math.py 197.7 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
# TODO: define math functions
18

19
import numpy as np
20

21
import paddle
22 23 24
from paddle import _C_ops, _legacy_C_ops
from paddle.common_ops_import import VarDesc, dygraph_only, dygraph_utils

25 26 27
# TODO: define math functions
from paddle.utils.inplace_utils import inplace_apis_in_dygraph_only

28
from ..common_ops_import import Variable
29 30
from ..fluid.data_feeder import (
    check_dtype,
31 32
    check_type,
    check_variable_and_dtype,
33 34
    convert_dtype,
)
35 36
from ..framework import (
    LayerHelper,
37
    _dygraph_tracer,
38 39 40 41 42 43 44
    convert_np_dtype_to_dtype_,
    core,
    in_dygraph_mode,
)
from .creation import _complex_to_real_dtype
from .layer_function_generator import generate_layer_fn, templatedoc
from .manipulation import cast
45 46
from .ops import abs  # noqa: F401
from .ops import acos  # noqa: F401
47
from .ops import acosh  # noqa: F401
48
from .ops import asin  # noqa: F401
49 50 51
from .ops import asinh  # noqa: F401
from .ops import atan  # noqa: F401
from .ops import atanh  # noqa: F401
52 53 54 55
from .ops import ceil  # noqa: F401
from .ops import ceil_  # noqa: F401
from .ops import cos  # noqa: F401
from .ops import cosh  # noqa: F401
56
from .ops import erf  # noqa: F401
57 58 59 60 61 62 63 64 65 66 67
from .ops import exp  # noqa: F401
from .ops import exp_  # noqa: F401
from .ops import expm1  # noqa: F401
from .ops import floor  # noqa: F401
from .ops import floor_  # noqa: F401
from .ops import reciprocal  # noqa: F401
from .ops import reciprocal_  # noqa: F401
from .ops import round  # noqa: F401
from .ops import round_  # noqa: F401
from .ops import rsqrt  # noqa: F401
from .ops import rsqrt_  # noqa: F401
68 69
from .ops import sigmoid  # noqa: F401
from .ops import sigmoid_  # noqa: F401
70 71
from .ops import sin  # noqa: F401
from .ops import sinh  # noqa: F401
72 73
from .ops import sqrt  # noqa: F401
from .ops import sqrt_  # noqa: F401
74 75
from .ops import square  # noqa: F401
from .ops import tan  # noqa: F401
76

77 78
__all__ = []

79 80 81 82 83 84 85 86 87 88 89 90 91
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

92

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
def _get_reduce_axis(axis, x):
    """
    Internal function for max, min, amax and amin.
    It computes the attribute reduce_all value based on axis.
    """
    if axis is not None and not isinstance(axis, list):
        if isinstance(axis, (tuple, range)):
            axis = list(axis)
        elif isinstance(axis, int):
            axis = [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(
                    type(axis)
                )
            )
    if axis is None:
        axis = []
    if axis == [] or len(axis) == len(x.shape):
        reduce_all = True
    else:
        reduce_all = False
    return reduce_all, axis


def _get_reduce_axis_with_tensor(axis, x):
    if isinstance(axis, Variable):
        if axis.shape[0] == len(x.shape):
            reduce_all = True
        else:
            reduce_all = False
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
126 127
        if paddle.utils._contain_var(axis):
            axis = paddle.utils._convert_to_tensor_list(axis)
128 129 130
    return reduce_all, axis


131 132
def log(x, name=None):
    r"""
C
Chen Long 已提交
133
    Calculates the natural log of the given input Tensor, element-wise.
134 135 136

    .. math::

137
        Out = \ln(x)
138 139

    Args:
140
        x (Tensor): Input Tensor. Must be one of the following types: float16, float32, float64.
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The natural log of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python

            import paddle

            x = [[2,3,4], [7,8,9]]
            x = paddle.to_tensor(x, dtype='float32')
            res = paddle.log(x)
            # [[0.693147, 1.09861, 1.38629], [1.94591, 2.07944, 2.19722]]
    """
    if in_dygraph_mode():
        return _C_ops.log(x)
160
    else:
161
        check_variable_and_dtype(
162
            x, 'x', ['uint16', 'float16', 'float32', 'float64'], "log"
163
        )
164 165 166 167 168 169
        inputs = {'X': [x]}
        helper = LayerHelper('log', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
        return out
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188


def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)

    Args:
189 190 191 192 193 194
        x (Tensor): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
        scale (float|Tensor): The scale factor of the input, it should be a float number or a Tensor with shape [1] and data type as float32.
        bias (float): The bias to be put on the input.
        bias_after_scale (bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act (str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
195 196

    Returns:
C
Chen Long 已提交
197
        Tensor: Output Tensor of scale operator, with shape and data type same as input.
198 199 200

    Examples:
        .. code-block:: python
201

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
            # scale as a float32 number
            import paddle

            data = paddle.randn(shape=[2,3], dtype='float32')
            res = paddle.scale(data, scale=2.0, bias=1.0)

        .. code-block:: python

            # scale with parameter scale as a Tensor
            import paddle

            data = paddle.randn(shape=[2, 3], dtype='float32')
            factor = paddle.to_tensor([2], dtype='float32')
            res = paddle.scale(data, scale=factor, bias=1.0)

    """

    if in_dygraph_mode():
W
Weilong Wu 已提交
220 221
        if act is None:
            return _C_ops.scale(x, scale, float(bias), bias_after_scale)
W
wanghuancoder 已提交
222 223
        out = _C_ops.scale(x, scale, float(bias), bias_after_scale)
        return dygraph_utils._append_activation_in_dygraph(out, act)
224 225
    else:
        check_variable_and_dtype(
226
            x,
227 228 229 230 231 232 233 234 235 236 237 238 239
            "x",
            [
                'float16',
                'uint16',
                'float32',
                'float64',
                'int8',
                'int16',
                'int32',
                'int64',
                'uint8',
            ],
            "scale",
240
        )
241 242 243 244 245 246 247 248 249 250 251
        inputs = {'X': [x]}
        attrs = {
            'bias': float(bias),
            'bias_after_scale': bias_after_scale,
        }
        if isinstance(scale, Variable):
            inputs['ScaleTensor'] = [scale]
        else:
            attrs['scale'] = float(scale)
        helper = LayerHelper('scale', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
252

253 254 255 256
        helper.append_op(
            type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return helper.append_activation(out)
257 258 259


def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
260 261
    r"""

262 263 264 265
    stanh activation.

    .. math::

266
        out = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}
267 268 269 270 271

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        scale_a (float, optional): The scale factor a of the input. Default is 0.67.
        scale_b (float, optional): The scale factor b of the output. Default is 1.7159.
272
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
273 274 275 276 277 278 279 280 281 282 283 284 285 286

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = paddle.stanh(x, scale_a=0.67, scale_b=1.72) # [1.00616539, 1.49927628, 1.65933108, 1.70390463]

    """

287
    if in_dygraph_mode():
Z
zyfncg 已提交
288
        return _C_ops.stanh(x, scale_a, scale_b)
289 290
    else:
        check_variable_and_dtype(
291
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'stanh'
292
        )
293

294 295 296 297 298 299 300 301 302
        helper = LayerHelper('stanh', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='stanh',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'scale_a': scale_a, 'scale_b': scale_b},
        )
        return out
303

304

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
def multiplex(inputs, index, name=None):
    """

    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.

    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .

    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .

    For Example:

            .. code-block:: text

                Given:

                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

                index = [[3],[0],[1],[2]]

                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]


    Args:
        inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
        index (Tensor): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
336
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
337

338 339 340 341 342 343 344 345
    Returns:
        Tensor: Output of multiplex OP, with data type being float32, float64, int32, int64.

    Examples:

        .. code-block:: python

            import paddle
346

347 348 349 350
            img1 = paddle.to_tensor([[1, 2], [3, 4]], dtype=paddle.float32)
            img2 = paddle.to_tensor([[5, 6], [7, 8]], dtype=paddle.float32)
            inputs = [img1, img2]
            index = paddle.to_tensor([[1], [0]], dtype=paddle.int32)
351
            res = paddle.multiplex(inputs, index)
352
            print(res) # Tensor([[5., 6.], [3., 4.]], dtype=float32)
353 354

    """
355 356
    if in_dygraph_mode():
        return _C_ops.multiplex(inputs, index)
357 358
    else:
        helper = LayerHelper('multiplex', **locals())
359

360 361 362 363 364 365 366 367 368 369 370 371
        check_type(inputs, 'inputs', (list), 'multiplex')
        if len(inputs) < 2:
            raise ValueError(
                "inputs should be a list object with at least 2 elements."
            )
        for id, x in enumerate(inputs):
            check_variable_and_dtype(
                x,
                'input[' + str(id) + ']',
                ['float32', 'float64', 'int32', 'int64'],
                'multiplex',
            )
372
        check_variable_and_dtype(
373
            index, "index", ['int32', 'int64'], 'multiplex'
374
        )
375

376 377 378 379 380 381 382
        out = helper.create_variable_for_type_inference(inputs[0].dtype)
        helper.append_op(
            type='multiplex',
            inputs={'X': inputs, 'Ids': index},
            outputs={'Out': [out]},
        )
        return out
383

384

385 386 387 388 389 390
@inplace_apis_in_dygraph_only
def scale_(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Inplace version of ``scale`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_scale`.
    """
391
    if in_dygraph_mode():
392
        return _C_ops.scale_(x, scale, float(bias), bias_after_scale)
393 394


395
def pow(x, y, name=None):
396
    """
C
Chen Long 已提交
397
    Compute the power of Tensor elements. The equation is:
S
swtkiwi 已提交
398

399
    .. math::
400
        out = x^{y}
401

402
    Note:
I
Infinity_lee 已提交
403 404 405
        ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensors
406 407


408
    Args:
409
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
410
        y (float|int|Tensor): If it is an N-D Tensor, its data type should be the same as `x`.
411
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
412

413
    Returns:
414
        N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as `x`.
415 416 417

    Examples:

418
        ..  code-block:: python
419 420 421

            import paddle

422 423 424 425 426 427 428 429 430 431 432 433
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            # example 1: y is a float or int
            res = paddle.pow(x, 2)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
            res = paddle.pow(x, 2.5)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1.         , 5.65685415 , 15.58845711])

434
            # example 2: y is a Tensor
435
            y = paddle.to_tensor([2], dtype='float32')
436
            res = paddle.pow(x, y)
437 438 439
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
440 441

    """
442
    # in dynamic graph mode
443
    if in_dygraph_mode():
444
        if isinstance(y, (int, float)):
445
            return _C_ops.pow(x, y)
446
        elif isinstance(y, (paddle.Tensor, Variable)):
447
            return _C_ops.elementwise_pow(x, y)
448
        else:
449
            raise TypeError(
450 451
                'y must be scalar or tensor type, but received: %s ' % (y.dtype)
            )
452 453
    else:
        # in static graph mode
454
        if isinstance(y, (int, float)):
455 456 457 458 459 460
            helper = LayerHelper('pow', **locals())
            inputs = {'X': x}
            attrs = {'factor': y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs
461
            )
462 463 464 465 466 467
            return out
        elif isinstance(y, (paddle.Tensor, Variable)):
            # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
            helper = LayerHelper('elementwise_pow', **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
468
        else:
469
            raise TypeError(
470
                'y must be scalar or tensor type, but received: %s ' % (type(y))
471
            )
472 473


474
OP_NAMEMAPPING = {
475 476 477 478 479 480 481 482
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
483
    'elementwise_mod': 'remainder',
484
}
485

486

487 488 489 490 491 492
def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

493 494
    out = helper.kwargs.get('out', None)

495 496
    assert x is not None, f'x cannot be None in {original_op_type}'
    assert y is not None, f'y cannot be None in {original_op_type}'
497 498 499 500 501
    bf16_and_complex_supported_ops = [
        "elementwise_add",
        "elementwise_sub",
        "elementwise_mul",
        "elementwise_div",
502
        "elementwise_max",
503 504 505 506 507 508 509 510 511 512 513 514 515 516
    ]
    if original_op_type in bf16_and_complex_supported_ops:
        data_type = [
            'uint16',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'bool',
            'complex64',
            'complex128',
        ]
    else:
517 518 519 520 521 522 523 524 525
        data_type = [
            'float16',
            'uint16',
            'float32',
            'float64',
            'int32',
            'int64',
            'bool',
        ]
526
    check_variable_and_dtype(
527 528
        x,
        'x',
529
        data_type,
530 531
        original_op_type,
    )
532
    check_variable_and_dtype(
533 534
        y,
        'y',
535
        data_type,
536 537
        original_op_type,
    )
538 539 540 541

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
542 543 544 545 546

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
547 548 549 550 551 552 553 554 555 556
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False
            )

    helper.append_op(
        type=op_type,
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis, 'use_mkldnn': use_mkldnn},
    )
557 558 559
    return helper.append_activation(out)


Y
Yang Zhang 已提交
560
def add(x, y, name=None):
561
    """
562 563 564 565 566 567 568 569
    Elementwise Add Operator.
    Add two tensors element-wise
    The equation is:

    ..  math::

        Out=X+Y

570 571
    $X$ the tensor of any dimension.
    $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.
572 573

    There are two cases for this operator:
574 575 576 577

    1. The shape of $Y$ is the same with $X$.
    2. The shape of $Y$ is a continuous subsequence of $X$.

578
    For case 2:
579 580

    1. Broadcast $Y$ to match the shape of $X$, where axis is the start dimension index for broadcasting $Y$ onto $X$.
H
HongyuJia 已提交
581
    2. If $axis$ is -1 (default), $axis$=rank($X$)-rank($Y$).
582
    3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape($Y$) = (2, 1) => (2).
583 584 585 586

        For example:

        ..  code-block:: python
587

588 589 590 591 592 593
            shape(X) = (2, 3, 4, 5), shape(Y) = (,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
            shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
            shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
            shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
594

595
    Args:
596 597 598
        x (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        y (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        name (string, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
599 600

    Returns:
H
HongyuJia 已提交
601
        N-D Tensor. A location into which the result is stored. It's dimension equals with x.
602 603 604 605

    Examples:

        ..  code-block:: python
606

607
            import paddle
608

609 610 611 612
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.to_tensor([1, 5, 2], 'float64')
            z = paddle.add(x, y)
            print(z)  # [3., 8., 6. ]
613
    """
614

J
Jiabin Yang 已提交
615
    if in_dygraph_mode():
616
        return _C_ops.add(x, y)
J
Jiabin Yang 已提交
617
    else:
618
        return _elementwise_op(LayerHelper('elementwise_add', **locals()))
619 620


621 622 623 624 625 626 627 628 629
@inplace_apis_in_dygraph_only
def add_(x, y, name=None):
    """
    Inplace version of ``add`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_add`.
    """

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
630
        raise ValueError(
631 632 633 634
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
635

636
    return _C_ops.add_(x, y)
637 638


639 640
def subtract(x, y, name=None):
    """
W
Wei Shengyu 已提交
641
    Substract two tensors element-wise. The equation is:
642 643 644 645

    .. math::
        out = x - y

646
    Note:
I
Infinity_lee 已提交
647 648 649
        ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
650 651 652 653 654 655 656 657 658 659 660 661

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
W
Wei Shengyu 已提交
662

663 664 665 666 667 668
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[5, 6], [3, 4]])
            res = paddle.subtract(x, y)
            print(res)
669 670 671
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[-4, -4],
            #         [ 4,  4]])
672 673 674 675 676

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([1, 0, 4])
            res = paddle.subtract(x, y)
            print(res)
677 678 679
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[ 0,  2, -1],
            #          [ 0,  2, -1]]])
680

681 682
            x = paddle.to_tensor([2, float('nan'), 5], dtype='float32')
            y = paddle.to_tensor([1, 4, float('nan')], dtype='float32')
683 684
            res = paddle.subtract(x, y)
            print(res)
685 686
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1. , nan, nan])
687

688
            x = paddle.to_tensor([5, float('inf'), -float('inf')], dtype='float64')
689 690 691
            y = paddle.to_tensor([1, 4, 5], dtype='float64')
            res = paddle.subtract(x, y)
            print(res)
692 693
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 4.  ,  inf., -inf.])
694
    """
J
Jiabin Yang 已提交
695
    if in_dygraph_mode():
696
        return _C_ops.subtract(x, y)
J
Jiabin Yang 已提交
697
    else:
698
        return _elementwise_op(LayerHelper('elementwise_sub', **locals()))
699 700


701 702 703 704 705 706 707 708 709
@inplace_apis_in_dygraph_only
def subtract_(x, y, name=None):
    """
    Inplace version of ``subtract`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_subtract`.
    """

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
710
        raise ValueError(
711 712 713 714
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
715

716
    return _C_ops.subtract_(x, y)
717 718


719
def divide(x, y, name=None):
720
    """
721
    Divide two tensors element-wise. The equation is:
722

723 724
    .. math::
        out = x / y
725

726
    Note:
I
Infinity_lee 已提交
727 728 729
        ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
730

731 732 733 734
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
735

736
    Returns:
737
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
738

739
    Examples:
740

741
        ..  code-block:: python
742

743
            import paddle
744

745 746
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
747
            z = paddle.divide(x, y)
748
            print(z)  # [2., 0.6, 2.]
749

750
    """
J
Jiabin Yang 已提交
751
    if in_dygraph_mode():
752
        return _C_ops.divide(x, y)
J
Jiabin Yang 已提交
753
    else:
754
        return _elementwise_op(LayerHelper('elementwise_div', **locals()))
755 756


757 758
def floor_divide(x, y, name=None):
    """
L
Lin Manhui 已提交
759
    Floor divide two tensors element-wise and rounds the quotinents to the nearest integer toward zero. The equation is:
760

761
    .. math::
L
Lin Manhui 已提交
762
        out = trunc(x / y)
763

H
hg-1099255210 已提交
764 765 766
    - :math:`x`: Multidimensional Tensor.
    - :math:`y`: Multidimensional Tensor.

