
        self._stride = utils.convert_to_list(stride, dims, 'stride')
        self._dilation = utils.convert_to_list(dilation, dims, 'dilation')
        self._kernel_size = utils.convert_to_list(kernel_size, dims,
                                                  'kernel_size')
        self._padding = padding
103
        self._padding_mode = padding_mode
104
        self.output_padding = output_padding
L
LielinJiang 已提交
105
        if dims != 1:
106
            self._updated_padding, self._padding_algorithm = _update_padding_nd(
L
LielinJiang 已提交
107
                padding, channel_last, dims)
L
LielinJiang 已提交
108 109 110 111 112

        if transposed:
            filter_shape = [self._in_channels, out_channels // groups
                            ] + self._kernel_size
        else:
113 114 115 116
            if in_channels % groups != 0:
                raise ValueError("in_channels must be divisible by groups.")

            if padding_mode in {'reflect', 'replicate', 'circular'}:
117 118
                _paired_padding = utils.convert_to_list(padding, dims,
                                                        'padding')
119 120 121
                self._reversed_padding_repeated_twice = _reverse_repeat_list(
                    _paired_padding, 2)

122 123
                self._updated_padding, self._padding_algorithm = _update_padding_nd(
                    0, channel_last, dims)
L
LielinJiang 已提交
124

L
LielinJiang 已提交
125 126 127
            filter_shape = [out_channels, in_channels // groups
                            ] + self._kernel_size

L
LielinJiang 已提交
128 129 130 131 132
        def _get_default_param_initializer():
            if transposed:
                return None
            filter_elem_num = np.prod(self._kernel_size) * self._in_channels
            std = (2.0 / filter_elem_num)**0.5
Z
zhiboniu 已提交
133
            return Normal(0.0, std)
L
LielinJiang 已提交
134

L
LielinJiang 已提交
135
        self.weight = self.create_parameter(
L
LielinJiang 已提交
136 137 138
            shape=filter_shape,
            attr=self._param_attr,
            default_initializer=_get_default_param_initializer())
139 140 141
        self.bias = self.create_parameter(attr=self._bias_attr,
                                          shape=[self._out_channels],
                                          is_bias=True)
L
LielinJiang 已提交
142

L
LielinJiang 已提交
143 144
        cudnn_version = get_cudnn_version()

145 146
        self._use_cudnn = True if (is_compiled_with_cuda()
                                   and cudnn_version is not None) else False
L
LielinJiang 已提交
147 148

        self._op_type = "conv" + str(dims) + 'd'
149 150 151
        if self._op_type == 'conv2d' and (in_channels == groups
                                          and in_channels != 1
                                          and out_channels % in_channels == 0):
L
LielinJiang 已提交
152
            self._op_type = 'depthwise_conv2d'
Z
zhiboniu 已提交
153
            if is_compiled_with_rocm():
154 155 156 157
                self._use_cudnn = True
            else:
                self._use_cudnn = False

158 159
        if (is_compiled_with_cuda() and get_flags("FLAGS_conv2d_disable_cudnn")
            ["FLAGS_conv2d_disable_cudnn"]):
L
LielinJiang 已提交
160 161
            self._use_cudnn = False

162 163 164 165 166 167
    def extra_repr(self):
        main_str = '{_in_channels}, {_out_channels}, kernel_size={_kernel_size}'
        if self._stride != [1] * len(self._stride):
            main_str += ', stride={_stride}'
        if self._padding != 0:
            main_str += ', padding={_padding}'
168
        if self._padding_mode != 'zeros':
169
            main_str += ', padding_mode={_padding_mode}'
170 171
        if self.output_padding != 0:
            main_str += ', output_padding={output_padding}'
172 173 174 175 176 177 178
        if self._dilation != [1] * len(self._dilation):
            main_str += ', dilation={_dilation}'
        if self._groups != 1:
            main_str += ', groups={_groups}'
        main_str += ', data_format={_data_format}'
        return main_str.format(**self.__dict__)

