yolov3_loss_op.cc 10.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

D
dengkaipeng 已提交
12
#include <memory>
13

14
#include "paddle/fluid/framework/infershape_utils.h"
15
#include "paddle/fluid/framework/op_registry.h"
H
hong 已提交
16
#include "paddle/fluid/imperative/type_defs.h"
17
#include "paddle/phi/core/infermeta_utils.h"
18
#include "paddle/phi/infermeta/backward.h"
19
#include "paddle/phi/infermeta/multiary.h"
20 21 22 23 24 25 26 27 28 29 30 31 32

namespace paddle {
namespace operators {

using framework::Tensor;

class Yolov3LossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
33 34 35
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        platform::CPUPlace());
36 37 38 39 40 41 42
  }
};

class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
43
             "The input tensor of YOLOv3 loss operator, "
D
dengkaipeng 已提交
44
             "This is a 4-D tensor with shape of [N, C, H, W]."
T
tianshuo78520a 已提交
45
             "H and W should be same, and the second dimension(C) stores"
D
dengkaipeng 已提交
46
             "box locations, confidence score and classification one-hot"
47
             "keys of each anchor box");
48 49 50 51
    AddInput("GTBox",
             "The input tensor of ground truth boxes, "
             "This is a 3-D tensor with shape of [N, max_box_num, 5], "
             "max_box_num is the max number of boxes in each image, "
T
tianshuo78520a 已提交
52 53
             "In the third dimension, stores x, y, w, h coordinates, "
             "x, y is the center coordinate of boxes and w, h is the "
D
dengkaipeng 已提交
54 55 56 57 58
             "width and height and x, y, w, h should be divided by "
             "input image height to scale to [0, 1].");
    AddInput("GTLabel",
             "The input tensor of ground truth label, "
             "This is a 2-D tensor with shape of [N, max_box_num], "
D
dengkaipeng 已提交
59
             "and each element should be an integer to indicate the "
D
dengkaipeng 已提交
60
             "box class id.");
61 62 63 64
    AddInput("GTScore",
             "The score of GTLabel, This is a 2-D tensor in same shape "
             "GTLabel, and score values should in range (0, 1). This "
             "input is for GTLabel score can be not 1.0 in image mixup "
65 66
             "augmentation.")
        .AsDispensable();
D
dengkaipeng 已提交
67 68
    AddOutput("Loss",
              "The output yolov3 loss tensor, "
69
              "This is a 1-D tensor with shape of [N]");
70 71 72 73 74 75
    AddOutput("ObjectnessMask",
              "This is an intermediate tensor with shape of [N, M, H, W], "
              "M is the number of anchor masks. This parameter caches the "
              "mask for calculate objectness loss in gradient kernel.")
        .AsIntermediate();
    AddOutput("GTMatchMask",
D
dengkaipeng 已提交
76
              "This is an intermediate tensor with shape of [N, B], "
77 78 79
              "B is the max box number of GT boxes. This parameter caches "
              "matched mask index of each GT boxes for gradient calculate.")
        .AsIntermediate();
80 81

    AddAttr<int>("class_num", "The number of classes to predict.");
D
dengkaipeng 已提交
82 83
    AddAttr<std::vector<int>>("anchors",
                              "The anchor width and height, "
84 85 86 87 88 89
                              "it will be parsed pair by pair.")
        .SetDefault(std::vector<int>{});
    AddAttr<std::vector<int>>("anchor_mask",
                              "The mask index of anchors used in "
                              "current YOLOv3 loss calculation.")
        .SetDefault(std::vector<int>{});
90
    AddAttr<int>("downsample_ratio",
91 92 93 94
                 "The downsample ratio from network input to YOLOv3 loss "
                 "input, so 32, 16, 8 should be set for the first, second, "
                 "and thrid YOLOv3 loss operators.")
        .SetDefault(32);
D
dengkaipeng 已提交
95
    AddAttr<float>("ignore_thresh",
96 97
                   "The ignore threshold to ignore confidence loss.")
        .SetDefault(0.7);
98 99
    AddAttr<bool>("use_label_smooth",
                  "Whether to use label smooth. Default True.")
100
        .SetDefault(true);
101 102 103 104
    AddAttr<float>("scale_x_y",
                   "Scale the center point of decoded bounding "
                   "box. Default 1.0")
        .SetDefault(1.);
105
    AddComment(R"DOC(
106
         This operator generates yolov3 loss based on given predict result and ground
107
         truth boxes.
108

109
         The output of previous network is in shape [N, C, H, W], while H and W
110
         should be the same, H and W specify the grid size, each grid point predict
T
tink2123 已提交
111 112
         given number bounding boxes, this given number, which following will be represented as S,
         is specified by the number of anchor clusters in each scale. In the second dimension(the channel
113 114 115
         dimension), C should be equal to S * (class_num + 5), class_num is the object
         category number of source dataset(such as 80 in coco dataset), so in the
         second(channel) dimension, apart from 4 box location coordinates x, y, w, h,
116
         also includes confidence score of the box and class one-hot key of each anchor box.
117