767
    Note:
I
Infinity_lee 已提交
768 769 770 771
        ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor

L
Lin Manhui 已提交
772
        Also note that the name ``floor_divide`` can be misleading, as the quotinents are actually rounded toward zero, not toward negative infinite.
773

774 775 776 777
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
778

779 780
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
781

782
    Examples:
783

784
        ..  code-block:: python
785

786
            import paddle
787

788 789
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
790
            z = paddle.floor_divide(x, y)
791
            print(z)  # [2, 0, 2, 2]
792

793
    """
794 795
    if in_dygraph_mode():
        return _C_ops.floor_divide(x, y)
796
    else:
797
        return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))
798 799


800
def remainder(x, y, name=None):
801
    r"""
802 803 804
    Mod two tensors element-wise. The equation is:

    .. math::
805

806 807
        out = x \% y

808
    Note:
I
Infinity_lee 已提交
809 810 811
        ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
812 813

    Args:
814 815
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
816 817 818
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
819
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
820 821 822 823 824 825 826

    Examples:

        ..  code-block:: python

            import paddle

827 828
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
829
            z = paddle.remainder(x, y)
W
WangXi 已提交
830
            print(z)  # [0, 3, 2, 1]
831 832

    """
833 834
    if in_dygraph_mode():
        return _C_ops.remainder(x, y)
835
    else:
836
        return _elementwise_op(LayerHelper('elementwise_mod', **locals()))
837 838


839 840 841 842 843 844 845 846 847
@inplace_apis_in_dygraph_only
def remainder_(x, y, name=None):
    r"""
    Inplace version of ``remainder`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_remainder`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
848 849 850 851
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
852
    return _C_ops.remainder_(x, y)
853 854


855 856
mod = remainder  # noqa: F841
floor_mod = remainder  # noqa: F841
857 858


859
def multiply(x, y, name=None):
860
    """
861
    multiply two tensors element-wise. The equation is:
862

863 864
    .. math::
        out = x * y
865

866
    Note:
I
Infinity_lee 已提交
867 868 869
        ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
870

871
    Args:
W
will-jl944 已提交
872 873
        x (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
        y (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
874
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
875

876
    Returns:
877
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
878

879 880 881 882 883 884
    Examples:

        ..  code-block:: python

            import paddle

885 886
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
887
            res = paddle.multiply(x, y)
888
            print(res) # [[5, 12], [21, 32]]
889

890
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
891 892 893
            y = paddle.to_tensor([2])
            res = paddle.multiply(x, y)
            print(res) # [[[2, 4, 6], [2, 4, 6]]]
894 895

    """
J
Jiabin Yang 已提交
896
    if in_dygraph_mode():
897
        return _C_ops.multiply(x, y)
J
Jiabin Yang 已提交
898
    else:
899 900 901 902
        if x.dtype != y.dtype:
            raise TypeError(
                'Input tensors must be same type, but received type of x: %s, type of y: %s '
                % (x.dtype, y.dtype)
903
            )
904

905
        return _elementwise_op(LayerHelper('elementwise_mul', **locals()))
906

907

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
@inplace_apis_in_dygraph_only
def multiply_(x, y, name=None):
    """
    Inplace version of ``multiply`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_multiply`.
    """

    assert (
        _dygraph_tracer()._has_grad is False
    ), "The current inplace version of multiply_ needs to be used in the context of paddle.no_grad() since inplace multiply_grad is not yet supported."

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )

    return _C_ops.multiply_(x, y)


930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
@dygraph_only
def _elementwise_op_with_axis_in_dygraph(
    x, y, axis=-1, name=None, op_type="Undifined"
):
    assert (
        in_dygraph_mode()
    ), "You can only call `_elementwise_op_with_axis_in_dygraph` function within in_dygraph_mode"
    assert op_type in ["add", "subtract", "multiply", "divide"], (
        "op_name input error! _elementwise_op_with_axis is an inner function to replace elementwise_add/sub/mul/div. Input op_name=%s, Expect op_name=[add|subtract|multiply|divide]\n"
        % op_type
    )
    op = getattr(_C_ops, op_type)
    x_shape = list(x.shape)
    y_shape = list(y.shape)
    if axis == -1 or len(x_shape) == len(y_shape):
        return op(x, y)
    if len(x_shape) > len(y_shape):
        padding = len(x_shape) - len(y_shape) - axis
        y = paddle.reshape(y, [1] * axis + y_shape + [1] * padding)
    else:
        padding = len(y_shape) - len(x_shape) - axis
        x = paddle.reshape(x, [1] * axis + y_shape + [1] * padding)
    return op(x, y)


def _add_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
    if in_dygraph_mode():
        return _elementwise_op_with_axis_in_dygraph(x, y, axis, name, "add")
    else:
        op_type = 'elementwise_add'
961
        return _elementwise_op(LayerHelper(op_type, **locals()))
962 963 964 965 966 967 968 969 970 971


def _subtract_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
    if in_dygraph_mode():
        return _elementwise_op_with_axis_in_dygraph(
            x, y, axis, name, "subtract"
        )
    else:
        op_type = 'elementwise_sub'
972
        return _elementwise_op(LayerHelper(op_type, **locals()))
973 974 975 976 977 978 979 980 981 982


def _multiply_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
    if in_dygraph_mode():
        return _elementwise_op_with_axis_in_dygraph(
            x, y, axis, name, "multiply"
        )
    else:
        op_type = 'elementwise_mul'
983
        return _elementwise_op(LayerHelper(op_type, **locals()))
984 985 986 987 988 989 990 991


def _divide_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
    if in_dygraph_mode():
        return _elementwise_op_with_axis_in_dygraph(x, y, axis, name, "divide")
    else:
        op_type = 'elementwise_div'
992
        return _elementwise_op(LayerHelper(op_type, **locals()))
993 994


995
def maximum(x, y, name=None):
996
    """
W
Wei Shengyu 已提交
997
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
998

999 1000
    .. math::
        out = max(x, y)
1001

1002
    Note:
I
Infinity_lee 已提交
1003 1004 1005
        ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to  `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.maximum(x, y)
            print(res)
1025 1026 1027
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 4],
            #         [7, 8]])
1028 1029 1030 1031 1032

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.maximum(x, y)
            print(res)
1033 1034 1035
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 2, 4],
            #         [3, 2, 4]])
1036 1037

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1038
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
1039 1040
            res = paddle.maximum(x, y)
            print(res)
1041 1042
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [2. , nan, nan])
1043

1044 1045
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
1046 1047
            res = paddle.maximum(x, y)
            print(res)
1048 1049
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [5.  , 3.  , inf.])
1050
    """
1051 1052
    if in_dygraph_mode():
        return _C_ops.maximum(x, y)
1053
    else:
1054
        return _elementwise_op(LayerHelper('elementwise_max', **locals()))
1055

1056

1057
def minimum(x, y, name=None):
1058
    """
C
Chen Long 已提交
1059
    Compare two tensors and return a new tensor containing the element-wise minima. The equation is:
1060

1061 1062
    .. math::
        out = min(x, y)
1063

1064
    Note:
I
Infinity_lee 已提交
1065 1066 1067
        ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1068 1069 1070 1071 1072 1073 1074

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
C
Chen Long 已提交
1075
        Tensor. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.minimum(x, y)
            print(res)
1087 1088 1089
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 2],
            #         [5, 6]])
1090 1091 1092 1093 1094

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.minimum(x, y)
            print(res)
1095 1096 1097
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[1, 0, 3],
            #          [1, 0, 3]]])
1098 1099

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1100
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
1101 1102
            res = paddle.minimum(x, y)
            print(res)
1103 1104
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1. , nan, nan])
1105

1106 1107
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
1108 1109
            res = paddle.minimum(x, y)
            print(res)
1110 1111
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 1.  , -inf.,  5.  ])
1112
    """
1113 1114
    if in_dygraph_mode():
        return _C_ops.minimum(x, y)
1115
    else:
1116
        return _elementwise_op(LayerHelper('elementwise_min', **locals()))
1117

1118

L
LJQ❤️ 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127
def fmax(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the maximum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmax(x, y)

1128
    Note:
I
Infinity_lee 已提交
1129 1130 1131
        ``paddle.fmax`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
LJQ❤️ 已提交
1132 1133

    Args:
1134 1135
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmax(x, y)
            print(res)
1151 1152 1153
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 4],
            #         [7, 8]])
L
LJQ❤️ 已提交
1154 1155 1156 1157 1158

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmax(x, y)
            print(res)
1159 1160 1161
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 2, 4],
            #         [3, 2, 4]])
L
LJQ❤️ 已提交
1162 1163

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1164
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
L
LJQ❤️ 已提交
1165 1166
            res = paddle.fmax(x, y)
            print(res)
1167 1168
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [2., 3., 5.])
L
LJQ❤️ 已提交
1169

1170 1171
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
L
LJQ❤️ 已提交
1172 1173
            res = paddle.fmax(x, y)
            print(res)
1174 1175
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [5.  , 3.  , inf.])
L
LJQ❤️ 已提交
1176
    """
1177
    if in_dygraph_mode():
1178
        return _C_ops.fmax(x, y)
1179
    else:
1180
        return _elementwise_op(LayerHelper('elementwise_fmax', **locals()))
L
LJQ❤️ 已提交
1181

1182

L
LJQ❤️ 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191
def fmin(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the minimum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmin(x, y)

1192
    Note:
I
Infinity_lee 已提交
1193 1194 1195
        ``paddle.fmin`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
LJQ❤️ 已提交
1196 1197

    Args:
1198 1199
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmin(x, y)
            print(res)
1215 1216 1217
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 2],
            #         [5, 6]])
L
LJQ❤️ 已提交
1218 1219 1220 1221 1222

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmin(x, y)
            print(res)
1223 1224 1225
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[1, 0, 3],
            #          [1, 0, 3]]])
L
LJQ❤️ 已提交
1226 1227

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1228
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
L
LJQ❤️ 已提交
1229 1230
            res = paddle.fmin(x, y)
            print(res)
1231 1232
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1., 3., 5.])
L
LJQ❤️ 已提交
1233

1234 1235
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
L
LJQ❤️ 已提交
1236 1237
            res = paddle.fmin(x, y)
            print(res)
1238 1239
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 1.  , -inf.,  5.  ])
L
LJQ❤️ 已提交
1240
    """
1241
    if in_dygraph_mode():
1242
        return _C_ops.fmin(x, y)
1243
    else:
1244
        return _elementwise_op(LayerHelper('elementwise_fmin', **locals()))
L
LJQ❤️ 已提交
1245

Y
Yang Zhang 已提交
1246

1247
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
1248 1249 1250 1251
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
1252
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
1253 1254
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
1255
            Tensor with a single element, otherwise must be in the
1256 1257 1258 1259 1260 1261 1262
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
1263
            value is False.
1264
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1265 1266

    Returns:
1267
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
1268
        if `x.dtype='bool'`, `x.dtype='int32'`, it's data type is `'int64'`,
1269
        otherwise it's data type is the same as `x`.
1270 1271 1272 1273 1274

    Examples:
        .. code-block:: python

            import paddle
1275

1276
            # x is a Tensor with following elements:
1277 1278 1279
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
1280 1281
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1282
            out1 = paddle.sum(x)  # [3.5]
1283 1284 1285
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
1286

1287
            # y is a Tensor with shape [2, 2, 2] and elements as below:
1288 1289 1290
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
1291
            y = paddle.to_tensor([[[1, 2], [3, 4]],
1292
                                  [[5, 6], [7, 8]]])
1293 1294
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
1295

1296 1297 1298 1299 1300 1301 1302 1303 1304
            # x is a Tensor with following elements:
            #    [[True, True, True, True]
            #     [False, False, False, False]]
            # Each example is followed by the corresponding output tensor.
            x = paddle.to_tensor([[True, True, True, True],
                                  [False, False, False, False]])
            out7 = paddle.sum(x)  # [4]
            out8 = paddle.sum(x, axis=0)  # [1, 1, 1, 1]
            out9 = paddle.sum(x, axis=1)  # [4, 0]
1305
    """
1306

1307 1308 1309 1310
    dtype_flag = False
    if dtype is not None:
        dtype_flag = True
        dtype = convert_np_dtype_to_dtype_(dtype)
F
From00 已提交
1311 1312

    if in_dygraph_mode():
1313
        return _C_ops.sum(x, axis, dtype, keepdim)
1314 1315 1316
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}
F
From00 已提交
1317

1318
        if dtype_flag:
1319
            attrs.update({'in_dtype': x.dtype, 'out_dtype': dtype})
W
wanghuancoder 已提交
1320

1321 1322 1323 1324 1325
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
1326
                'uint16',
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'sum',
        )
1338

1339 1340 1341
        check_type(
            axis, 'axis', (int, list, tuple, type(None), Variable), 'sum'
        )
1342

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
        helper = LayerHelper('sum', **locals())
        if dtype_flag:
            out = helper.create_variable_for_type_inference(dtype=dtype)
        else:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_sum',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
1355

1356

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
def nan_to_num(x, nan=0.0, posinf=None, neginf=None, name=None):
    """
    Replaces NaN, positive infinity, and negative infinity values in input tensor.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        nan (float, optional): the value to replace NaNs with. Default is 0.
        posinf (float, optional): if a Number, the value to replace positive infinity values with. If None, positive infinity values are replaced with the greatest finite value representable by input’s dtype. Default is None.
        neginf (float, optional): if a Number, the value to replace negative infinity values with. If None, negative infinity values are replaced with the lowest finite value representable by input’s dtype. Default is None.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of nan_to_num operation input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([float('nan'), 0.3, float('+inf'), float('-inf')], dtype='float32')
            out1 = paddle.nan_to_num(x)  # [0, 0.3, 3.4028235e+38, -3.4028235e+38]
            out2 = paddle.nan_to_num(x, nan=1)  # [1, 0.3, 3.4028235e+38, -3.4028235e+38]
            out3 = paddle.nan_to_num(x, posinf=5)  # [0, 0.3, 5, -3.4028235e+38]
            out4 = paddle.nan_to_num(x, nan=10, neginf=-99)  # [10, 0.3, 3.4028235e+38, -99]
    """
    # NOTE(tiancaishaonvjituizi): it seems that paddle handles the dtype of python float number
    # incorrectly, so we have to explicitly contruct tensors here
    posinf_value = paddle.full_like(x, float("+inf"))
    neginf_value = paddle.full_like(x, float("-inf"))
    nan = paddle.full_like(x, nan)
    assert x.dtype in [paddle.float32, paddle.float64]
    is_float32 = x.dtype == paddle.float32
    if posinf is None:
        posinf = (
            np.finfo(np.float32).max if is_float32 else np.finfo(np.float64).max
        )
    posinf = paddle.full_like(x, posinf)
    if neginf is None:
        neginf = (
            np.finfo(np.float32).min if is_float32 else np.finfo(np.float64).min
        )
    neginf = paddle.full_like(x, neginf)
    x = paddle.where(paddle.isnan(x), nan, x)
    x = paddle.where(x == posinf_value, posinf, x)
    x = paddle.where(x == neginf_value, neginf, x)
    return x


W
wangguanqun 已提交
1405 1406 1407 1408 1409
def nansum(x, axis=None, dtype=None, keepdim=False, name=None):
    """
    Computes the sum of tensor elements over the given axis, treating Not a Numbers (NaNs) as zero.

    Args:
1410
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
W
wangguanqun 已提交
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
        axis (int|list|tuple, optional): The dimensions along which the nansum is performed. If
            :attr:`None`, nansum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
1422
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
wangguanqun 已提交
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435

    Returns:
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,

    Examples:
        .. code-block:: python

            import paddle

            # x is a Tensor with following elements:
            #    [[nan, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, -nan, 0.7]]
            # Each example is followed by the corresponding output tensor.
1436 1437
            x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
                            [0.1, 0.2, float('-nan'), 0.7]],dtype="float32")
W
wangguanqun 已提交
1438 1439 1440 1441 1442 1443 1444 1445 1446
            out1 = paddle.nansum(x)  # [2.7]
            out2 = paddle.nansum(x, axis=0)  # [0.1, 0.5, 0.5, 1.6]
            out3 = paddle.nansum(x, axis=-1)  # [1.7, 1.0]
            out4 = paddle.nansum(x, axis=1, keepdim=True)  # [[1.7], [1.0]]

            # y is a Tensor with shape [2, 2, 2] and elements as below:
            #      [[[1, nan], [3, 4]],
            #      [[5, 6], [-nan, 8]]]
            # Each example is followed by the corresponding output tensor.
1447
            y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
W
wangguanqun 已提交
1448 1449 1450 1451
                            [[5, 6], [float('-nan'), 8]]])
            out5 = paddle.nansum(y, axis=[1, 2]) # [8, 19]
            out6 = paddle.nansum(y, axis=[0, 1]) # [9, 18]
    """
1452
    check_variable_and_dtype(
1453
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'nansum'
1454
    )
W
wangguanqun 已提交
1455 1456 1457 1458 1459 1460 1461
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'nansum')

    zero_tensor = paddle.zeros_like(x)
    tmp_tensor = paddle.where(isnan(x), zero_tensor, x)
    return sum(tmp_tensor, axis, dtype, keepdim, name)


1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
def nanmean(x, axis=None, keepdim=False, name=None):
    r"""
    Compute the arithmetic mean along the specified axis, ignoring NaNs.