L
LielinJiang 已提交
179

C
cnn 已提交
180
class Conv1D(_ConvNd):
181
    r"""
C
cnn 已提交
182
    This interface is used to construct a callable object of the ``Conv1D`` class.
W
whs 已提交
183 184 185 186 187 188 189 190 191 192 193
    For more details, refer to code examples.
    The convolution1D layer calculates the output based on the input, filter
    and stride, padding, dilation, groups parameters. Input and
    Output are in NCL format or NLC format, where N is batch size, C is the number of
    the feature map, L is the length of the feature map.
    Filter's shape is [MCK] , where M is the number of output feature map,
    C is the number of input feature map, K is the size of the kernel. 
    If the groups is greater than 1, C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
W
whs 已提交
194 195 196

    For each input :math:`X` , the equation is:

W
whs 已提交
197
    .. math::
W
whs 已提交
198

199
        Out = \sigma (W \ast X + b)
W
whs 已提交
200

W
whs 已提交
201
    Where:
W
whs 已提交
202

W
whs 已提交
203 204 205
    * :math:`X`: Input value, a ``Tensor`` with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCK] .
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
206
    * :math:`b`: Bias value, a 1-D ``Tensor`` with shape [M].
W
whs 已提交
207 208
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
W
whs 已提交
209

W
whs 已提交
210
    Example:
W
whs 已提交
211

W
whs 已提交
212
        - Input:
W
whs 已提交
213

W
whs 已提交
214
          Input shape: :math:`(N, C_{in}, L_{in})`
W
whs 已提交
215

W
whs 已提交
216
          Kernel shape: :math:`(C_{out}, C_{in}, K)`
W
whs 已提交
217

W
whs 已提交
218
        - Output:
W
whs 已提交
219

W
whs 已提交
220
          Output shape: :math:`(N, C_{out}, L_{out})`
W
whs 已提交
221

W
whs 已提交
222
        Where
W
whs 已提交
223

W
whs 已提交
224
        .. math::
W
whs 已提交
225

226
            L_{out}&= \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1 \\
W
whs 已提交
227

W
whs 已提交
228 229 230 231
    Parameters:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of filter. It is as same as the output
            feature map.
232
        kernel_size (int|tuple|list): The filter size. If kernel_size is a tuple/list,
W
whs 已提交
233
            it must contain one integer, (kernel_size).
234
        stride (int|tuple|list, optional): The stride size. If stride is a tuple/list, it must
W
whs 已提交
235 236 237 238 239 240
            contain one integer, (stride_size). Default: 1.
        padding(int|str|tuple|list, optional): The size of zeros to be padded. It must be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            The default value is 0.
241
        dilation (int|tuple|list, optional): The dilation size. If dilation is a tuple/list, it must
W
whs 已提交
242 243 244 245 246 247 248 249 250 251 252 253
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        padding_mode(str, optional): Four modes: 'zeros', 'reflect', 'replicate', 'circular'.
            When in 'zeros' mode, this op uses zeros to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'zeros'.
L
LielinJiang 已提交
254
        weight_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
W
whs 已提交
255 256 257
            of conv1d. If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
258
            and the :math:`std` is :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
W
whs 已提交
259 260 261 262 263
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv1d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
W
whs 已提交
264

W
whs 已提交
265
    Attribute:
W
wangguanzhong 已提交
266

W
whs 已提交
267
        **weight** (Parameter): the learnable weights of filter of this layer.
W
wangguanzhong 已提交
268

W
whs 已提交
269
        **bias** (Parameter or None): the learnable bias of this layer.
W
whs 已提交
270

W
whs 已提交
271 272
    Shape:
        - x: 3-D tensor with shape: (batch, in_channels, length) or (batch, length, in_channels).
W
wangguanzhong 已提交
273 274
        - weight: 3-D tensor with shape: (out_channels, in_channels, kernel_size)
        - bias: 1-D tensor with shape: (out_channels)
W
whs 已提交
275 276 277 278
        - output: 3-D tensor with same shape as input x.
    