D
dengkaipeng 已提交
118 119
         Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box predictions
         should be as follows:
120 121

         $$
122 123 124 125 126 127
         b_x = \\sigma(t_x) + c_x
         $$
         $$
         b_y = \\sigma(t_y) + c_y
         $$
         $$
128
         b_w = p_w e^{t_w}
129 130
         $$
         $$
131 132 133
         b_h = p_h e^{t_h}
         $$

D
dengkaipeng 已提交
134
         In the equation above, :math:`c_x, c_y` is the left top corner of current grid
135
         and :math:`p_w, p_h` is specified by anchors.
136 137

         As for confidence score, it is the logistic regression value of IoU between
138 139
         anchor boxes and ground truth boxes, the score of the anchor box which has
         the max IoU should be 1, and if the anchor box has IoU bigger than ignore
140 141
         thresh, the confidence score loss of this anchor box will be ignored.

142
         Therefore, the yolov3 loss consists of three major parts: box location loss,
143 144
         objectness loss and classification loss. The L1 loss is used for
         box coordinates (w, h), sigmoid cross entropy loss is used for box
145
         coordinates (x, y), objectness loss and classification loss.
146

147
         Each groud truth box finds a best matching anchor box in all anchors.
148
         Prediction of this anchor box will incur all three parts of losses, and
149 150 151
         prediction of anchor boxes with no GT box matched will only incur objectness
         loss.

152
         In order to trade off box coordinate losses between big boxes and small
153
         boxes, box coordinate losses will be mutiplied by scale weight, which is
D
dengkaipeng 已提交
154
         calculated as follows.
155 156 157 158

         $$
         weight_{box} = 2.0 - t_w * t_h
         $$
D
dengkaipeng 已提交
159

D
dengkaipeng 已提交
160
         Final loss will be represented as follows.
D
dengkaipeng 已提交
161 162

         $$
163 164
         loss = (loss_{xy} + loss_{wh}) * weight_{box}
              + loss_{conf} + loss_{class}
D
dengkaipeng 已提交
165
         $$
166 167

         While :attr:`use_label_smooth` is set to be :attr:`True`, the classification
168
         target will be smoothed when calculating classification loss, target of
D
dengkaipeng 已提交
169 170
         positive samples will be smoothed to :math:`1.0 - 1.0 / class\_num` and target of
         negetive samples will be smoothed to :math:`1.0 / class\_num`.
171

172 173
         While :attr:`GTScore` is given, which means the mixup score of ground truth
         boxes, all losses incured by a ground truth box will be multiplied by its
174
         mixup score.
175 176 177 178 179 180 181 182
         )DOC");
  }
};

class Yolov3LossOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

183
 protected:
184 185
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
186 187 188
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        platform::CPUPlace());
189 190 191
  }
};

H
hong 已提交
192 193
template <typename T>
class Yolov3LossGradMaker : public framework::SingleGradOpMaker<T> {
194
 public:
H
hong 已提交
195
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
196 197

 protected:
198
  void Apply(GradOpPtr<T> op) const override {
199
    op->SetType("yolov3_loss_grad");
H
hong 已提交
200 201 202 203 204 205 206
    op->SetInput("X", this->Input("X"));
    op->SetInput("GTBox", this->Input("GTBox"));
    op->SetInput("GTLabel", this->Input("GTLabel"));
    op->SetInput("GTScore", this->Input("GTScore"));
    op->SetInput(framework::GradVarName("Loss"), this->OutputGrad("Loss"));
    op->SetInput("ObjectnessMask", this->Output("ObjectnessMask"));
    op->SetInput("GTMatchMask", this->Output("GTMatchMask"));
207

H
hong 已提交
208
    op->SetAttrMap(this->Attrs());
209

H
hong 已提交
210
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
211 212 213
    op->SetOutput(framework::GradVarName("GTBox"), this->EmptyInputGrad());
    op->SetOutput(framework::GradVarName("GTLabel"), this->EmptyInputGrad());
    op->SetOutput(framework::GradVarName("GTScore"), this->EmptyInputGrad());
214 215 216
  }
};

217 218 219 220
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
221 222
DECLARE_INFER_SHAPE_FUNCTOR(yolov3_loss,
                            Yolov3LossInferShapeFunctor,
223
                            PD_INFER_META(phi::Yolov3LossInferMeta));
224 225 226
DECLARE_INFER_SHAPE_FUNCTOR(yolov3_loss_grad,
                            Yolov3LossGradInferShapeFunctor,
                            PD_INFER_META(phi::Yolov3LossGradInferMeta));
227 228 229
REGISTER_OPERATOR(yolov3_loss,
                  ops::Yolov3LossOp,
                  ops::Yolov3LossOpMaker,
H
hong 已提交
230
                  ops::Yolov3LossGradMaker<paddle::framework::OpDesc>,
231 232
                  ops::Yolov3LossGradMaker<paddle::imperative::OpBase>,
                  Yolov3LossInferShapeFunctor);
233 234 235
REGISTER_OPERATOR(yolov3_loss_grad,
                  ops::Yolov3LossOpGrad,
                  Yolov3LossGradInferShapeFunctor);