    Args:
        x (Tensor): The input Tensor with data type uint16, float16, float32, float64.
        axis (int|list|tuple, optional):The axis along which to perform nanmean
            calculations. ``axis`` should be int, list(int) or tuple(int). If
            ``axis`` is a list/tuple of dimension(s), nanmean is calculated along
            all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
            should be in range [-D, D), where D is the dimensions of ``x`` . If
            ``axis`` or element(s) of ``axis`` is less than 0, it works the
            same way as :math:`axis + D` . If ``axis`` is None, nanmean is
            calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of arithmetic mean along ``axis`` of ``x``, with the same data
        type as ``x``.

    Examples:

        .. code-block:: python
            :name: code-example1

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
                                  [0.1, 0.2, float('-nan'), 0.7]])
            out1 = paddle.nanmean(x)
            # [0.44999996]
            out2 = paddle.nanmean(x, axis=0)
            # [0.1, 0.25, 0.5, 0.79999995]
            out3 = paddle.nanmean(x, axis=0, keepdim=True)
            # [[0.1, 0.25, 0.5, 0.79999995]]
            out4 = paddle.nanmean(x, axis=1)
            # [0.56666666 0.33333334]
            out5 = paddle.nanmean(x, axis=1, keepdim=True)
            # [[0.56666666]
            #  [0.33333334]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
                                   [[5, 6], [float('-nan'), 8]]])
            out6 = paddle.nanmean(y, axis=[1, 2])
            # [2.66666675, 6.33333349]
            out7 = paddle.nanmean(y, axis=[0, 1])
            # [3., 6.]
    """
    if isinstance(axis, int):
        axis = [axis]
1519 1520 1521
    check_variable_and_dtype(
        x, 'x/input', ['uint16', 'float16', 'float32', 'float64'], 'nanmean'
    )
1522 1523 1524
    if axis is not None:
        check_type(axis, 'axis/dim', (int, list, tuple), 'nanmean')

1525 1526 1527
    cnt = paddle.sum(~paddle.isnan(x), axis=axis, keepdim=keepdim)
    return paddle.divide(
        paddle.nansum(x, axis=axis, keepdim=keepdim, name=name),
1528 1529
        cnt.astype(x.dtype),
    )
1530 1531


1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
def count_nonzero(x, axis=None, keepdim=False, name=None):
    r"""
    Counts the number of non-zero values in the tensor x along the specified axis.

    Args:
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of count operation on the specified axis of input Tensor `x`, it's data type is `'int64'`.

    Examples:

        .. code-block:: python

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]])
            out1 = paddle.count_nonzero(x)
            # [3]
            out2 = paddle.count_nonzero(x, axis=0)
            # [0, 1, 2]
            out3 = paddle.count_nonzero(x, axis=0, keepdim=True)
            # [[0, 1, 2]]
            out4 = paddle.count_nonzero(x, axis=1)
            # [2, 1, 0]
            out5 = paddle.count_nonzero(x, axis=1, keepdim=True)
            #[[2],
            # [1],
            # [0]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]],
                                  [[0., 2.5, 2.6], [0., 0., 2.4], [2.1, 2.2, 2.3]]])
            out6 = paddle.count_nonzero(y, axis=[1, 2])
            # [3, 6]
            out7 = paddle.count_nonzero(y, axis=[0, 1])
            # [1, 3, 5]
    """

    if axis is not None:
        if isinstance(axis, int):
            axis = [axis]
        dims = len(x.shape)
        for i in range(len(axis)):
1586 1587 1588
            if not isinstance(axis[i], int) or not (
                axis[i] < dims and axis[i] >= -dims
            ):
1589 1590 1591 1592 1593 1594 1595 1596 1597
                raise ValueError(
                    "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
                )

    bool_tensor = paddle.cast(x, 'bool')
    int_tensor = paddle.cast(bool_tensor, 'int64')
    return paddle.sum(int_tensor, axis=axis, keepdim=keepdim, name=name)


1598
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
1599
def add_n(inputs, name=None):
1600
    """
1601
    Sum one or more Tensor of the input.
1602

S
Steffy-zxf 已提交
1603 1604 1605
    For example:

    .. code-block:: text
1606

S
Steffy-zxf 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
1620

S
Steffy-zxf 已提交
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
1636 1637

    Args:
1638
        inputs (Tensor|list[Tensor]|tuple[Tensor]):  A Tensor or a list/tuple of Tensors. The shape and data type of the list/tuple elements should be consistent.
S
Steffy-zxf 已提交
1639
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
1640
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1641 1642

    Returns:
S
Steffy-zxf 已提交
1643
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
1644 1645 1646

    Examples:
        .. code-block:: python
1647

1648 1649
            import paddle

S
Steffy-zxf 已提交
1650 1651 1652
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
1653
            # [[8., 10., 12.],
S
Steffy-zxf 已提交
1654
            #  [14., 16., 18.]]
1655
    """
1656 1657 1658
    if in_dygraph_mode():
        if isinstance(inputs, Variable):
            inputs = [inputs]
1659
        return _C_ops.add_n(inputs)
1660
    else:
1661 1662
        helper = LayerHelper('add_n', **locals())
        check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
1663
        if isinstance(inputs, (list, tuple)):
1664 1665 1666 1667 1668
            if len(inputs) > 0:
                for input in inputs:
                    check_variable_and_dtype(
                        input,
                        "inputs",
1669 1670 1671 1672 1673 1674 1675 1676
                        [
                            'float16',
                            'float32',
                            'float64',
                            'int32',
                            'int64',
                            'uint16',
                        ],
1677 1678 1679 1680 1681 1682
                        'add_n',
                    )
        else:
            check_variable_and_dtype(
                inputs,
                "inputs",
1683
                ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
1684 1685
                'add_n',
            )
1686

1687 1688 1689 1690 1691 1692 1693 1694 1695
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('inputs')
        )
        helper.append_op(
            type='sum',
            inputs={'X': inputs},
            outputs={'Out': out},
            attrs={'use_mkldnn': False},
        )
1696

1697
        return out
1698 1699


1700 1701 1702
def trunc(input, name=None):
    '''
    This API is used to returns a new tensor with the truncated integer values of input.
1703

1704 1705 1706
    Args:
        input (Tensor): The input tensor, it's data type should be int32, int64, float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1707

1708 1709
    Returns:
        Tensor: The output Tensor of trunc.
1710

1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand([2,2],'float32')
            print(input)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0.02331470, 0.42374918],
            #         [0.79647720, 0.74970269]])

            output = paddle.trunc(input)
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0., 0.],
            #         [0., 0.]]))
    '''
J
Jiabin Yang 已提交
1728
    if in_dygraph_mode():
1729
        return _C_ops.trunc(input)
1730
    else:
1731 1732
        inputs = {"X": input}
        attrs = {}
1733

1734 1735 1736 1737 1738
        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(
            input, 'X', ['int32', 'int64', 'float32', 'float64'], 'trunc'
        )
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
1739

1740 1741 1742 1743
        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
1744 1745


W
WuHaobo 已提交
1746
def mm(input, mat2, name=None):
1747
    """
S
swtkiwi 已提交
1748

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
1760
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
1761
        mat2 (Tensor): The input tensor which is a Tensor.
1762
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1763 1764

    Returns:
N
Noel 已提交
1765
        Tensor: The product Tensor.
1766

W
wawltor 已提交
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
    ::

        * example 1:

        input: [B, ..., M, K], mat2: [B, ..., K, N]
        out: [B, ..., M, N]

        * example 2:

        input: [B, M, K], mat2: [B, K, N]
        out: [B, M, N]

        * example 3:

        input: [B, M, K], mat2: [K, N]
        out: [B, M, N]

        * example 4:

        input: [M, K], mat2: [K, N]
        out: [M, N]

        * example 5:

        input: [B, M, K], mat2: [K]
        out: [B, M]

        * example 6:

        input: [K], mat2: [K]
        out: [1]

1799 1800 1801 1802
    Examples:
        .. code-block:: python

            import paddle
1803 1804 1805 1806 1807 1808 1809 1810
            input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            out = paddle.mm(input, mat2)
            print(out)
            #        [[11., 14., 17., 20.],
            #         [23., 30., 37., 44.],
            #         [35., 46., 57., 68.]])

N
Noel 已提交
1811

1812
    """
1813
    if in_dygraph_mode():
1814
        return _C_ops.matmul(input, mat2, False, False)
1815
    else:
1816

1817 1818 1819 1820 1821
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float16', 'float32', 'float64'], 'mm'
1822
                )
1823 1824 1825 1826 1827 1828
            x_shape = list(x.shape)
            y_shape = list(y.shape)
            if len(x_shape) == 1:
                x_shape = [1] + x_shape
            if len(y_shape) == 1:
                y_shape = y_shape + [1]
1829

1830 1831 1832
            # check the inner 2 dimensions
            if x_shape[-1] != y_shape[-2]:
                if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
1833
                    raise ValueError(
1834 1835 1836 1837
                        "After performing an optional transpose, Input X's width should be "
                        "equal to Y's width for multiplication "
                        "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                        % (x_shape, y_shape)
1838
                    )
1839

1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
            if len(y_shape) > 2 and len(x_shape) > 2:
                for i, dim_x in enumerate(x_shape[:-2]):
                    # don't check neg shape
                    if dim_x < 0 or y_shape[i] < 0:
                        continue
                    if dim_x != y_shape[i]:
                        raise ValueError(
                            "When the matrix is larger than 2 dimensions, the higher "
                            "dimensional values of the two matrices need to be equal. "
                            "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                            "Y's shape: %s.\n" % (i, i, x_shape, y_shape)
                        )

        __check_input(input, mat2)

        helper = LayerHelper('mm', **locals())
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='matmul_v2',
            inputs={'X': input, 'Y': mat2},
            outputs={'Out': out},
        )
        return out
1863

1864

Y
yaoxuefeng 已提交
1865
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
1866 1867 1868
    """
    **addmm**

1869
    Perform matrix multiplication for input $x$ and $y$.
1870 1871 1872 1873 1874 1875 1876 1877 1878
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
1879 1880 1881
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
1882 1883
        beta (float, optional): Coefficient of $input$, default is 1.
        alpha (float, optional): Coefficient of $x*y$, default is 1.
1884
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1885 1886

    Returns:
1887
        Tensor: The output Tensor of addmm.
1888 1889 1890

    Examples:
        ..  code-block:: python
1891

1892 1893
            import paddle

Y
yaoxuefeng 已提交
1894 1895 1896
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
1897

Y
yaoxuefeng 已提交
1898
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
1899

N
Noel 已提交
1900
            print(out)
1901 1902 1903
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
1904 1905 1906
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
1907
    if not len(x_shape) == len(y_shape) == 2:
1908
        raise ValueError(
1909 1910 1911 1912
            "The dimention of x, y should be 2 but receive x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
Y
yaoxuefeng 已提交
1913
    if x_shape[1] != y_shape[0]:
1914
        raise ValueError(
1915 1916 1917 1918
            "The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(
                x_shape, y_shape
            )
        )
1919 1920 1921
    if len(input_shape) == 2:
        if input_shape[0] != x_shape[0]:
            if input_shape[0] != 1:
1922
                raise ValueError(
1923 1924 1925 1926
                    "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(
                        input_shape[0]
                    )
                )
1927
            if input_shape[1] != y_shape[1] and input_shape[1] != 1:
1928
                raise ValueError(
1929 1930 1931 1932
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
1933 1934
        if input_shape[1] != y_shape[1]:
            if input_shape[1] != 1:
1935
                raise ValueError(
1936 1937 1938 1939
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
1940 1941
    elif len(input_shape) == 1:
        if input_shape[0] not in (y_shape[1], 1):
1942
            raise ValueError(
1943 1944 1945 1946
                "The input's shape: {} is not broadcastable with [x.shape[0], y.shape[1]]: [{},{}]".format(
                    input_shape, x_shape[0], y_shape[1]
                )
            )
1947
    else:
1948
        raise ValueError(
1949 1950 1951 1952
            "The dimention of input should be 2 or 1 but receive input's shape: {}".format(
                input_shape
            )
        )
Y
yaoxuefeng 已提交
1953

J
Jiabin Yang 已提交
1954
    if in_dygraph_mode():
1955
        return _C_ops.addmm(input, x, y, beta, alpha)
J
Jiabin Yang 已提交
1956
    else:
1957 1958
        inputs = {'Input': input, "X": x, "Y": y}
        attrs = {'Alpha': alpha, 'Beta': beta}
1959

1960 1961
        helper = LayerHelper("addmm", **locals())
        check_variable_and_dtype(
1962 1963 1964 1965 1966 1967 1968
            input, 'Input', ['float16', 'float32', 'float64', 'uint16'], 'addmm'
        )
        check_variable_and_dtype(
            x, 'X', ['float16', 'float32', 'float64', 'uint16'], 'addmm'
        )
        check_variable_and_dtype(
            y, 'Y', ['float16', 'float32', 'float64', 'uint16'], 'addmm'
1969 1970
        )
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1971

1972 1973 1974 1975
        helper.append_op(
            type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
1976

1977

S
seemingwang 已提交
1978 1979 1980 1981 1982 1983 1984
def renorm(x, p, axis, max_norm):
    """
    **renorm**

    This operator is used to calculate the p-norm along the axis,
    suppose the input-shape on axis dimension has the value of T, then
    the tensor is split into T parts, the p-norm should be calculated for each
1985
    part, if the p-norm for part i is larger than max-norm, then each element
S
seemingwang 已提交
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
    in part i should be re-normalized at the same scale so that part-i' p-norm equals
    max-norm exactly, otherwise part-i stays unchanged.

    Args:
        x (Tensor): The input Tensor
        p (float): The power of the norm operation.
        axis (int): the dimension to slice the tensor.
        max-norm (float): the maximal norm limit.

    Returns:
        Tensor: the renorm Tensor.

    Examples:
        ..  code-block:: python
2000

S
seemingwang 已提交
2001 2002 2003 2004
            import paddle
            input = [[[2.0,2,-2],[3,0.3,3]],[[2,-8,2],[3.1,3.7,3]]]
            x = paddle.to_tensor(input,dtype='float32')
            y = paddle.renorm(x, 1.0, 2, 2.05)
2005
            print(y)
S
seemingwang 已提交
2006 2007 2008 2009
    #        [[[ 0.40594056,  0.29285714, -0.41000000],
    #          [ 0.60891086,  0.04392857,  0.61500001]],
    #         [[ 0.40594056, -1.17142856,  0.41000000],
    #          [ 0.62920785,  0.54178572,  0.61500001]]])
2010

S
seemingwang 已提交
2011 2012 2013
    """
    input_shape = x.shape
    if not axis < len(input_shape):
2014 2015
        raise ValueError(
            "the axis:{} should be less then the shape's size {}:{}".format(
2016 2017 2018
                axis, len(input_shape), input_shape
            )
        )
2019
    if not axis >= 0:
S
seemingwang 已提交
2020
        if not axis >= -1 * len(input_shape):
2021
            raise ValueError(
2022 2023 2024 2025
                "the axis:{} should not be less than -1 * length of input_shape:{}".format(
                    axis, -1 * len(input_shape)
                )
            )
S
seemingwang 已提交
2026
        axis = axis + len(input_shape)
S
seemingwang 已提交
2027
    if in_dygraph_mode():
2028
        out = _C_ops.renorm(x, p, axis, max_norm)
S
seemingwang 已提交
2029
        return out
2030
    else:
2031
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'renorm')
2032 2033
        inputs = {'X': x}
        attrs = {'p': p, 'axis': axis, 'max_norm': max_norm}
S
seemingwang 已提交
2034

2035 2036
        helper = LayerHelper("renorm", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
seemingwang 已提交
2037

2038 2039 2040 2041
        helper.append_op(
            type="renorm", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
S
seemingwang 已提交
2042

2043

Z
zhiboniu 已提交
2044 2045 2046 2047
def inner(x, y, name=None):
    """

    Inner product of two input Tensor.
2048

Z
zhiboniu 已提交
2049 2050 2051 2052 2053
    Ordinary inner product for 1-D Tensors, in higher dimensions a sum product over the last axes.

    Args:
        x (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match y's.
        y (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match x's.
2054
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076

    Returns:
        Tensor: The inner-product Tensor, the output shape is x.shape[:-1] + y.shape[:-1].

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 7).reshape((2, 3)).astype('float32')
            y = paddle.arange(1, 10).reshape((3, 3)).astype('float32')
            out = paddle.inner(x, y)
            print(out)
            #        ([[14, 32, 50],
            #         [32, 77, 122]])


    """
    if x.size == 1 or y.size == 1:
        return multiply(x, y)
    else:
        xshape = x.shape
        yshape = y.shape
2077
        dstshape = list(xshape[:-1]) + list(yshape[:-1])
2078

Z
zhiboniu 已提交
2079 2080 2081
        nx = x.reshape((-1, xshape[-1]))
        ny = y.reshape((-1, yshape[-1]))

2082
        if in_dygraph_mode():
2083
            return _C_ops.matmul(nx, ny.T, False, False).reshape(dstshape)
2084
        else:
Z
zhiboniu 已提交
2085

2086 2087 2088 2089 2090
            def __check_input(x, y):
                var_names = {'x': x, 'y': y}
                for name, val in var_names.items():
                    check_variable_and_dtype(
                        val, name, ['float16', 'float32', 'float64'], 'inner'
2091
                    )
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
                x_shape = list(xshape)
                y_shape = list(yshape)

                # check the inner 2 dimensions
                if x_shape[-1] != y_shape[-1]:
                    if not ((x_shape[-1] == -1) or (y_shape[-1] == -1)):
                        raise ValueError(
                            "After performing an optional transpose, Input X's last dim should be "
                            "equal to Y's last dim for multiplication "
                            "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                            % (x_shape, y_shape)
                        )

            __check_input(nx, ny)

            helper = LayerHelper('inner', **locals())
            out = helper.create_variable_for_type_inference(dtype=nx.dtype)
            helper.append_op(
                type='matmul_v2',
                inputs={'X': nx, 'Y': ny.T},
                outputs={'Out': out},
            )
            return out.reshape(dstshape)
Z
zhiboniu 已提交
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124


def outer(x, y, name=None):
    """

    Outer product of two Tensors.