    Raises:
        None
W
whs 已提交
279

W
whs 已提交
280 281
    Examples:
        .. code-block:: python
W
whs 已提交
282

W
whs 已提交
283
          import paddle
C
cnn 已提交
284
          from paddle.nn import Conv1D
W
whs 已提交
285 286 287 288 289 290 291 292 293 294 295 296
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
          x_t = paddle.to_tensor(x)
C
cnn 已提交
297
          conv = Conv1D(3, 2, 3)
W
whs 已提交
298 299
          conv.weight.set_value(w)
          y_t = conv(x_t)
W
whs 已提交
300
          print(y_t)
W
whs 已提交
301 302
          # [[[133. 238.]
          #   [160. 211.]]]
303
    """
S
swtkiwi 已提交
304

305
    def __init__(self,
306 307 308
                 in_channels,
                 out_channels,
                 kernel_size,
309
                 stride=1,
310
                 padding=0,
311 312
                 dilation=1,
                 groups=1,
313 314
                 padding_mode='zeros',
                 weight_attr=None,
315
                 bias_attr=None,
L
LielinJiang 已提交
316
                 data_format="NCL"):
317 318 319 320 321 322 323 324 325 326 327 328 329
        super(Conv1D, self).__init__(in_channels,
                                     out_channels,
                                     kernel_size,
                                     False,
                                     1,
                                     stride=stride,
                                     padding=padding,
                                     padding_mode=padding_mode,
                                     dilation=dilation,
                                     groups=groups,
                                     weight_attr=weight_attr,
                                     bias_attr=bias_attr,
                                     data_format=data_format)
330

331
    def forward(self, x):
L
LielinJiang 已提交
332 333
        padding = 0
        if self._padding_mode != "zeros":
334
            x = F.pad(x,
W
whs 已提交
335
                      self._reversed_padding_repeated_twice,
336 337
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
338 339
        else:
            padding = self._padding
340

341 342 343 344 345 346 347 348
        out = F.conv1d(x,
                       self.weight,
                       bias=self.bias,
                       padding=padding,
                       stride=self._stride,
                       dilation=self._dilation,
                       groups=self._groups,
                       data_format=self._data_format)
349 350 351
        return out


C
cnn 已提交
352
class Conv1DTranspose(_ConvNd):
353
    r"""
C
cnn 已提交
354
    This interface is used to construct a callable object of the ``Conv1DTranspose`` class.
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
    For more details, refer to code examples.
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

370
        Out = \sigma (W \ast X + b)
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Kernel value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' of 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
406
          and :math:`L^\prime_{out} + stride`.
407 408 409 410 411

    Args:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of the filter. It is as same as the output
            feature map.
412
        kernel_size(int|tuple|list, optional): The filter size. If kernel_size is a tuple/list,
413 414 415 416
            it must contain one integers, (kernel_size). None if
            use output size to calculate kernel_size. Default: None. kernel_size and
            output_size should not be None at the same time.
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
417
            If stride is a tuple/list, it must contain one integer, (stride_size).
418 419 420 421 422 423 424
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
425
             If it is a tuple/list, it must contain one integer. Default: 0.
C
cnn 已提交
426
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
427 428 429 430 431 432 433
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        bias(bool, optional): Whether to use bias. Default: True.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
434
            If dilation is a tuple/list, it must contain one integer, (dilation_size).
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
            Default: dilation = 1.
        weight_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv1d_transpose. If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv1d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.

    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:
W
whs 已提交
451 452

        - x(Tensor): 3-D tensor with shape (batch, in_channels, length) when data_format is "NCL" or shape (batch, length, in_channels) when data_format is "NLC".
W
wangguanzhong 已提交
453 454
        - weight(Tensor): 3-D tensor with shape (in_channels, out_channels, kernel_length).
        - bias(Tensor): 1-D tensor with shape (out_channels).
455
        - output_size(int|tuple|list, optional): The output image size. If output size is a tuple/list, it must contain one integer, (feature_length). None if use kernel_size, padding, output_padding and stride to calculate output_size. If output_size and kernel_size are specified at the same time, They should follow the formula above. Default: None. output_size and kernel_size should not be None at the same time.
456 457 458 459 460 461
        - output(Tensor): 3-D tensor with same shape as input x.

    Examples:
       .. code-block:: python

          import paddle
C
cnn 已提交
462
          from paddle.nn import Conv1DTranspose
463 464 465 466 467 468 469 470 471
          import numpy as np
          
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2]]]).astype(np.float32)
          # shape: (2, 1, 2)
          y=np.array([[[7, 0]],
                      [[4, 2]]]).astype(np.float32)
          x_t = paddle.to_tensor(x)
C
cnn 已提交
472
          conv = Conv1DTranspose(2, 1, 2)
473 474
          conv.weight.set_value(y)
          y_t = conv(x_t)
W
whs 已提交
475
          print(y_t)
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
          
          # [[[60. 16. 99. 75.  4.]]]
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 output_padding=0,
                 groups=1,
                 dilation=1,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCL"):
492 493 494 495 496 497 498 499 500 501 502 503 504
        super(Conv1DTranspose, self).__init__(in_channels,
                                              out_channels,
                                              kernel_size,
                                              True,
                                              1,
                                              stride=stride,
                                              padding=padding,
                                              dilation=dilation,
                                              output_padding=output_padding,
                                              groups=groups,
                                              weight_attr=weight_attr,
                                              bias_attr=bias_attr,
                                              data_format=data_format)
505 506

    def forward(self, x, output_size=None):
507 508 509 510 511 512 513 514 515 516
        out = F.conv1d_transpose(x,
                                 self.weight,
                                 bias=self.bias,
                                 output_size=output_size,
                                 output_padding=self.output_padding,
                                 padding=self._padding,
                                 stride=self._stride,
                                 dilation=self._dilation,
                                 groups=self._groups,
                                 data_format=self._data_format)
L
LielinJiang 已提交
517 518 519
        return out


C
cnn 已提交
520
class Conv2D(_ConvNd):
521
    r"""
C
cnn 已提交
522
    This interface is used to construct a callable object of the ``Conv2D`` class.
L
LielinJiang 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
    For more details, refer to code examples.
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:

    ..  math::

542
        Out = \sigma (W \ast X + b)
L
LielinJiang 已提交
543 544 545 546 547 548

    Where:

    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
549
    * :math:`b`: Bias value, a 1-D ``Tensor`` with shape [M].
L
LielinJiang 已提交
550 551 552 553 554 555 556
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    
    Parameters:
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
557
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
L
LielinJiang 已提交
558 559 560 561 562 563 564 565 566
            contain three integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. The default value is 1.
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
567
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
L
LielinJiang 已提交
568 569
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
570
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
L
LielinJiang 已提交
571 572 573 574 575 576 577 578 579
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
580
            :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
L
LielinJiang 已提交
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
        data_format(str, optional): Data format that specifies the layout of input.
            It can be "NCHW" or "NHWC". Default: "NCHW".

    Attribute:

        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:

        - x: :math:`(N, C_{in}, H_{in}, W_{in})`

W
wangguanzhong 已提交
599 600 601 602
        - weight: :math:`(C_{out}, C_{in}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

L
LielinJiang 已提交
603 604 605 606 607 608
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        ..  math::

609
           H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1
L
LielinJiang 已提交
610

611
           W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1
L
LielinJiang 已提交
612 613 614 615 616 617 618

    Examples:

        .. code-block:: python

          import paddle
          import paddle.nn as nn
C
cnn 已提交
619 620 621
          
          paddle.disable_static()
          
622
          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
L
LielinJiang 已提交
623
          
C
cnn 已提交
624
          conv = nn.Conv2D(4, 6, (3, 3))
L
LielinJiang 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
          # (2, 6, 6, 6)
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 padding_mode='zeros',
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCHW"):
643 644 645 646 647 648 649 650 651 652 653 654 655
        super(Conv2D, self).__init__(in_channels,
                                     out_channels,
                                     kernel_size,
                                     False,
                                     2,
                                     stride=stride,
                                     padding=padding,
                                     padding_mode=padding_mode,
                                     dilation=dilation,
                                     groups=groups,
                                     weight_attr=weight_attr,
                                     bias_attr=bias_attr,
                                     data_format=data_format)
L
LielinJiang 已提交
656 657 658 659 660 661 662