    Input is flattened if not already 1-dimensional.

    Args:
2125 2126
        x (Tensor): An N-D Tensor or a Scalar Tensor.
        y (Tensor): An N-D Tensor or a Scalar Tensor.
2127
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148

    Returns:
        Tensor: The outer-product Tensor.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 4).astype('float32')
            y = paddle.arange(1, 6).astype('float32')
            out = paddle.outer(x, y)
            print(out)
            #        ([[1, 2, 3, 4, 5],
            #         [2, 4, 6, 8, 10],
            #         [3, 6, 9, 12, 15]])


    """
    nx = x.reshape((-1, 1))
    ny = y.reshape((1, -1))

2149
    if in_dygraph_mode():
2150
        return _C_ops.matmul(nx, ny, False, False)
2151
    else:
Z
zhiboniu 已提交
2152

2153 2154 2155 2156 2157 2158
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float16', 'float32', 'float64'], 'inner'
                )
Z
zhiboniu 已提交
2159

2160
        __check_input(nx, ny)
Z
zhiboniu 已提交
2161

2162 2163 2164 2165 2166 2167
        helper = LayerHelper('outer', **locals())
        out = helper.create_variable_for_type_inference(dtype=nx.dtype)
        helper.append_op(
            type='matmul_v2', inputs={'X': nx, 'Y': ny}, outputs={'Out': out}
        )
        return out
Z
zhiboniu 已提交
2168 2169


2170
def logsumexp(x, axis=None, keepdim=False, name=None):
2171
    r"""
2172
    Calculates the log of the sum of exponentials of ``x`` along ``axis`` .
2173

2174
    .. math::
2175
       logsumexp(x) = \log\sum exp(x)
2176

2177
    Args:
2178
        x (Tensor): The input Tensor with data type float16, float32 or float64, which
S
Shang Zhizhou 已提交
2179
            have no more than 4 dimensions.
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2196

2197
    Returns:
2198 2199
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
2200

2201
    Examples:
2202

2203
    .. code-block:: python
2204

2205 2206
        import paddle

2207
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
2208 2209
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
2210 2211

    """
2212
    reduce_all, axis = _get_reduce_axis(axis, x)
2213

2214
    if in_dygraph_mode():
2215
        return _C_ops.logsumexp(x, axis, keepdim, reduce_all)
2216
    else:
2217
        check_variable_and_dtype(
2218
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'logsumexp'
2219
        )
2220 2221 2222 2223 2224 2225

        helper = LayerHelper('logsumexp', **locals())
        attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all': reduce_all}
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs
2226
        )
2227
        return out
2228

S
swtkiwi 已提交
2229

2230 2231
def inverse(x, name=None):
    """
2232 2233 2234 2235 2236
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
2237
        x (Tensor): The input tensor. The last two
2238 2239 2240
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
2241
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2242 2243

    Returns:
2244
        Tensor: A Tensor holds the inverse of x. The shape and data type
2245
                        is the same as x.
2246 2247 2248 2249 2250

    Examples:
        .. code-block:: python

            import paddle
2251 2252

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
2253 2254
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
2255 2256

    """
2257
    if in_dygraph_mode():
W
wanghuancoder 已提交
2258
        return _C_ops.inverse(x)
2259
    else:
2260

2261 2262 2263 2264 2265 2266 2267 2268
        def _check_input(x):
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'inverse')
            if len(x.shape) < 2:
                raise ValueError(
                    "The input of inverse is expected to be a Tensor whose number "
                    "of dimensions is no less than 2. But reviced: %d, "
                    "x's shape: %s." % (len(x.shape), x.shape)
                )
2269

2270 2271 2272 2273 2274 2275 2276
        _check_input(x)
        helper = LayerHelper('inverse', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='inverse', inputs={'Input': [x]}, outputs={'Output': [out]}
        )
        return out
2277

2278

2279
def max(x, axis=None, keepdim=False, name=None):
2280
    """
S
swtkiwi 已提交
2281

2282
    Computes the maximum of tensor elements over the given axis.
2283

T
Tao Luo 已提交
2284 2285
    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2286
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2287 2288 2289
        while max propagates gradient to all of them.


2290
    Args:
2291 2292
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
2293
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
2294
            `x` and return a Tensor with a single element,
2295 2296
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2297
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2298
            output Tensor. The result tensor will have one fewer dimension
2299
            than the `x` unless :attr:`keepdim` is true, default
2300
            value is False.
2301
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2302 2303

    Returns:
2304
        Tensor, results of maximum on the specified axis of input tensor,
2305
        it's data type is the same as `x`.
2306 2307 2308

    Examples:
        .. code-block:: python
2309

2310
            import paddle
2311

N
Noel 已提交
2312
            # data_x is a Tensor with shape [2, 4]
2313
            # the axis is a int element
2314
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2315
                                  [0.1, 0.2, 0.6, 0.7]],
2316
                                 dtype='float64', stop_gradient=False)
2317
            result1 = paddle.max(x)
2318
            result1.backward()
2319
            print(result1, x.grad)
2320 2321 2322
            #[0.9], [[0., 0., 0., 1.], [0., 0., 0., 0.]]

            x.clear_grad()
2323
            result2 = paddle.max(x, axis=0)
2324
            result2.backward()
2325
            print(result2, x.grad)
2326 2327 2328
            #[0.2, 0.3, 0.6, 0.9], [[1., 1., 0., 1.], [0., 0., 1., 0.]]

            x.clear_grad()
2329
            result3 = paddle.max(x, axis=-1)
2330
            result3.backward()
2331
            print(result3, x.grad)
2332 2333 2334
            #[0.9, 0.7], [[0., 0., 0., 1.], [0., 0., 0., 1.]]

            x.clear_grad()
2335
            result4 = paddle.max(x, axis=1, keepdim=True)
2336
            result4.backward()
2337
            print(result4, x.grad)
2338
            #[[0.9], [0.7]], [[0., 0., 0., 1.], [0., 0., 0., 1.]]
2339

N
Noel 已提交
2340
            # data_y is a Tensor with shape [2, 2, 2]
2341
            # the axis is list
2342
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2343 2344
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2345
            result5 = paddle.max(y, axis=[1, 2])
2346
            result5.backward()
2347
            print(result5, y.grad)
2348 2349 2350
            #[4., 8.], [[[0., 0.], [0., 1.]], [[0., 0.], [0., 1.]]]

            y.clear_grad()
2351
            result6 = paddle.max(y, axis=[0, 1])
2352
            result6.backward()
2353
            print(result6, y.grad)
2354
            #[7., 8.], [[[0., 0.], [0., 0.]], [[0., 0.], [1., 1.]]]
2355 2356
    """

2357
    if in_dygraph_mode():
2358
        return _C_ops.max(x, axis, keepdim)
2359 2360 2361 2362
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        helper = LayerHelper('max', **locals())
        check_variable_and_dtype(
2363 2364 2365 2366
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            'max',
2367
        )
2368 2369
        if not isinstance(axis, Variable) and paddle.utils._contain_var(axis):
            axis = paddle.utils._convert_to_tensor_list(axis)
2370

2371 2372 2373 2374 2375 2376 2377 2378
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_max',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
2379

2380

2381
def min(x, axis=None, keepdim=False, name=None):
2382
    """
S
swtkiwi 已提交
2383

2384
    Computes the minimum of tensor elements over the given axis
2385

T
Tao Luo 已提交
2386 2387
    Note:
        The difference between min and amin is: If there are multiple minimum elements,
2388
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2389 2390
        while min propagates gradient to all of them.

2391
    Args:
2392 2393
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
2394
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
2395
            `x` and return a Tensor with a single element,
2396 2397
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2398
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2399
            output Tensor. The result tensor will have one fewer dimension
2400
            than the `x` unless :attr:`keepdim` is true, default
2401
            value is False.
2402
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2403

2404
    Returns:
2405
        Tensor, results of minimum on the specified axis of input tensor,
2406
        it's data type is the same as input's Tensor.
2407

2408 2409 2410
    Examples:
        .. code-block:: python

2411
            import paddle
2412

2413
            # data_x is a Tensor with shape [2, 4]
2414
            # the axis is a int element
2415
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2416
                                  [0.1, 0.2, 0.6, 0.7]],
2417
                                 dtype='float64', stop_gradient=False)
2418
            result1 = paddle.min(x)
2419
            result1.backward()
2420
            print(result1, x.grad)
2421 2422 2423
            #[0.1], [[0., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2424
            result2 = paddle.min(x, axis=0)
2425
            result2.backward()
2426
            print(result2, x.grad)
2427 2428 2429
            #[0.1, 0.2, 0.5, 0.7], [[0., 0., 1., 0.], [1., 1., 0., 1.]]

            x.clear_grad()
2430
            result3 = paddle.min(x, axis=-1)
2431
            result3.backward()
2432
            print(result3, x.grad)
2433 2434 2435
            #[0.2, 0.1], [[1., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2436
            result4 = paddle.min(x, axis=1, keepdim=True)
2437
            result4.backward()
2438
            print(result4, x.grad)
2439
            #[[0.2], [0.1]], [[1., 0., 0., 0.], [1., 0., 0., 0.]]
2440

2441
            # data_y is a Tensor with shape [2, 2, 2]
2442
            # the axis is list
2443
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2444 2445
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2446
            result5 = paddle.min(y, axis=[1, 2])
2447
            result5.backward()
2448
            print(result5, y.grad)
2449 2450 2451
            #[1., 5.], [[[1., 0.], [0., 0.]], [[1., 0.], [0., 0.]]]

            y.clear_grad()
2452
            result6 = paddle.min(y, axis=[0, 1])
2453
            result6.backward()
2454
            print(result6, y.grad)
2455
            #[1., 2.], [[[1., 1.], [0., 0.]], [[0., 0.], [0., 0.]]]
2456
    """
2457

2458
    if in_dygraph_mode():
2459
        return _C_ops.min(x, axis, keepdim)
2460 2461 2462 2463
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        helper = LayerHelper('min', **locals())
        check_variable_and_dtype(
2464 2465 2466 2467
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            'min',
2468
        )
2469

2470 2471 2472 2473 2474 2475 2476 2477
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_min',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
2478

2479

T
Tao Luo 已提交
2480 2481 2482 2483 2484 2485
def amax(x, axis=None, keepdim=False, name=None):
    """
    Computes the maximum of tensor elements over the given axis.

    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2486
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2487 2488 2489
        while max propagates gradient to all of them.

    Args:
2490
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2491
            the dimension is no more than 4.
2492
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
T
Tao Luo 已提交
2493 2494 2495 2496
            If :attr:`None`, compute the maximum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2497
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2498 2499 2500
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2501
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514

    Returns:
        Tensor, results of maximum on the specified axis of input tensor,
        it's data type is the same as `x`.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple maximum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.1, 0.9, 0.9, 0.9],
2515
                                  [0.9, 0.9, 0.6, 0.7]],
T
Tao Luo 已提交
2516
                                 dtype='float64', stop_gradient=False)
2517 2518
            # There are 5 maximum elements:
            # 1) amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2519
            #    thus the corresponding gradients are 1/5=0.2;
2520
            # 2) while max propagates gradient to all of them,
T
Tao Luo 已提交
2521
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2522 2523
            result1 = paddle.amax(x)
            result1.backward()
2524
            print(result1, x.grad)
T
Tao Luo 已提交
2525 2526
            #[0.9], [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]

T
Tao Luo 已提交
2527 2528 2529
            x.clear_grad()
            result1_max = paddle.max(x)
            result1_max.backward()
2530
            print(result1_max, x.grad)
T
Tao Luo 已提交
2531 2532 2533 2534
            #[0.9], [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]

            ###############################

T
Tao Luo 已提交
2535 2536 2537
            x.clear_grad()
            result2 = paddle.amax(x, axis=0)
            result2.backward()
2538
            print(result2, x.grad)
T
Tao Luo 已提交
2539 2540 2541 2542 2543
            #[0.9, 0.9, 0.9, 0.9], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amax(x, axis=-1)
            result3.backward()
2544
            print(result3, x.grad)
T
Tao Luo 已提交
2545 2546 2547 2548 2549
            #[0.9, 0.9], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amax(x, axis=1, keepdim=True)
            result4.backward()
2550
            print(result4, x.grad)
T
Tao Luo 已提交
2551 2552 2553
            #[[0.9], [0.9]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
2554
            # the axis is list
T
Tao Luo 已提交
2555 2556 2557 2558 2559
            y = paddle.to_tensor([[[0.1, 0.9], [0.9, 0.9]],
                                  [[0.9, 0.9], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amax(y, axis=[1, 2])
            result5.backward()
2560
            print(result5, y.grad)
T
Tao Luo 已提交
2561 2562 2563 2564 2565
            #[0.9., 0.9], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amax(y, axis=[0, 1])
            result6.backward()
2566
            print(result6, y.grad)
T
Tao Luo 已提交
2567 2568
            #[0.9., 0.9], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """
2569
    if in_dygraph_mode():
2570
        return _C_ops.amax(x, axis, keepdim)
2571

2572 2573 2574 2575 2576
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        helper = LayerHelper('amax', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amax'
2577
        )
T
Tao Luo 已提交
2578

2579 2580 2581 2582 2583 2584 2585 2586
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_amax',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
T
Tao Luo 已提交
2587

2588

T
Tao Luo 已提交
2589 2590 2591 2592 2593 2594 2595
def amin(x, axis=None, keepdim=False, name=None):
    """

    Computes the minimum of tensor elements over the given axis

    Note:
        The difference between min and amin is: If there are multiple minimum elements,
2596
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2597 2598 2599
        while min propagates gradient to all of them.

    Args:
2600
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2601
            the dimension is no more than 4.
2602
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
T
Tao Luo 已提交
2603 2604 2605 2606
            If :attr:`None`, compute the minimum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2607
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2608 2609 2610
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2611
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624

    Returns:
        Tensor, results of minimum on the specified axis of input tensor,
        it's data type is the same as input's Tensor.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple minimum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.2, 0.1, 0.1, 0.1],
2625
                                  [0.1, 0.1, 0.6, 0.7]],
T
Tao Luo 已提交
2626
                                 dtype='float64', stop_gradient=False)
2627 2628
            # There are 5 minimum elements:
            # 1) amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2629
            #    thus the corresponding gradients are 1/5=0.2;
2630
            # 2) while min propagates gradient to all of them,
T
Tao Luo 已提交
2631
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2632 2633
            result1 = paddle.amin(x)
            result1.backward()
2634
            print(result1, x.grad)
T
Tao Luo 已提交
2635 2636
            #[0.1], [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]

T
Tao Luo 已提交
2637 2638 2639
            x.clear_grad()
            result1_min = paddle.min(x)
            result1_min.backward()
2640
            print(result1_min, x.grad)
T
Tao Luo 已提交
2641 2642 2643 2644
            #[0.1], [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]

            ###############################

T
Tao Luo 已提交
2645 2646 2647
            x.clear_grad()
            result2 = paddle.amin(x, axis=0)
            result2.backward()
2648
            print(result2, x.grad)
T
Tao Luo 已提交
2649 2650 2651 2652 2653
            #[0.1, 0.1, 0.1, 0.1], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amin(x, axis=-1)
            result3.backward()
2654
            print(result3, x.grad)
T
Tao Luo 已提交
2655 2656 2657 2658 2659
            #[0.1, 0.1], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amin(x, axis=1, keepdim=True)
            result4.backward()
2660
            print(result4, x.grad)
T
Tao Luo 已提交
2661 2662 2663
            #[[0.1], [0.1]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
2664
            # the axis is list
T
Tao Luo 已提交
2665 2666 2667 2668 2669
            y = paddle.to_tensor([[[0.2, 0.1], [0.1, 0.1]],
                                  [[0.1, 0.1], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amin(y, axis=[1, 2])
            result5.backward()
2670
            print(result5, y.grad)
T
Tao Luo 已提交
2671 2672 2673 2674 2675
            #[0.1., 0.1], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amin(y, axis=[0, 1])
            result6.backward()
2676
            print(result6, y.grad)
T
Tao Luo 已提交
2677 2678
            #[0.1., 0.1], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """
2679
    if in_dygraph_mode():
2680
        return _C_ops.amin(x, axis, keepdim)
2681

2682 2683 2684 2685 2686
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        helper = LayerHelper('amin', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amin'
2687
        )
T
Tao Luo 已提交
2688

2689 2690 2691 2692 2693 2694 2695 2696
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_amin',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
T
Tao Luo 已提交
2697

2698

W
WuHaobo 已提交
2699
def log1p(x, name=None):
2700
    r"""
2701
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
2702

2703
    .. math::
2704
        Out = \ln(x+1)
S
Steffy-zxf 已提交
2705

2706
    Args:
2707
        x (Tensor): Input Tensor. Must be one of the following types: float16, float32, float64.
2708
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2709

2710
    Returns:
S
Steffy-zxf 已提交
2711
        Tensor, the natural log of the input Tensor computed element-wise.
2712

2713 2714
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
2715

2716
            import paddle
S
Steffy-zxf 已提交
2717 2718 2719 2720

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
2721 2722
    """

2723
    if in_dygraph_mode():
W
wanghuancoder 已提交
2724
        return _C_ops.log1p(x)
2725
    else:
2726
        check_variable_and_dtype(
2727
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], "log1p"
2728
        )
2729 2730 2731 2732 2733 2734
        inputs = {'X': [x]}
        helper = LayerHelper('log1p', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
        return out
B
Bai Yifan 已提交
2735