    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
663

664 665 666 667 668 669 670 671 672 673 674 675
        out = F.conv._conv_nd(x,
                              self.weight,
                              bias=self.bias,
                              stride=self._stride,
                              padding=self._updated_padding,
                              padding_algorithm=self._padding_algorithm,
                              dilation=self._dilation,
                              groups=self._groups,
                              data_format=self._data_format,
                              channel_dim=self._channel_dim,
                              op_type=self._op_type,
                              use_cudnn=self._use_cudnn)
676 677 678
        return out


C
cnn 已提交
679
class Conv2DTranspose(_ConvNd):
680
    r"""
C
cnn 已提交
681
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
682 683 684 685 686
    For more details, refer to code examples.
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
W
wangguanzhong 已提交
687 688
    Filter's shape is [CMHW] , where C is the number of input feature map,
    M is the number of output feature map, H is the height of the filter,
689 690 691 692 693 694
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    The details of convolution transpose layer, please refer to the following explanation and references
W
wangguanzhong 已提交
695
    `conv2dtranspose <https://arxiv.org/pdf/1603.07285.pdf>`_ .
696
    For each input :math:`X`, the equation is:
697 698 699

    ..  math::

700
        Out = \sigma (W \ast X + b)
701

702
    Where:
703

704
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
W
wangguanzhong 已提交
705
    * :math:`W`: Filter value, a ``Tensor`` with shape [CMHW] .
706
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
707
    * :math:`b`: Bias value, a 1-D ``Tensor`` with shape [M].
708 709
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
710
    
711
    Parameters:
L
LielinJiang 已提交
712 713
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
714
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a list/tuple,
L
LielinJiang 已提交
715 716
            it must contain two integers, (kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
717
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
718 719
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
720 721 722 723 724 725 726
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` on both sides 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
727 728
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
729
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
730 731
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
732
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
733 734 735 736 737
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: 1.
738
        weight_attr(ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
739 740 741
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
742
        bias_attr(ParamAttr|bool, optional): The attribute for the bias of conv2d_transpose.
743 744 745 746
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
747
        data_format(str, optional): Data format that specifies the layout of input.
748
            It can be "NCHW" or "NHWC". Default: "NCHW".
749

750
    Attribute:
751

752
        **weight** (Parameter): the learnable weights of filters of this layer.
753

754
        **bias** (Parameter or None): the learnable bias of this layer.
755

L
LielinJiang 已提交
756
    Shape:
757

L
LielinJiang 已提交
758
        - x: :math:`(N, C_{in}, H_{in}, W_{in})`
759

W
wangguanzhong 已提交
760 761 762 763
        - weight: :math:`(C_{in}, C_{out}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

L
LielinJiang 已提交
764
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`
765

L
LielinJiang 已提交
766
        Where
767 768 769 770 771 772 773 774 775 776 777

        ..  math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1

           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1

           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] )

           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

778
    Examples:
779

780
       .. code-block:: python
781

L
LielinJiang 已提交
782 783
          import paddle
          import paddle.nn as nn
C
cnn 已提交
784 785
          
          paddle.disable_static()
786 787 788

          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)

C
cnn 已提交
789
          conv = nn.Conv2DTranspose(4, 6, (3, 3))
L
LielinJiang 已提交
790 791 792
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
793 794 795 796
          # (2, 6, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
797 798 799
                 in_channels,
                 out_channels,
                 kernel_size,
800
                 stride=1,
L
LielinJiang 已提交
801 802
                 padding=0,
                 output_padding=0,
803 804
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
805
                 weight_attr=None,
806
                 bias_attr=None,
L
LielinJiang 已提交
807
                 data_format="NCHW"):
808 809 810 811 812 813 814 815 816 817 818 819 820
        super(Conv2DTranspose, self).__init__(in_channels,
                                              out_channels,
                                              kernel_size,
                                              True,
                                              2,
                                              stride=stride,
                                              padding=padding,
                                              dilation=dilation,
                                              output_padding=output_padding,
                                              groups=groups,
                                              weight_attr=weight_attr,
                                              bias_attr=bias_attr,
                                              data_format=data_format)
L
LielinJiang 已提交
821 822

    def forward(self, x, output_size=None):
823
        if output_size is None:
824
            output_padding = self.output_padding
825
        else:
L
LielinJiang 已提交
826
            output_padding = 0
827