2736

J
joejiong 已提交
2737
def log2(x, name=None):
2738
    r"""
J
joejiong 已提交
2739 2740 2741 2742
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

2743
        Out = \log_2x
J
joejiong 已提交
2744 2745 2746

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
2747
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2748 2749 2750 2751 2752 2753 2754 2755


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
2756

J
joejiong 已提交
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [2.0]])
            res = paddle.log2(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]
    """
2775
    if in_dygraph_mode():
W
wanghuancoder 已提交
2776
        return _C_ops.log2(x)
2777 2778
    else:
        check_variable_and_dtype(
2779
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], "log2"
2780 2781 2782 2783 2784 2785 2786
        )
        inputs = {'X': [x]}
        helper = LayerHelper('log2', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
        return out
W
WuHaobo 已提交
2787

J
joejiong 已提交
2788 2789

def log10(x, name=None):
2790
    r"""
J
joejiong 已提交
2791 2792 2793 2794
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

2795
        Out = \log_10_x
J
joejiong 已提交
2796 2797 2798

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
2799
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2800 2801 2802 2803 2804 2805 2806 2807


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
2808

J
joejiong 已提交
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [10.0]])
            res = paddle.log10(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]
    """
2827
    if in_dygraph_mode():
W
wanghuancoder 已提交
2828
        return _C_ops.log10(x)
2829 2830
    else:
        check_variable_and_dtype(
2831
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], "log10"
2832 2833 2834 2835 2836 2837 2838
        )
        inputs = {'X': [x]}
        helper = LayerHelper('log10', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
        return out
J
joejiong 已提交
2839 2840


Y
Yang Zhang 已提交
2841
def clip(x, min=None, max=None, name=None):
2842
    """
Y
Yang Zhang 已提交
2843
    This operator clip all elements in input into the range [ min, max ] and return
2844 2845 2846 2847
    a resulting tensor as the following equation:

    .. math::

2848
        Out = MIN(MAX(x, min), max)
2849 2850

    Args:
2851
        x (Tensor): An N-D Tensor with data type float16, float32, float64, int32 or int64.
2852
        min (float|int|Tensor, optional): The lower bound with type ``float`` , ``int`` or a ``Tensor``
2853
            with shape [1] and type ``int32``, ``float16``, ``float32``, ``float64``.
2854
        max (float|int|Tensor, optional): The upper bound with type ``float``, ``int`` or a ``Tensor``
2855
            with shape [1] and type ``int32``, ``float16``, ``float32``, ``float64``.
2856
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2857 2858

    Returns:
Y
Yang Zhang 已提交
2859
        Tensor: A Tensor with the same data type and data shape as input.
2860 2861 2862 2863 2864

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
2865

2866
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
2867 2868
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
2869
            print(out1)
Y
Yang Zhang 已提交
2870 2871
            # [[3.5, 3.5]
            # [4.5, 5.0]]
2872
            print(out2)
Y
Yang Zhang 已提交
2873 2874
            # [[2.5, 3.5]
            # [[4.5, 6.4]
2875 2876
    """

2877 2878 2879 2880 2881 2882 2883
    x_dtype = str(x.dtype)
    if x_dtype == 'paddle.int32':
        min_ = np.iinfo(np.int32).min
        max_ = np.iinfo(np.int32).max - 2**7
    elif x_dtype == 'paddle.int64':
        min_ = np.iinfo(np.int64).min
        max_ = np.iinfo(np.int64).max - 2**39
2884 2885 2886
    elif x_dtype == 'paddle.float16':
        min_ = float(np.finfo(np.float16).min)
        max_ = float(np.finfo(np.float16).max)
2887 2888 2889
    else:
        min_ = float(np.finfo(np.float32).min)
        max_ = float(np.finfo(np.float32).max)
2890

C
chentianyu03 已提交
2891 2892
    if in_dygraph_mode():
        if isinstance(min, Variable):
2893
            min = min.item(0)
C
chentianyu03 已提交
2894
        if isinstance(max, Variable):
2895
            max = max.item(0)
C
chentianyu03 已提交
2896 2897
        min = min_ if min is None else min
        max = max_ if max is None else max
2898
        return _C_ops.clip(x, min, max)
2899 2900 2901 2902 2903 2904 2905
    else:
        if min is not None:
            check_type(min, 'min', (float, int, Variable), 'clip')
            if isinstance(min, Variable):
                check_dtype(
                    min.dtype,
                    'min',
2906
                    ['float16', 'float32', 'float64', 'int32', 'uint16'],
2907 2908 2909 2910 2911 2912 2913 2914 2915
                    'clip',
                    '(When the type of min in clip is Variable.)',
                )
        if max is not None:
            check_type(max, 'max', (float, int, Variable), 'clip')
            if isinstance(max, Variable):
                check_dtype(
                    max.dtype,
                    'max',
2916
                    ['float16', 'float32', 'float64', 'int32', 'uint16'],
2917 2918 2919
                    'clip',
                    '(When the type of max in clip is Variable.)',
                )
C
chentianyu03 已提交
2920

2921
        check_variable_and_dtype(
2922 2923 2924 2925
            x,
            'x',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
            'clip',
2926
        )
Y
Yang Zhang 已提交
2927

2928 2929
        inputs = {'X': x}
        attrs = {'min': min_, 'max': max_}
2930

2931 2932 2933 2934 2935
        if isinstance(min, Variable):
            min.stop_gradient = True
            inputs['Min'] = min
        elif min is not None:
            attrs['min'] = min
2936

2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
        if isinstance(max, Variable):
            max.stop_gradient = True
            inputs['Max'] = max
        elif max is not None:
            attrs['max'] = max

        helper = LayerHelper('clip', **locals())
        output = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('x')
        )
        helper.append_op(
            type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs
        )
2950

2951
        return output
F
Feiyu Chan 已提交
2952

W
WuHaobo 已提交
2953

2954 2955 2956 2957 2958 2959 2960 2961 2962
@inplace_apis_in_dygraph_only
def clip_(x, min=None, max=None, name=None):
    """
    Inplace version of ``clip`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_clip`.
    """
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
    if isinstance(min, Variable):
2963
        min = min.item(0)
2964
    if isinstance(max, Variable):
2965
        max = max.item(0)
2966 2967
    min = fmin if min is None else min
    max = fmax if max is None else max
C
chentianyu03 已提交
2968 2969

    if in_dygraph_mode():
2970
        return _C_ops.clip_(x, min, max)
C
chentianyu03 已提交
2971

2972

2973
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
2974
    """
S
swtkiwi 已提交
2975

2976
    Computes the sum along diagonals of the input tensor x.
2977 2978

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
2979

2980
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
2981
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
2982
    of the input tensor x.
L
Li Fuchen 已提交
2983

2984
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
2985 2986 2987 2988

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
2989
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
2990

L
Li Fuchen 已提交
2991
    Args:
2992 2993 2994 2995 2996
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
L
Li Fuchen 已提交
2997 2998

    Returns:
2999
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
3000 3001 3002 3003 3004

    Examples:
        .. code-block:: python

            import paddle
3005

3006 3007 3008
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
3009 3010 3011
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
3012
    """
3013

Z
zyfncg 已提交
3014
    def __check_input(x, offset, axis1, axis2):
3015 3016 3017 3018 3019 3020
        check_dtype(
            x.dtype,
            'Input',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'trace',
        )
L
Li Fuchen 已提交
3021

3022
        input_shape = list(x.shape)
3023 3024 3025 3026
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "But received Input x's dimensional: %s.\n" % len(input_shape)
        )
L
Li Fuchen 已提交
3027

3028 3029
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
3030

3031 3032
        assert (0 <= axis1_) and (axis1_ < len(input_shape)), (
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
3033
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
3034
        )
L
Li Fuchen 已提交
3035

3036 3037
        assert (0 <= axis2_) and (axis2_ < len(input_shape)), (
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
3038
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
3039
        )
L
Li Fuchen 已提交
3040

3041 3042 3043 3044
        assert axis1_ != axis2_, (
            "axis1 and axis2 cannot be the same axis."
            "But received axis1 = %d, axis2 = %d\n" % (axis1, axis2)
        )
L
Li Fuchen 已提交
3045

H
hong 已提交
3046
    if in_dygraph_mode():
3047
        return _C_ops.trace(x, offset, axis1, axis2)
3048 3049
    else:
        __check_input(x, offset, axis1, axis2)
H
hong 已提交
3050

3051 3052
        helper = LayerHelper('trace', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
3053

3054 3055 3056 3057 3058 3059 3060
        helper.append_op(
            type='trace',
            inputs={'Input': [x]},
            attrs={'offset': offset, 'axis1': axis1, 'axis2': axis2},
            outputs={'Out': [out]},
        )
        return out
L
Li Fuchen 已提交
3061

3062

3063 3064
def diagonal(x, offset=0, axis1=0, axis2=1, name=None):
    """
3065
    Computes the diagonals of the input tensor x.
3066 3067

    If ``x`` is 2D, returns the diagonal.
3068
    If ``x`` has larger dimensions, diagonals be taken from the 2D planes specified by axis1 and axis2.
3069 3070 3071 3072 3073 3074 3075
    By default, the 2D planes formed by the first and second axis of the input tensor x.

    The argument ``offset`` determines where diagonals are taken from input tensor x:

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
3076

3077
    Args:
3078 3079 3080 3081 3082
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be bool, int32, int64, float16, float32, float64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125

    Returns:
        Tensor: a partial view of input tensor in specify two dimensions, the output data type is the same as input data type.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([2,2,3],'float32')
            print(x)
            # Tensor(shape=[2, 2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[[0.45661032, 0.03751532, 0.90191704],
            #          [0.43760979, 0.86177313, 0.65221709]],

            #         [[0.17020577, 0.00259554, 0.28954273],
            #          [0.51795638, 0.27325270, 0.18117726]]])

            out1 = paddle.diagonal(x)
            print(out1)
            #Tensor(shape=[3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.51795638],
            #        [0.03751532, 0.27325270],
            #        [0.90191704, 0.18117726]])

            out2 = paddle.diagonal(x, offset=0, axis1=2, axis2=1)
            print(out2)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])

            out3 = paddle.diagonal(x, offset=1, axis1=0, axis2=1)
            print(out3)
            #Tensor(shape=[3, 1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.43760979],
            #        [0.86177313],
            #        [0.65221709]])

            out4 = paddle.diagonal(x, offset=0, axis1=1, axis2=2)
            print(out4)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])
3126

3127
    """
J
Jiabin Yang 已提交
3128
    if in_dygraph_mode():
3129
        return _C_ops.diagonal(x, offset, axis1, axis2)
J
Jiabin Yang 已提交
3130
    else:
W
wanghuancoder 已提交
3131

3132 3133 3134 3135
        def __check_input(x, offset, axis1, axis2):
            check_dtype(
                x.dtype,
                'Input',
3136 3137 3138 3139 3140 3141 3142 3143 3144
                [
                    'bool',
                    'int32',
                    'int64',
                    'float16',
                    'uint16',
                    'float32',
                    'float64',
                ],
3145 3146
                'diagonal',
            )
3147

3148 3149 3150 3151 3152
            input_shape = list(x.shape)
            assert len(input_shape) >= 2, (
                "The x must be at least 2-dimensional, "
                "But received Input x's dimensional: %s.\n" % len(input_shape)
            )
3153

3154 3155
            axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
            axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
3156

3157 3158 3159 3160
            assert axis1_ < len(input_shape), (
                "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
                % (-(len(input_shape)), len(input_shape) - 1, axis1)
            )
3161

3162 3163 3164 3165
            assert axis2_ < len(input_shape), (
                "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
                % (-(len(input_shape)), len(input_shape) - 1, axis2)
            )
3166

3167 3168 3169 3170
            assert axis1_ != axis2_, (
                "axis1 and axis2 cannot be the same axis."
                "But received axis1 = %d, axis2 = %d\n" % (axis1, axis2)
            )
3171

3172 3173 3174
        __check_input(x, offset, axis1, axis2)
        helper = LayerHelper('diagonal', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
3175

3176 3177 3178 3179 3180 3181 3182
        helper.append_op(
            type='diagonal',
            inputs={'Input': [x]},
            attrs={'offset': offset, 'axis1': axis1, 'axis2': axis2},
            outputs={'Out': [out]},
        )
        return out
3183 3184


W
WuHaobo 已提交
3185
def kron(x, y, name=None):
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
    r"""
    Compute the Kronecker product of two tensors, a
    composite tensor made of blocks of the second tensor scaled by the
    first.
    Assume that the rank of the two tensors, $X$ and $Y$
    are the same, if necessary prepending the smallest with ones. If the
    shape of $X$ is [$r_0$, $r_1$, ..., $r_N$] and the shape of $Y$ is
    [$s_0$, $s_1$, ..., $s_N$], then the shape of the output tensor is
    [$r_{0}s_{0}$, $r_{1}s_{1}$, ..., $r_{N}s_{N}$]. The elements are
    products of elements from $X$ and $Y$.
    The equation is:
    $$
    output[k_{0}, k_{1}, ..., k_{N}] = X[i_{0}, i_{1}, ..., i_{N}] *
    Y[j_{0}, j_{1}, ..., j_{N}]
    $$
    where
    $$
    k_{t} = i_{t} * s_{t} + j_{t}, t = 0, 1, ..., N
    $$
F
Feiyu Chan 已提交
3205 3206

    Args:
3207 3208
        x (Tensor): the fist operand of kron op, data type: float16, float32, float64, int32 or int64.
        y (Tensor): the second operand of kron op, data type: float16, float32, float64, int32 or int64. Its data type should be the same with x.
3209
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
F
Feiyu Chan 已提交
3210 3211

    Returns:
3212
        Tensor: The output of kron, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
3213 3214 3215

    Examples:
        .. code-block:: python
3216

3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
            import paddle
            x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            out = paddle.kron(x, y)
            print(out)
            #        [[1, 2, 3, 2, 4, 6],
            #         [ 4,  5,  6,  8, 10, 12],
            #         [ 7,  8,  9, 14, 16, 18],
            #         [ 3,  6,  9,  4,  8, 12],
            #         [12, 15, 18, 16, 20, 24],
            #         [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
3228
    """
3229
    if in_dygraph_mode():
3230 3231 3232 3233 3234 3235 3236 3237 3238
        return _legacy_C_ops.kron(x, y)
    else:
        helper = LayerHelper('kron', **locals())
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron'
        )
        check_variable_and_dtype(
            y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron'
        )
F
Feiyu Chan 已提交
3239

3240 3241 3242 3243 3244
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
        return out
3245 3246 3247 3248


def cumsum(x, axis=None, dtype=None, name=None):
    """
3249 3250
    The cumulative sum of the elements along a given axis.

3251
    Note:
3252
        The first element of the result is the same as the first element of the input.
3253 3254

    Args:
3255
        x (Tensor): The input tensor needed to be cumsumed.
3256
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
3257
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
3258 3259 3260
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3261
        Tensor, the result of cumsum operator.
3262 3263 3264

    Examples:
        .. code-block:: python
3265

3266
            import paddle
3267

3268 3269
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
3270 3271 3272 3273 3274 3275 3276 3277

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
3278

3279 3280 3281 3282 3283 3284 3285
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
3286
            # paddle.float64
3287 3288 3289 3290 3291 3292
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3293
        x = cast(x, dtype)
3294

H
hong 已提交
3295
    if in_dygraph_mode():
3296 3297
        if axis is None:
            axis = -1
3298
        return _C_ops.cumsum(x, axis, flatten, False, False)
3299
    else:
3300 3301 3302
        check_variable_and_dtype(
            x,
            'x',
3303
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
3304 3305
            'cumsum',
        )
3306 3307
        check_type(x, 'x', (Variable), 'cumsum')
        locals_var = locals().copy()
3308
        kwargs = {}
3309 3310 3311 3312 3313
        for name, val in locals_var.items():
            if val is not None:
                kwargs[name] = val
        _cum_sum_ = generate_layer_fn('cumsum')
        return _cum_sum_(**kwargs)
G
guofei 已提交
3314

3315 3316 3317

def logcumsumexp(x, axis=None, dtype=None, name=None):
    r"""
3318
    The logarithm of the cumulative summation of the exponentiation of the elements along a given axis.
3319 3320 3321 3322 3323 3324

    For summation index j given by `axis` and other indices i, the result is

    .. math::

        logcumsumexp(x)_{ij} = log \sum_{i=0}^{j}exp(x_{ij})
3325

3326 3327 3328 3329 3330 3331
    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor.
        axis (int, optional): The dimension to do the operation along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
3332
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
3333 3334 3335
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3336
        Tensor, the result of logcumsumexp operator.
3337 3338 3339

    Examples:
        .. code-block:: python
3340

3341
            import paddle
3342

3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
            data = paddle.arange(12, dtype='float64')
            data = paddle.reshape(data, (3, 4))

            y = paddle.logcumsumexp(data)
            # [ 0.         1.3132617  2.4076061  3.4401898  4.4519143  5.4561934
            #   6.4577627  7.4583397  8.458551   9.45863   10.458658  11.458669 ]

            y = paddle.logcumsumexp(data, axis=0)
            # [[ 0.        1.        2.        3.      ]
            #  [ 4.01815   5.01815   6.01815   7.01815 ]
            #  [ 8.018479  9.018479 10.018479 11.018479]]
3354

3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
            y = paddle.logcumsumexp(data, axis=-1)
            # [[ 0.         1.3132617  2.4076061  3.4401898]
            #  [ 4.         5.3132615  6.407606   7.44019  ]
            #  [ 8.         9.313262  10.407606  11.440189 ]]

            y = paddle.logcumsumexp(data, dtype='float64')
            print(y.dtype)
            # paddle.float64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = cast(x, dtype)

    if in_dygraph_mode():
3372 3373
        if axis is None:
            axis = -1
3374
        return _C_ops.logcumsumexp(x, axis, flatten, False, False)
3375 3376
    else:
        check_variable_and_dtype(
3377
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], "logcumsumexp"
3378
        )
3379

3380 3381 3382 3383 3384 3385 3386 3387 3388
        helper = LayerHelper('logcumsumexp', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logcumsumexp',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'axis': axis, 'flatten': flatten},
        )
        return out
3389 3390


H
hlygit66666 已提交
3391 3392 3393 3394
def cumprod(x, dim=None, dtype=None, name=None):
    """
    Compute the cumulative product of the input tensor x along a given dimension dim.