828 829 830 831 832 833 834 835 836 837
        out = F.conv2d_transpose(x,
                                 self.weight,
                                 bias=self.bias,
                                 padding=self._padding,
                                 output_padding=output_padding,
                                 stride=self._stride,
                                 dilation=self._dilation,
                                 groups=self._groups,
                                 output_size=output_size,
                                 data_format=self._data_format)
838 839 840
        return out


C
cnn 已提交
841
class Conv3D(_ConvNd):
842
    r"""
843 844
    **Convlution3d Layer**
    The convolution3d layer calculates the output based on the input, filter
845 846 847 848 849 850 851 852 853
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
    For each input :math:`X`, the equation is:
854 855 856

    ..  math::

857
        Out = \sigma (W \ast X + b)
858

859
    In the above equation:
860

861 862 863
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
864
    * :math:`b`: Bias value, a 1-D tensor with shape [M].
865 866
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
867

868
    Parameters:
869 870
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
871
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
872
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
873 874
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. The default value is 1.
875
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
876 877 878 879 880 881
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
882
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
883 884
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
885
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
886 887 888 889
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
890 891
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
892 893 894
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
895
            :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
896
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
897 898 899 900
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
901
        data_format(str, optional): Data format that specifies the layout of input.
902
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
903

904
    Attribute:
905

906
        **weight** (Parameter): the learnable weights of filters of this layer.
907

908
        **bias** (Parameter): the learnable bias of this layer.
909

910
    Shape:
911

912
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
913

W
wangguanzhong 已提交
914 915 916 917
        - weight: :math:`(C_{out}, C_{in}, K_{d}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

918
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
919

920
        Where
921 922 923

        ..  math::

924
           D_{out}&= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1
925

926
           H_{out}&= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1
927

928
           W_{out}&= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (kernel\_size[2] - 1) + 1))}{strides[2]} + 1
929

930 931 932
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
933

934
    Examples:
935

936
        .. code-block:: python
937

938 939
          import paddle
          import paddle.nn as nn
C
cnn 已提交
940 941
          
          paddle.disable_static()
942 943

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
944
          
C
cnn 已提交
945
          conv = nn.Conv3D(4, 6, (3, 3, 3))
946 947 948
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
949 950 951 952
          # (2, 6, 6, 6, 6)
    """

    def __init__(self,
953 954 955
                 in_channels,
                 out_channels,
                 kernel_size,
956
                 stride=1,
L
LielinJiang 已提交
957
                 padding=0,
958 959
                 dilation=1,
                 groups=1,
960 961
                 padding_mode='zeros',
                 weight_attr=None,
962
                 bias_attr=None,
963
                 data_format="NCDHW"):
964 965 966 967 968 969 970 971 972 973 974 975 976
        super(Conv3D, self).__init__(in_channels,
                                     out_channels,
                                     kernel_size,
                                     False,
                                     3,
                                     stride=stride,
                                     padding=padding,
                                     padding_mode=padding_mode,
                                     dilation=dilation,
                                     groups=groups,
                                     weight_attr=weight_attr,
                                     bias_attr=bias_attr,
                                     data_format=data_format)
977

978 979 980 981 982 983
    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
984

985 986 987 988 989 990 991 992 993 994 995 996
        out = F.conv._conv_nd(x,
                              self.weight,
                              bias=self.bias,
                              stride=self._stride,
                              padding=self._updated_padding,
                              padding_algorithm=self._padding_algorithm,
                              dilation=self._dilation,
                              groups=self._groups,
                              data_format=self._data_format,
                              channel_dim=self._channel_dim,
                              op_type=self._op_type,
                              use_cudnn=self._use_cudnn)
997 998 999
        return out


C
cnn 已提交
1000
class Conv3DTranspose(_ConvNd):
1001
    r"""
1002 1003 1004 1005 1006 1007 1008 1009
    **Convlution3D transpose layer**
    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
W
wangguanzhong 已提交
1010
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
1011 1012 1013 1014
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    For each input :math:`X`, the equation is:
1015 1016 1017
    