3395 3396
    Note:
        The first element of the result is the same as the first element of the input.
H
hlygit66666 已提交
3397 3398 3399

    Args:
        x (Tensor): the input tensor need to be cumproded.
Z
Zman 已提交
3400 3401 3402 3403 3404 3405 3406
        dim (int, optional): the dimension along which the input tensor will be accumulated. It need to be in the range of [-x.rank, x.rank),
                    where x.rank means the dimensions of the input tensor x and -1 means the last dimension.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64, complex64,
                    complex128. If specified, the input tensor is casted to dtype before the operation is performed.
                    This is useful for preventing data type overflows. The default value is None.
        name (str, optional): Name for the operation (optional, default is None). For more information,
                    please refer to :ref:`api_guide_Name`.
H
hlygit66666 已提交
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442

    Returns:
        Tensor, the result of cumprod operator.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
            # [[ 0  1  2  3 ]
            #  [ 4  5  6  7 ]
            #  [ 8  9  10 11]]

            y = paddle.cumprod(data, dim=0)
            # [[ 0  1   2   3]
            #  [ 0  5  12  21]
            #  [ 0 45 120 231]]

            y = paddle.cumprod(data, dim=-1)
            # [[ 0   0   0    0]
            #  [ 4  20 120  840]
            #  [ 8  72 720 7920]]

            y = paddle.cumprod(data, dim=1, dtype='float64')
            # [[ 0.   0.   0.    0.]
            #  [ 4.  20. 120.  840.]
            #  [ 8.  72. 720. 7920.]]

            print(y.dtype)
            # paddle.float64

    """

    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3443
        x = cast(x, dtype)
H
hlygit66666 已提交
3444

3445
    if in_dygraph_mode():
3446
        return _C_ops.cumprod(x, dim)
3447 3448 3449 3450
    else:
        check_variable_and_dtype(
            x,
            "x",
3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
            [
                'complex64',
                'complex128',
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
            ],
3461 3462 3463
            'cumprod',
        )
        check_type(dim, 'dim', int, 'cumprod')
H
hlygit66666 已提交
3464

3465 3466 3467 3468 3469 3470 3471 3472 3473
        helper = LayerHelper('cumprod', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='cumprod',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': dim},
        )
        return out
H
hlygit66666 已提交
3474

3475

J
Jack Zhou 已提交
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
3492

3493
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3494
            out = paddle.isfinite(x)
N
Noel 已提交
3495
            print(out)  # [False  True  True False  True False False]
J
Jack Zhou 已提交
3496
    """
H
hong 已提交
3497
    if in_dygraph_mode():
3498
        return _C_ops.isfinite(x)
3499 3500 3501 3502 3503
    else:
        helper = LayerHelper("isfinite_v2", **locals())
        check_variable_and_dtype(
            x,
            'x',
3504 3505 3506 3507 3508 3509 3510 3511
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
3512 3513 3514 3515 3516 3517 3518
            'isfinite',
        )
        out = helper.create_variable_for_type_inference('bool')
        helper.append_op(
            type="isfinite_v2", inputs={"X": x}, outputs={"Out": out}
        )
        return out
J
Jack Zhou 已提交
3519

3520

J
Jack Zhou 已提交
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3537

3538
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3539
            out = paddle.isinf(x)
N
Noel 已提交
3540
            print(out)  # [ True False False  True False False False]
J
Jack Zhou 已提交
3541
    """
H
hong 已提交
3542
    if in_dygraph_mode():
3543
        return _C_ops.isinf(x)
3544 3545 3546
    else:
        helper = LayerHelper("isinf_v2", **locals())
        check_variable_and_dtype(
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
            'isinf',
3558 3559 3560 3561
        )
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
        return out
J
Jack Zhou 已提交
3562

3563

J
Jack Zhou 已提交
3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
3580

3581
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3582
            out = paddle.isnan(x)
N
Noel 已提交
3583
            print(out)  # [False False False False False  True  True]
J
Jack Zhou 已提交
3584
    """
H
hong 已提交
3585
    if in_dygraph_mode():
3586
        return _C_ops.isnan(x)
3587 3588 3589
    else:
        helper = LayerHelper("isnan_v2", **locals())
        check_variable_and_dtype(
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
            'isnan',
3601 3602 3603 3604
        )
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
        return out
J
Jack Zhou 已提交
3605 3606


G
guofei 已提交
3607 3608 3609 3610 3611
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
3612
        x (Tensor): The input tensor, its data type should be float32, float64, int32, int64.
3613 3614 3615
        axis (int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`,
            multiply all elements of `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`,
G
guofei 已提交
3616
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
3617
        keepdim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result
3618
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
3619 3620 3621
        dtype (str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64,
            int32, int64. If specified, the input tensor is casted to dtype before operator performed.
            This is very useful for avoiding data type overflows. The default value is None, the dtype
G
guofei 已提交
3622
            of output is the same as input Tensor `x`.
3623
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
G
guofei 已提交
3624 3625 3626

    Returns:
        Tensor, result of product on the specified dim of input tensor.
3627

G
guofei 已提交
3628 3629 3630 3631 3632 3633
    Examples:
        .. code-block:: python

            import paddle

            # the axis is a int element
3634 3635
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
            out1 = paddle.prod(x)
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            # [0.02 0.06 0.3  0.63]

            out4 = paddle.prod(x, 0, keepdim=True)
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            # [0 0 0 0]

            # the axis is list
3652 3653
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
3654 3655 3656 3657 3658 3659 3660 3661
            out6 = paddle.prod(y, [0, 1])
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            # [  24. 1680.]

    """
    if dtype is not None:
3662 3663 3664
        check_dtype(
            dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod'
        )
G
guofei 已提交
3665
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3666
            x = cast(x, dtype)
G
guofei 已提交
3667

3668
    reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
3669
    if in_dygraph_mode():
3670
        return _C_ops.prod(x, axis, keepdim, reduce_all)
3671 3672 3673 3674 3675 3676 3677
    else:
        helper = LayerHelper('reduce_prod', **locals())
        check_variable_and_dtype(
            x,
            'x/input',
            ['float32', 'float64', 'int32', 'int64'],
            'reduce_prod',
3678
        )
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
        helper.append_op(
            type='reduce_prod',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
W
WangXi 已提交
3689 3690 3691 3692


def sign(x, name=None):
    """
3693
    Returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
W
WangXi 已提交
3694 3695

    Args:
3696 3697
        x (Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
WangXi 已提交
3698 3699 3700 3701 3702 3703 3704 3705 3706

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

3707
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
3708 3709 3710
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
H
hong 已提交
3711
    if in_dygraph_mode():
3712
        return _C_ops.sign(x)
3713 3714
    else:
        check_variable_and_dtype(
C
chenxujun 已提交
3715
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'sign'
3716 3717 3718
        )
        helper = LayerHelper("sign", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
hong 已提交
3719

3720
        helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})
W
WangXi 已提交
3721

3722
        return out
W
WangXi 已提交
3723 3724 3725


def tanh(x, name=None):
3726
    r"""
W
WangXi 已提交
3727 3728 3729
    Tanh Activation Operator.

    .. math::
3730
        out = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
3731 3732

    Args:
3733
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type bfloat16, float32, float64 or float16.
W
WangXi 已提交
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

3745
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
3746
            out = paddle.tanh(x)
N
Noel 已提交
3747
            print(out)
W
WangXi 已提交
3748 3749
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
H
hong 已提交
3750
    if in_dygraph_mode():
3751
        return _C_ops.tanh(x)
3752 3753
    else:
        check_variable_and_dtype(
3754
            x, 'x', ['uint16', 'float16', 'float32', 'float64'], 'tanh'
3755 3756 3757 3758 3759 3760
        )
        check_type(x, 'x', (Variable), 'tanh')
        helper = LayerHelper('tanh', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
        return out
S
Steffy-zxf 已提交
3761

3762

3763
@inplace_apis_in_dygraph_only
3764 3765 3766 3767 3768
def tanh_(x, name=None):
    r"""
    Inplace version of ``tanh`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_tanh`.
    """
3769
    return _C_ops.tanh_(x)
3770 3771


S
Steffy-zxf 已提交
3772 3773
def increment(x, value=1.0, name=None):
    """
3774
    The API is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
S
Steffy-zxf 已提交
3775 3776 3777 3778
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
3779
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
S
Steffy-zxf 已提交
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
H
hong 已提交
3795
    if in_dygraph_mode():
3796
        return _C_ops.increment_(x, value)
3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
    else:
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'increment'
        )
        helper = LayerHelper("increment", **locals())
        helper.append_op(
            type='increment',
            inputs={'X': [x]},
            outputs={'Out': [x]},
            attrs={'step': float(value)},
        )
        return x
3809 3810 3811 3812


def all(x, axis=None, keepdim=False, name=None):
    """
3813
    Computes the ``logical and`` of tensor elements over the given dimension.
3814 3815 3816 3817 3818

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
3819
            Tensor with a single element, otherwise must be in the
3820 3821 3822 3823 3824 3825
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
3826
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3827 3828 3829 3830 3831 3832 3833 3834

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3835

N
Noel 已提交
3836
            # x is a bool Tensor with following elements:
3837 3838
            #    [[True, False]
            #     [True, True]]
C
Chen Long 已提交
3839
            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
3840
            print(x)
S
syyxsxx 已提交
3841
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
3842

3843 3844 3845
            # out1 should be [False]
            out1 = paddle.all(x)  # [False]
            print(out1)
C
Chen Long 已提交
3846

3847 3848 3849
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
C
Chen Long 已提交
3850 3851

            # keepdim=False, out3 should be [False, True], out.shape should be (2,)
3852 3853
            out3 = paddle.all(x, axis=-1)  # [False, True]
            print(out3)
C
Chen Long 已提交
3854 3855 3856

            # keepdim=True, out4 should be [[False], [True]], out.shape should be (2,1)
            out4 = paddle.all(x, axis=1, keepdim=True) # [[False], [True]]
3857
            print(out4)
3858

3859
    """
3860
    if in_dygraph_mode():
3861
        return _C_ops.all(x, axis, keepdim)
3862 3863 3864 3865 3866 3867 3868 3869
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        attrs = {
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all,
        }
        check_variable_and_dtype(x, 'x', ['bool'], 'all')
3870

3871
        check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')
3872

3873 3874 3875 3876 3877 3878 3879 3880 3881
        helper = LayerHelper('all', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_all',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
3882 3883 3884 3885


def any(x, axis=None, keepdim=False, name=None):
    """
C
Chen Long 已提交
3886
    Computes the ``logical or`` of tensor elements over the given dimension, and return the result.
3887 3888 3889 3890 3891

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
3892
            Tensor with a single element, otherwise must be in the
3893 3894 3895 3896 3897 3898
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
3899
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3900 3901 3902 3903 3904 3905 3906 3907

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3908 3909 3910

            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
            x = paddle.assign(x)
3911
            print(x)
S
syyxsxx 已提交
3912
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
3913 3914 3915 3916
            # x is a bool Tensor with following elements:
            #    [[True, False]
            #     [True, True]]

3917 3918 3919
            # out1 should be [True]
            out1 = paddle.any(x)  # [True]
            print(out1)
C
Chen Long 已提交
3920

3921 3922
            # out2 should be [True, True]
            out2 = paddle.any(x, axis=0)  # [True, True]
3923
            print(out2)
C
Chen Long 已提交
3924 3925

            # keepdim=False, out3 should be [True, True], out.shape should be (2,)
3926
            out3 = paddle.any(x, axis=-1)  # [True, True]
3927
            print(out3)
C
Chen Long 已提交
3928 3929 3930

            # keepdim=True, result should be [[True], [True]], out.shape should be (2,1)
            out4 = paddle.any(x, axis=1, keepdim=True)  # [[True], [True]]
3931 3932
            print(out4)

3933
    """
3934
    if in_dygraph_mode():
3935
        return _C_ops.any(x, axis, keepdim)
3936 3937 3938 3939 3940 3941 3942
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        attrs = {
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all,
        }
3943

3944
        check_variable_and_dtype(x, 'x', ['bool'], 'any')
3945

3946
        check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')
3947

3948 3949 3950 3951 3952 3953 3954 3955 3956
        helper = LayerHelper('any', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_any',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
L
Leo Chen 已提交
3957

3958

L
Leo Chen 已提交
3959 3960
def broadcast_shape(x_shape, y_shape):
    """
I
Infinity_lee 已提交
3961 3962 3963 3964 3965 3966
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape.

    Note:
        If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
Leo Chen 已提交
3967 3968 3969 3970

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
3971

L
Leo Chen 已提交
3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

            import paddle

            shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            # [2, 3, 3]
3983

L
Leo Chen 已提交
3984 3985 3986 3987 3988 3989
            # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            # ValueError (terminated with error message).

    """

    return core.broadcast_shape(x_shape, y_shape)
3990

3991

3992 3993 3994 3995 3996
def conj(x, name=None):
    r"""
    This function computes the conjugate of the Tensor elementwisely.

    Args:
3997
        x (Tensor): The input Tensor which hold the complex numbers.
3998
            Optional data types are:float16, complex64, complex128, float32, float64, int32 or int64.
3999
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4000 4001

    Returns:
C
Chen Long 已提交
4002
        out (Tensor): The conjugate of input. The shape and data type is the same with input. If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.
4003 4004 4005 4006 4007

    Examples:
        .. code-block:: python

          import paddle
4008

4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
          data=paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1+1j), (2+2j), (3+3j)],
          #        [(4+4j), (5+5j), (6+6j)]])

          conj_data=paddle.conj(data)
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1-1j), (2-2j), (3-3j)],
          #        [(4-4j), (5-5j), (6-6j)]])

    """
H
hong 已提交
4020
    if in_dygraph_mode():
4021
        return _C_ops.conj(x)
4022 4023 4024 4025
    else:
        check_variable_and_dtype(
            x,
            "x",
4026 4027 4028 4029
            [
                'complex64',
                'complex128',
                'float16',
4030
                'uint16',
4031 4032 4033 4034 4035
                'float32',
                'float64',
                'int32',
                'int64',
            ],
4036 4037
            'conj',
        )
H
hong 已提交
4038

4039 4040 4041 4042
        helper = LayerHelper('conj', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
4043

4044 4045
        helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
        return out
4046

4047

Z
zyfncg 已提交
4048 4049 4050 4051 4052 4053 4054 4055 4056
def digamma(x, name=None):
    r"""
    Calculates the digamma of the given input tensor, element-wise.

    .. math::
        Out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
4057
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zyfncg 已提交
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
    Returns:
        Tensor, the digamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([[1, 1.5], [0, -2.2]], dtype='float32')
            res = paddle.digamma(data)
            print(res)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[-0.57721591,  0.03648996],
            #        [ nan       ,  5.32286835]])
    """

J
Jiabin Yang 已提交
4074
    if in_dygraph_mode():
4075
        return _C_ops.digamma(x)
J
Jiabin Yang 已提交
4076
    else:
4077 4078 4079
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'digamma'
        )
4080 4081 4082 4083
        helper = LayerHelper('digamma', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='digamma', inputs={'X': x}, outputs={'Out': out})
        return out
Z
zyfncg 已提交
4084

4085

4086 4087 4088 4089 4090 4091 4092 4093 4094
def lgamma(x, name=None):
    r"""
    Calculates the lgamma of the given input tensor, element-wise.

    This operator performs elementwise lgamma for input $X$.
    :math:`out = log\Gamma(x)`


    Args:
4095
        x (Tensor): Input Tensor. Must be one of the following types: float16, float32, float64, uint16.
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the lgamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.lgamma(x)
            print(out)
            # [1.31452441, 1.76149750, 2.25271273, 1.09579802]
    """
    if in_dygraph_mode():
        return _C_ops.lgamma(x)
4113
    else:
4114 4115 4116
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'lgamma'
        )
4117 4118 4119 4120
        helper = LayerHelper('lgamma', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='lgamma', inputs={'X': x}, outputs={'Out': out})
        return out
4121 4122


4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
def neg(x, name=None):
    """
    This function computes the negative of the Tensor elementwisely.

    Args:
        x (Tensor): Input of neg operator, an N-D Tensor, with data type float32, float64, int8, int16, int32, or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The negative of input Tensor. The shape and data type are the same with input Tensor.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.neg(x)
            print(out)
            # [0.4 0.2 -0.1 -0.3]
    """

4145 4146 4147
    return scale(
        x, scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name
    )
4148

R
ronnywang 已提交
4149

4150
def atan2(x, y, name=None):
R
ronnywang 已提交
4151
    r"""
4152
    Element-wise arctangent of x/y with consideration of the quadrant.
R
ronnywang 已提交
4153 4154 4155 4156

    Equation:
        .. math::

4157 4158 4159 4160 4161 4162 4163 4164
            atan2(x,y)=\left\{\begin{matrix}
            & tan^{-1}(\frac{x}{y}) & y > 0 \\
            & tan^{-1}(\frac{x}{y}) + \pi & x>=0, y < 0 \\
            & tan^{-1}(\frac{x}{y}) - \pi & x<0, y < 0 \\
            & +\frac{\pi}{2} & x>0, y = 0 \\
            & -\frac{\pi}{2} & x<0, y = 0 \\
            &\text{undefined} & x=0, y = 0
            \end{matrix}\right.
R
ronnywang 已提交
4165 4166

    Args:
4167 4168
        x (Tensor): An N-D Tensor, the data type is int32, int64, float16, float32, float64.
        y (Tensor): An N-D Tensor, must have the same type as `x`.
R
ronnywang 已提交
4169 4170 4171 4172 4173 4174 4175 4176
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float64 when the input data type is int).