    ..  math::

1018
        Out = \sigma (W \ast X + b)
1019

1020
    In the above equation:
1021

1022
    * :math:`X`: Input value, a tensor with NCDHW format.
W
wangguanzhong 已提交
1023
    * :math:`W`: Filter value, a tensor with CMDHW format.
1024
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
1025
    * :math:`b`: Bias value, a 1-D tensor with shape [M].
1026 1027
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
1028

1029
    **Note**:
1030

1031
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
1032
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
1033
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
1034 1035 1036 1037 1038 1039
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
1040
          conv3d_transpose can compute the kernel size automatically.
1041

1042
    Parameters:
L
LielinJiang 已提交
1043 1044
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
1045
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a list/tuple,
L
LielinJiang 已提交
1046 1047 1048
            it must contain three integers, (kernel_size_D, kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
1049
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height, 
L
LielinJiang 已提交
1050 1051
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
1052 1053 1054 1055 1056 1057 1058
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
L
LielinJiang 已提交
1059 1060
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
1061
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
1062 1063
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
1064
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1065 1066 1067 1068 1069
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            The default value is 1.
1070
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
1071 1072 1073
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. The default value is None.
1074
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
1075 1076 1077 1078
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
1079
        data_format(str, optional): Data format that specifies the layout of input.
1080
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
1081

1082
    Attribute:
1083

1084
        **weight** (Parameter): the learnable weights of filters of this layer.
1085

1086
        **bias** (Parameter): the learnable bias of this layer.
1087

L
LielinJiang 已提交
1088
    Shape:
1089

L
LielinJiang 已提交
1090
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
1091

W
wangguanzhong 已提交
1092 1093 1094 1095
        - weight: :math:`(C_{in}, C_{out}, K_{d}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

L
LielinJiang 已提交
1096
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
1097

L
LielinJiang 已提交
1098
        Where
1099 1100 1101 1102 1103 1104 1105 1106 1107

        ..  math::

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1
           
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1
           
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (kernel\_size[2] - 1) + 1
           
1108 1109 1110 1111
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
1112

1113
       .. code-block:: python
1114

L
LielinJiang 已提交
1115 1116
          import paddle
          import paddle.nn as nn
C
cnn 已提交
1117 1118
          
          paddle.disable_static()
1119 1120

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
L
LielinJiang 已提交
1121
          
C
cnn 已提交
1122
          conv = nn.Conv3DTranspose(4, 6, (3, 3, 3))
L
LielinJiang 已提交
1123 1124 1125
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
1126 1127 1128 1129
          # (2, 6, 10, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
1130 1131 1132
                 in_channels,
                 out_channels,
                 kernel_size,
1133
                 stride=1,
L
LielinJiang 已提交
1134 1135
                 padding=0,
                 output_padding=0,
1136 1137
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
1138
                 weight_attr=None,
1139
                 bias_attr=None,
L
LielinJiang 已提交
1140
                 data_format="NCDHW"):
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
        super(Conv3DTranspose, self).__init__(in_channels,
                                              out_channels,
                                              kernel_size,
                                              True,
                                              3,
                                              stride=stride,
                                              padding=padding,
                                              dilation=dilation,
                                              output_padding=output_padding,
                                              groups=groups,
                                              weight_attr=weight_attr,
                                              bias_attr=bias_attr,
                                              data_format=data_format)
L
LielinJiang 已提交
1154

1155
    def forward(self, x, output_size=None):
1156
        if output_size is None:
1157
            output_padding = self.output_padding
1158
        else:
L
LielinJiang 已提交
1159
            output_padding = 0
1160

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
        out = F.conv3d_transpose(x,
                                 self.weight,
                                 bias=self.bias,
                                 padding=self._padding,
                                 output_padding=output_padding,
                                 stride=self._stride,
                                 dilation=self._dilation,
                                 groups=self._groups,
                                 output_size=output_size,
                                 data_format=self._data_format)
1171
        return out