    Examples:
        .. code-block:: python

4177
            import paddle
R
ronnywang 已提交
4178

4179 4180 4181
            x = paddle.to_tensor([-1, +1, +1, -1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  1,  1, -1])
R
ronnywang 已提交
4182

4183 4184 4185
            y = paddle.to_tensor([-1, -1, +1, +1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  -1,  1, 1])
R
ronnywang 已提交
4186

4187 4188 4189
            out = paddle.atan2(x, y)
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-2.35619450,  2.35619450,  0.78539819, -0.78539819])
R
ronnywang 已提交
4190 4191 4192

    """

J
Jiabin Yang 已提交
4193
    if in_dygraph_mode():
4194
        return _C_ops.atan2(x, y)
R
ronnywang 已提交
4195
    else:
4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
        check_variable_and_dtype(
            x,
            'x',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'atan2',
        )
        check_variable_and_dtype(
            y,
            'y',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'atan2',
        )
R
ronnywang 已提交
4208

4209 4210 4211 4212 4213
        helper = LayerHelper('atan2', **locals())
        inputs = {'X1': x, 'X2': y}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='atan2', inputs=inputs, outputs={'Out': out})
        return out
A
andyjpaddle 已提交
4214

4215

W
wangzhen38 已提交
4216 4217 4218 4219 4220
def logit(x, eps=None, name=None):
    r"""
    This function generates a new tensor with the logit of the elements of input x. x is clamped to [eps, 1-eps] when eps is not zero. When eps is zero and x < 0 or x > 1, the function will yields NaN.

    .. math::
4221

W
wangzhen38 已提交
4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
        logit(x) = ln(\frac{x}{1 - x})

    where

    .. math::

        x_i=
            \left\{\begin{array}{rcl}
                x_i & &\text{if } eps == Default \\
                eps & &\text{if } x_i < eps \\
                x_i & &\text{if } eps <= x_i <= 1-eps \\
                1-eps & &\text{if } x_i > 1-eps
            \end{array}\right.

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        eps (float, optional):  the epsilon for input clamp bound. Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out(Tensor): A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0.2635, 0.0106, 0.2780, 0.2097, 0.8095])
            out1 = paddle.logit(x)
            print(out1)
4253
            # [-1.0277, -4.5365, -0.9544, -1.3269,  1.4468]
W
wangzhen38 已提交
4254 4255

    """
4256
    if eps is None:
W
wangzhen38 已提交
4257
        eps = 0.0
4258
    if in_dygraph_mode():
4259
        return _C_ops.logit(x, eps)
4260 4261
    else:
        check_variable_and_dtype(
4262
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'logit'
4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
        )
        helper = LayerHelper("logit", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logit',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'eps': eps},
        )
        return out
W
wangzhen38 已提交
4273

4274

4275 4276 4277 4278 4279 4280 4281 4282 4283 4284
def lerp(x, y, weight, name=None):
    r"""
    Does a linear interpolation between x and y based on weight.

    Equation:
        .. math::

            lerp(x, y, weight) = x + weight * (y - x).

    Args:
4285 4286 4287
        x (Tensor): An N-D Tensor with starting points, the data type is float16, float32, float64.
        y (Tensor): An N-D Tensor with ending points, the data type is float16, float32, float64.
        weight (float|Tensor): The weight for the interpolation formula. When weight is Tensor, the data type is float16, float32, float64.
4288 4289 4290 4291 4292 4293 4294 4295 4296
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Example:
        .. code-block:: python

            import paddle
4297

4298 4299 4300
            x = paddle.arange(1., 5., dtype='float32')
            y = paddle.empty([4], dtype='float32')
            y.fill_(10.)
4301
            out = paddle.lerp(x, y, 0.5)
4302
            # out: [5.5, 6., 6.5, 7.]
4303 4304

    """
4305 4306
    if isinstance(weight, float):
        weight = paddle.full(shape=[], fill_value=weight, dtype=x.dtype)
H
hong 已提交
4307

4308
    if in_dygraph_mode():
4309
        return _C_ops.lerp(x, y, weight)
4310 4311
    else:
        check_variable_and_dtype(
4312 4313 4314 4315 4316 4317 4318
            x, 'x', ['float16', 'float32', 'float64'], 'lerp'
        )
        check_variable_and_dtype(
            y, 'y', ['float16', 'float32', 'float64'], 'lerp'
        )
        check_variable_and_dtype(
            weight, 'weight', ['float16', 'float32', 'float64'], 'lerp'
4319
        )
4320

4321 4322 4323 4324 4325
        helper = LayerHelper('lerp', **locals())
        inputs = {'X': x, 'Y': y, 'Weight': weight}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='lerp', inputs=inputs, outputs={'Out': out})
        return out
4326

4327

4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
@inplace_apis_in_dygraph_only
def lerp_(x, y, weight, name=None):
    r"""
    Inplace version of ``lerp`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_lerp`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
    if isinstance(weight, float):
        weight = paddle.to_tensor([weight], dtype=x.dtype)
    elif isinstance(weight, (paddle.Tensor, Variable)):
        out_shape = broadcast_shape(out_shape, weight.shape)
    if out_shape != x.shape:
4341
        raise ValueError(
4342 4343 4344 4345
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
4346
    return _C_ops.lerp_(x, y, weight)
4347

4348

W
wuhuanzhou 已提交
4349 4350
def erfinv(x, name=None):
    r"""
4351
    The inverse error function of x. Please refer to :ref:`api_paddle_erf`
W
wuhuanzhou 已提交
4352 4353 4354 4355 4356 4357 4358 4359 4360 4361

        .. math::

            erfinv(erf(x)) = x.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4362
        out (Tensor), an N-D Tensor, the shape and data type is the same with input.
W
wuhuanzhou 已提交
4363 4364 4365 4366 4367

    Example:
        .. code-block:: python

            import paddle
4368

W
wuhuanzhou 已提交
4369 4370 4371 4372 4373
            x = paddle.to_tensor([0, 0.5, -1.], dtype="float32")
            out = paddle.erfinv(x)
            # out: [0, 0.4769, -inf]

    """
H
hong 已提交
4374
    if in_dygraph_mode():
4375
        return _C_ops.erfinv(x)
4376 4377 4378 4379 4380 4381
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'erfinv')
        helper = LayerHelper('erfinv', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='erfinv', inputs={'X': x}, outputs={'Out': out})
        return out
W
wuhuanzhou 已提交
4382

4383

W
wuhuanzhou 已提交
4384 4385 4386 4387 4388 4389 4390
@inplace_apis_in_dygraph_only
def erfinv_(x, name=None):
    r"""
    Inplace version of ``erfinv`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_erfinv`.
    """
    check_type(x, 'x', (paddle.Tensor, Variable), 'erfinv')
4391
    return _C_ops.erfinv_(x)
W
wuhuanzhou 已提交
4392

4393

4394
def rad2deg(x, name=None):
4395
    r"""
4396
    Convert each of the elements of input x from angles in radians to degrees.
4397

4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
    Equation:
        .. math::

            rad2deg(x)=180/ \pi * x

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
4414
            import math
4415

4416 4417 4418 4419 4420 4421 4422
            x1 = paddle.to_tensor([3.142, -3.142, 6.283, -6.283, 1.570, -1.570])
            result1 = paddle.rad2deg(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [180.02334595, -180.02334595,  359.98937988, -359.98937988,
            #           9.95437622 , -89.95437622])

4423
            x2 = paddle.to_tensor(math.pi/2)
4424 4425 4426 4427
            result2 = paddle.rad2deg(x2)
            print(result2)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [90.])
4428

4429 4430 4431
            x3 = paddle.to_tensor(1)
            result3 = paddle.rad2deg(x3)
            print(result3)
4432 4433
            # Tensor(shape=[], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        57.29578018)
4434 4435
    """
    rad2deg_scale = 180 / np.pi
4436 4437 4438
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4439
        return _C_ops.scale(x, rad2deg_scale, 0.0, True)
4440
    else:
4441 4442 4443
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float32', 'float64'], 'rad2deg'
        )
4444 4445 4446
        helper = LayerHelper('rad2deg', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
4447
            out_cast = helper.create_variable_for_type_inference(
4448 4449 4450 4451 4452 4453 4454 4455
                dtype=paddle.float32
            )
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': paddle.float32},
            )
4456
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
4457 4458 4459 4460 4461 4462
        helper.append_op(
            type='scale',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'scale': rad2deg_scale},
        )
4463 4464
        return out

4465

4466
def deg2rad(x, name=None):
4467
    r"""
4468
    Convert each of the elements of input x from degrees to angles in radians.
4469

4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484
        .. math::

            deg2rad(x)=\pi * x / 180

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
4485

4486 4487 4488 4489 4490 4491 4492 4493 4494 4495
            x1 = paddle.to_tensor([180.0, -180.0, 360.0, -360.0, 90.0, -90.0])
            result1 = paddle.deg2rad(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274, -3.14159274,  6.28318548, -6.28318548,  1.57079637,
            #           -1.57079637])

            x2 = paddle.to_tensor(180)
            result2 = paddle.deg2rad(x2)
            print(result2)
4496 4497
            # Tensor(shape=[], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        3.14159274)
4498 4499
    """
    deg2rad_scale = np.pi / 180.0
4500 4501 4502
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4503
        return _C_ops.scale(x, deg2rad_scale, 0.0, True)
4504
    else:
4505 4506 4507
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float32', 'float64'], 'deg2rad'
        )
4508 4509 4510
        helper = LayerHelper('deg2rad', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
4511
            out_cast = helper.create_variable_for_type_inference(
4512 4513 4514 4515 4516 4517 4518 4519
                dtype=paddle.float32
            )
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': paddle.float32},
            )
4520
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
4521 4522 4523 4524 4525 4526
        helper.append_op(
            type='scale',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'scale': deg2rad_scale},
        )
4527
        return out
A
andyjpaddle 已提交
4528

4529

T
Tao Luo 已提交
4530 4531 4532 4533
def gcd(x, y, name=None):
    """
    Computes the element-wise greatest common divisor (GCD) of input |x| and |y|.
    Both x and y must have integer types.
4534

T
Tao Luo 已提交
4535 4536 4537
    Note:
        gcd(0,0)=0, gcd(0, y)=|y|

T
Tao Luo 已提交
4538 4539
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4540
    Args:
4541 4542
        x (Tensor): An N-D Tensor, the data type is int32,int64.
        y (Tensor): An N-D Tensor, the data type is int32,int64.
T
Tao Luo 已提交
4543 4544 4545 4546 4547 4548 4549 4550 4551
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
4552

T
Tao Luo 已提交
4553 4554 4555
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.gcd(x1, x2)
4556 4557
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        4)
T
Tao Luo 已提交
4558

T
Tao Luo 已提交
4559
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4560 4561 4562 4563 4564 4565
            paddle.gcd(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20, 1 , 2 , 1 , 4 , 5])

            x4 = paddle.to_tensor(0)
            paddle.gcd(x4, x2)
4566 4567
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        20)
T
Tao Luo 已提交
4568 4569

            paddle.gcd(x4, x4)
4570 4571
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        0)
4572

T
Tao Luo 已提交
4573 4574
            x5 = paddle.to_tensor(-20)
            paddle.gcd(x1, x5)
4575 4576
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        4)
T
Tao Luo 已提交
4577 4578 4579 4580 4581 4582 4583 4584
    """
    shape = paddle.broadcast_shape(x.shape, y.shape)
    x = paddle.broadcast_to(x, shape)
    y = paddle.broadcast_to(y, shape)
    x = paddle.abs(x)
    y = paddle.abs(y)

    def _gcd_cond_fn(x, y):
4585
        return paddle.any(y != 0)
T
Tao Luo 已提交
4586 4587 4588 4589 4590

    def _gcd_body_fn(x, y):
        # paddle.mod will raise an error when any element of y is 0. To avoid
        # that, we change those zeros to ones. Their values don't matter because
        # they won't be used.
4591
        y_not_equal_0 = y != 0
T
Tao Luo 已提交
4592
        y_safe = paddle.where(y_not_equal_0, y, paddle.ones(y.shape, y.dtype))
4593 4594 4595 4596 4597 4598 4599 4600
        x, y = (
            paddle.where(y_not_equal_0, y, x),
            paddle.where(
                y_not_equal_0,
                paddle.mod(x, y_safe),
                paddle.zeros(y.shape, y.dtype),
            ),
        )
T
Tao Luo 已提交
4601 4602
        return (paddle.where(x < y, y, x), paddle.where(x < y, x, y))

4603
    if in_dygraph_mode():
T
Tao Luo 已提交
4604 4605 4606 4607 4608
        while _gcd_cond_fn(x, y):
            x, y = _gcd_body_fn(x, y)

        return x
    else:
T
Tao Luo 已提交
4609 4610
        check_variable_and_dtype(x, 'x', ['int32', 'int64'], 'gcd')
        check_variable_and_dtype(y, 'y', ['int32', 'int64'], 'gcd')
T
Tao Luo 已提交
4611 4612 4613
        out, _ = paddle.static.nn.while_loop(_gcd_cond_fn, _gcd_body_fn, [x, y])
        return out

4614

T
Tao Luo 已提交
4615 4616 4617 4618
def lcm(x, y, name=None):
    """
    Computes the element-wise least common multiple (LCM) of input |x| and |y|.
    Both x and y must have integer types.
4619

T
Tao Luo 已提交
4620 4621 4622
    Note:
        lcm(0,0)=0, lcm(0, y)=0

T
Tao Luo 已提交
4623 4624
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4625
    Args:
4626 4627
        x (Tensor): An N-D Tensor, the data type is int32,int64.
        y (Tensor): An N-D Tensor, the data type is int32,int64.
T
Tao Luo 已提交
4628 4629 4630 4631 4632 4633 4634 4635 4636
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
4637

T
Tao Luo 已提交
4638 4639 4640
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.lcm(x1, x2)
4641 4642
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        60)
T
Tao Luo 已提交
4643

T
Tao Luo 已提交
4644
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4645 4646 4647 4648 4649 4650
            paddle.lcm(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0, 20, 20, 60, 20, 20])

            x4 = paddle.to_tensor(0)
            paddle.lcm(x4, x2)
4651 4652
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        0)
T
Tao Luo 已提交
4653 4654

            paddle.lcm(x4, x4)
4655 4656
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        0)
4657

T
Tao Luo 已提交
4658 4659
            x5 = paddle.to_tensor(-20)
            paddle.lcm(x1, x5)
4660 4661
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        60)
T
Tao Luo 已提交
4662 4663 4664 4665 4666 4667 4668
    """
    d = paddle.gcd(x, y)
    # paddle.mod will raise an error when any element of y is 0. To avoid
    # that, we change those zeros to ones. Their values don't matter because
    # they won't be used.
    d_equal_0 = paddle.equal(d, 0)
    d_safe = paddle.where(d_equal_0, paddle.ones(d.shape, d.dtype), d)
4669 4670 4671
    out = paddle.where(
        d_equal_0, paddle.zeros(d.shape, d.dtype), paddle.abs(x * y) // d_safe
    )
T
Tao Luo 已提交
4672 4673
    return out

4674

A
andyjpaddle 已提交
4675 4676 4677
def diff(x, n=1, axis=-1, prepend=None, append=None, name=None):
    r"""
    Computes the n-th forward difference along the given axis.
4678
    The first-order differences is computed by using the following formula:
A
andyjpaddle 已提交
4679 4680 4681 4682

    .. math::

        out[i] = x[i+1] - x[i]
4683 4684

    Higher-order differences are computed by using paddle.diff() recursively.
A
andyjpaddle 已提交
4685 4686 4687
    Only n=1 is currently supported.

    Args:
4688
        x (Tensor): The input tensor to compute the forward difference on, the data type is float16, float32, float64, bool, int32, int64.
4689
        n (int, optional): The number of times to recursively compute the difference.
A
andyjpaddle 已提交
4690
                          Only support n=1. Default:1
4691 4692
        axis (int, optional): The axis to compute the difference along. Default:-1
        prepend (Tensor, optional): The tensor to prepend to input along axis before computing the difference.
4693
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
4694
                                   and its shapes must match x's shape except on axis.
4695 4696
        append (Tensor, optional): The tensor to append to input along axis before computing the difference,
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
4697
                                   and its shapes must match x's shape except on axis.
4698
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4699

A
andyjpaddle 已提交
4700 4701 4702 4703 4704 4705 4706
    Returns:
        Tensor: The output tensor with same dtype with x.

    Examples:
        .. code-block:: python

            import paddle
4707

A
andyjpaddle 已提交
4708 4709 4710 4711 4712 4713 4714 4715 4716
            x = paddle.to_tensor([1, 4, 5, 2])
            out = paddle.diff(x)
            print(out)
            # out:
            # [3, 1, -3]

            y = paddle.to_tensor([7, 9])
            out = paddle.diff(x, append=y)
            print(out)
4717
            # out:
A
andyjpaddle 已提交
4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
            # [3, 1, -3, 5, 2]

            z = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            out = paddle.diff(z, axis=0)
            print(out)
            # out:
            # [[3, 3, 3]]
            out = paddle.diff(z, axis=1)
            print(out)
            # out:
            # [[1, 1], [1, 1]]
    """

    if axis < 0:
        axis = axis + len(x.shape)
    if axis > len(x.shape):
        axis = len(x.shape)
    if axis < 0:
        axis = 0
    dtype = x.dtype
    axes = [axis]
4739
    infer_flags = [1 for i in range(len(axes))]
4740
    if in_dygraph_mode():
A
andyjpaddle 已提交
4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True
        if has_pend:
4753
            new_input = _C_ops.concat(input_list, axis)
A
andyjpaddle 已提交
4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765
        else:
            new_input = x

        attrs_1 = ()
        attrs_2 = ()

        dim_len = new_input.shape[axis]

        starts_1 = [0]
        attrs_1 += ('starts', starts_1)
        ends_1 = [dim_len - 1]
        attrs_1 += ('ends', ends_1)
4766 4767 4768
        input_front = _C_ops.slice(
            new_input, axes, starts_1, ends_1, infer_flags, []
        )
A
andyjpaddle 已提交
4769 4770 4771 4772
        starts_2 = [1]
        attrs_2 += ('starts', starts_2)
        ends_2 = [dim_len]
        attrs_2 += ('ends', ends_2)
4773 4774 4775
        input_back = _C_ops.slice(
            new_input, axes, starts_2, ends_2, infer_flags, []
        )
4776 4777

        if x.dtype == paddle.bool:
4778
            return _C_ops.logical_xor(input_back, input_front)
4779
        else:
4780
            return _C_ops.subtract(input_back, input_front)
A
andyjpaddle 已提交
4781
    else:
4782
        check_variable_and_dtype(
4783 4784 4785 4786
            x,
            'x',
            ['float16', 'float32', 'float64', 'bool', 'int32', 'int64'],
            'diff',
4787
        )
A
andyjpaddle 已提交
4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803
        check_type(axis, 'axis', (int), 'diff')
        helper = LayerHelper('diff', **locals())
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True

        if has_pend:
            new_input = helper.create_variable_for_type_inference(dtype)
4804 4805 4806 4807 4808 4809
            helper.append_op(
                type='concat',
                inputs={'X': input_list},
                outputs={'Out': [new_input]},
                attrs={'axis': axis},
            )
A
andyjpaddle 已提交
4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
        else:
            new_input = x

        dim_len = new_input.shape[axis]
        attrs_1 = {'axes': axes}
        starts_1 = [0]
        ends_1 = [dim_len - 1]
        attrs_1['starts'] = starts_1
        attrs_1['ends'] = ends_1
        input_front = helper.create_variable_for_type_inference(dtype)
4820 4821 4822 4823 4824 4825
        helper.append_op(
            type='slice',
            inputs={'Input': new_input},
            attrs=attrs_1,
            outputs={'Out': input_front},
        )
A
andyjpaddle 已提交
4826 4827 4828 4829 4830 4831
        attrs_2 = {'axes': axes}
        starts_2 = [1]
        ends_2 = [dim_len]
        attrs_2['starts'] = starts_2
        attrs_2['ends'] = ends_2
        input_back = helper.create_variable_for_type_inference(dtype)
4832 4833 4834 4835 4836 4837
        helper.append_op(
            type='slice',
            inputs={'Input': new_input},
            attrs=attrs_2,
            outputs={'Out': input_back},
        )
A
andyjpaddle 已提交
4838 4839 4840

        if dtype == paddle.bool:
            out = helper.create_variable_for_type_inference(dtype)
4841 4842 4843 4844 4845
            helper.append_op(
                type='logical_xor',
                inputs={"X": input_back, "Y": input_front},
                outputs={"Out": out},
            )
A
andyjpaddle 已提交
4846
        else:
Z
zyfncg 已提交
4847
            out = paddle.tensor.math.subtract(input_back, input_front)
A
andyjpaddle 已提交
4848
        return out
F
Feiyu Chan 已提交
4849

4850

F
Feiyu Chan 已提交
4851 4852
def angle(x, name=None):
    r"""
4853
    Element-wise angle of complex numbers. For non-negative real numbers, the angle is 0 while
F
Feiyu Chan 已提交
4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865
    for negative real numbers, the angle is :math:`\pi`.

    Equation:
        .. math::

            angle(x)=arctan2(x.imag, x.real)

    Args:
        x (Tensor): An N-D Tensor, the data type is complex64, complex128, or float32, float64 .
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4866
        Tensor: An N-D Tensor of real data type with the same precision as that of x's data type.
F
Feiyu Chan 已提交
4867 4868 4869 4870 4871 4872 4873 4874 4875

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-2, -1, 0, 1]).unsqueeze(-1).astype('float32')
            y = paddle.to_tensor([-2, -1, 0, 1]).astype('float32')
            z = x + 1j * y
4876 4877 4878 4879 4880 4881
            print(z)
            # Tensor(shape=[4, 4], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[(-2-2j), (-2-1j), (-2+0j), (-2+1j)],
            #         [(-1-2j), (-1-1j), (-1+0j), (-1+1j)],
            #         [-2j    , -1j    ,  0j    ,  1j    ],
            #         [ (1-2j),  (1-1j),  (1+0j),  (1+1j)]])
F
Feiyu Chan 已提交
4882 4883

            theta = paddle.angle(z)
4884 4885 4886 4887 4888 4889
            print(theta)
            # Tensor(shape=[4, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-2.35619450, -2.67794514,  3.14159274,  2.67794514],
            #         [-2.03444386, -2.35619450,  3.14159274,  2.35619450],
            #         [-1.57079637, -1.57079637,  0.        ,  1.57079637],
            #         [-1.10714877, -0.78539819,  0.        ,  0.78539819]])
F
Feiyu Chan 已提交
4890 4891
    """

W
WangZhen 已提交
4892
    if in_dygraph_mode():
F
Feiyu Chan 已提交
4893
        return _C_ops.angle(x)
4894 4895
    else:
        check_variable_and_dtype(
C
chenxujun 已提交
4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'complex64',
                'complex128',
                'uint16',
            ],
            'angle',
4907 4908 4909 4910 4911 4912 4913 4914 4915 4916
        )
        op_type = "angle"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": x}
        out = helper.create_variable_for_type_inference(
            dtype=_complex_to_real_dtype(x.dtype)
        )
        outputs = {"Out": out}
        helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
        return out
4917

4918

4919
def heaviside(x, y, name=None):
4920
    r"""
4921 4922 4923 4924 4925
    Computes the Heaviside step function determined by corresponding element in y for each element in x. The equation is

    .. math::
        heaviside(x, y)=
            \left\{
4926 4927 4928 4929
                \begin{array}{lcl}
                0,& &\text{if} \ x < 0, \\
                y,& &\text{if} \ x = 0, \\
                1,& &\text{if} \ x > 0.
4930
                \end{array}
4931
            \right.
4932

4933
    Note:
I
Infinity_lee 已提交
4934 4935 4936
        ``paddle.heaviside`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
4937 4938

    Args:
4939 4940
        x (Tensor): The input tensor of Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
        y (Tensor): The tensor that determines a Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x and y have different shapes and are broadcastable, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-0.5, 0, 0.5])
            y = paddle.to_tensor([0.1])
            paddle.heaviside(x, y)
            #    [0.        , 0.10000000, 1.        ]
            x = paddle.to_tensor([[-0.5, 0, 0.5], [-0.5, 0.5, 0]])
            y = paddle.to_tensor([0.1, 0.2, 0.3])
            paddle.heaviside(x, y)
            #    [[0.        , 0.20000000, 1.        ],
            #     [0.        , 1.        , 0.30000001]]
4959
    """
4960
    if in_dygraph_mode():
4961
        return _C_ops.heaviside(x, y)
4962
    else:
W
Weilong Wu 已提交
4963
        op_type = 'elementwise_heaviside'
4964
        return _elementwise_op(LayerHelper(op_type, **locals()))
4965

4966

4967 4968 4969 4970 4971 4972
def frac(x, name=None):
    """
    This API is used to return the fractional portion of each element in input.

    Args:
        x (Tensor): The input tensor, which data type should be int32, int64, float32, float64.
4973
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4974 4975 4976 4977 4978

    Returns:
        Tensor: The output Tensor of frac.

    Examples:
4979
        .. code-block:: python
4980 4981 4982

            import paddle

4983 4984
            input = paddle.to_tensor([[12.22000003, -1.02999997],
                                    [-0.54999995, 0.66000003]])
4985
            output = paddle.frac(input)
4986 4987 4988 4989
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[ 0.22000003, -0.02999997],
            #         [-0.54999995,  0.66000003]])
4990
    """
4991
    if x.dtype not in [
4992 4993 4994 4995
        paddle.int32,
        paddle.int64,
        paddle.float32,
        paddle.float64,
4996
    ]:
4997
        raise TypeError(
4998 4999 5000 5001
            "The data type of input must be one of ['int32', 'int64', 'float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
5002
    if in_dygraph_mode():
5003 5004
        y = _C_ops.trunc(x)
        return _C_ops.subtract(x, y)
5005
    else:
5006 5007
        inputs = {"X": x}
        attrs = {}
5008

5009 5010 5011 5012 5013 5014 5015 5016
        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(
            x, "X", ['int32', 'int64', 'float32', 'float64'], 'trunc'
        )
        y = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": y}
        )
5017
        return _elementwise_op(LayerHelper('elementwise_sub', **locals()))
5018

5019

5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044
def sgn(x, name=None):
    """
    For complex tensor, this API returns a new tensor whose elements have the same angles as the corresponding
    elements of input and absolute values of one.
    For other float dtype tensor,
    this API returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero, same as paddle.sign.

    Args:
        x (Tensor): The input tensor, which data type should be float16, float32, float64, complex64, complex128.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A sign Tensor for real input, or normalized Tensor for complex input, shape and data type are same as input.

    Examples:
        .. code-block:: Python

            import paddle

            x = paddle.to_tensor([[3 + 4j, 7 - 24j, 0, 1 + 2j], [6 + 8j, 3, 0, -2]])
            print(paddle.sgn(x))
            #[[0.6+0.8j       0.28-0.96j      0.+0.j      0.4472136+0.8944272j]
            # [0.6+0.8j       1.+0.j          0.+0.j      -1.+0.j]]

    """
5045
    if x.dtype not in [
5046 5047 5048 5049 5050
        paddle.float16,
        paddle.float32,
        paddle.float64,
        paddle.complex64,
        paddle.complex128,
5051
    ]:
5052
        raise TypeError(
5053 5054 5055 5056
            "The data type of input must be one of ['float16', 'float32', 'float64', 'complex64', 'complex128'], but got {}".format(
                x.dtype
            )
        )
5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067
    if paddle.is_complex(x):
        expand_x = paddle.as_real(x)
        x_abs = paddle.abs(x)
        x_abs = paddle.unsqueeze(x_abs, axis=-1)
        output = expand_x / x_abs
        zeros = paddle.zeros_like(output)
        output = paddle.where(paddle.isnan(output), zeros, output)

        return paddle.as_complex(output)
    else:
        return paddle.sign(x)
5068

5069

5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136
def take(x, index, mode='raise', name=None):
    """
    Returns a new tensor with the elements of input tensor x at the given index.
    The input tensor is treated as if it were viewed as a 1-D tensor.
    The result takes the same shape as the index.

    Args:
        x (Tensor): An N-D Tensor, its data type should be int32, int64, float32, float64.
        index (Tensor): An N-D Tensor, its data type should be int32, int64.
        mode (str, optional): Specifies how out-of-bounds index will behave. the candicates are ``'raise'``, ``'wrap'`` and ``'clip'``.

            - ``'raise'``: raise an error (default);
            - ``'wrap'``: wrap around;
            - ``'clip'``: clip to the range. ``'clip'`` mode means that all indices that are too large are replaced by the index that addresses the last element. Note that this disables indexing with negative numbers.

        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Tensor with the same shape as index, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x_int = paddle.arange(0, 12).reshape([3, 4])
            x_float = x_int.astype(paddle.float64)

            idx_pos = paddle.arange(4, 10).reshape([2, 3])  # positive index
            idx_neg = paddle.arange(-2, 4).reshape([2, 3])  # negative index
            idx_err = paddle.arange(-2, 13).reshape([3, 5])  # index out of range

            paddle.take(x_int, idx_pos)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[4, 5, 6],
            #         [7, 8, 9]])

            paddle.take(x_int, idx_neg)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[10, 11, 0 ],
            #         [1 , 2 , 3 ]])

            paddle.take(x_float, idx_pos)
            # Tensor(shape=[2, 3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[4., 5., 6.],
            #         [7., 8., 9.]])

            x_int.take(idx_pos)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[4, 5, 6],
            #         [7, 8, 9]])

            paddle.take(x_int, idx_err, mode='wrap')
            # Tensor(shape=[3, 5], dtype=int32, place=Place(cpu), stop_gradient=True,
            #        [[10, 11, 0 , 1 , 2 ],
            #         [3 , 4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11, 0 ]])

            paddle.take(x_int, idx_err, mode='clip')
            # Tensor(shape=[3, 5], dtype=int32, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 1 , 2 ],
            #         [3 , 4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11, 11]])

    """
    if mode not in ['raise', 'wrap', 'clip']:
        raise ValueError(
5137 5138 5139 5140
            "'mode' in 'take' should be 'raise', 'wrap', 'clip', but received {}.".format(
                mode
            )
        )
5141

5142
    if in_dygraph_mode():
5143 5144
        if not isinstance(index, (paddle.Tensor, Variable)):
            raise TypeError(
5145
                "The type of 'index' must be Tensor, but got {}".format(
5146 5147 5148
                    type(index)
                )
            )
5149 5150
        if index.dtype not in [paddle.int32, paddle.int64]:
            raise TypeError(
5151 5152 5153 5154
                "The data type of 'index' must be one of ['int32', 'int64'], but got {}".format(
                    index.dtype
                )
            )
5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167

    else:
        check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'take')

    input_1d = x.flatten()
    index_1d = index.flatten()
    max_index = input_1d.shape[-1]

    if mode == 'raise':
        # This processing enables 'take' to handle negative indexes within the correct range.
        index_1d = paddle.where(index_1d < 0, index_1d + max_index, index_1d)
    elif mode == 'wrap':
        # The out of range indices are constrained by taking the remainder.
5168
        index_1d = paddle.where(index_1d < 0, index_1d % max_index, index_1d)
5169 5170 5171
        index_1d = paddle.where(
            index_1d >= max_index, index_1d % max_index, index_1d
        )
5172 5173 5174 5175 5176 5177 5178
    elif mode == 'clip':
        # 'clip' mode disables indexing with negative numbers.
        index_1d = clip(index_1d, 0, max_index - 1)

    out = input_1d.index_select(index_1d).reshape(index.shape)

    return out
5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204


def frexp(x, name=None):
    """
    The function used to decompose a floating point number into mantissa and exponent.

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
    Returns:

        - mantissa (Tensor), A mantissa Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

        - exponent (Tensor), A exponent Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3, 4]], dtype="float32")
            print(paddle.tensor.math.frexp(x))
            # (Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,[[0.50000000, 0.50000000, 0.75000000, 0.50000000]]),
            #  Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,[[1., 2., 2., 3.]]))
5205
    """
5206 5207
    if x.dtype not in [paddle.float32, paddle.float64]:
        raise TypeError(
5208 5209 5210 5211
            "The data type of input must be one of ['float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
5212 5213
    input_x = paddle.abs(x)
    exponent = paddle.floor(paddle.log2(input_x))
5214 5215 5216
    exponent = paddle.where(
        paddle.isinf(exponent), paddle.full_like(exponent, 0), exponent
    )
5217 5218 5219 5220

    # 0填充
    mantissa = paddle.divide(input_x, 2**exponent)
    # 计算exponent
5221 5222 5223 5224 5225 5226 5227 5228 5229 5230
    exponent = paddle.where(
        (mantissa >= 1),
        paddle.add(exponent, paddle.ones_like(exponent)),
        exponent,
    )
    mantissa = paddle.where(
        (mantissa >= 1),
        paddle.divide(mantissa, 2 ** paddle.ones_like(exponent)),
        mantissa,
    )
5231 5232 5233

    mantissa = paddle.where((x < 0), mantissa * -1, mantissa)
    return mantissa, exponent
5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275


def _trapezoid(y, x=None, dx=None, axis=-1, mode='sum'):
    """
    Integrate along the given axis using the composite trapezoidal rule.

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
        sum_mode (str): use a different summation. The default is `sum`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
    """
    if mode == 'sum':
        sum_mode = paddle.sum
    elif mode == 'cumsum':
        sum_mode = paddle.cumsum

    if not (x is None or dx is None):
        raise ValueError("Not permitted to specify both x and dx input args.")
    if y.dtype not in [paddle.float16, paddle.float32, paddle.float64]:
        raise TypeError(
            "The data type of input must be Tensor, and dtype should be one of ['paddle.float16', 'paddle.float32', 'paddle.float64'], but got {}".format(
                y.dtype
            )
        )

    y_shape = y.shape
    length = y_shape[axis]
    if axis < 0:
        axis += y.dim()
    if x is None:
        if dx is None:
            dx = 1.0
        dx = paddle.to_tensor(dx)
        if dx.dim() > 1:
5276
            raise ValueError(f'Expected dx to be a scalar, got dx={dx}')
5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416
    else:
        if x.dtype not in [paddle.float16, paddle.float32, paddle.float64]:
            raise TypeError(
                "The data type of input must be Tensor, and dtype should be one of ['paddle.float16', 'paddle.float32', 'paddle.float64'], but got {}".format(
                    x.dtype
                )
            )
        # Reshape to correct shape
        if x.dim() == 1:
            dx = paddle.diff(x)
            shape = [1] * y.dim()
            shape[axis] = dx.shape[0]
            dx = dx.reshape(shape)
        else:
            dx = paddle.diff(x, axis=axis)
    return 0.5 * sum_mode(
        (
            paddle.gather(y, paddle.arange(1, length), axis=axis)
            + paddle.gather(y, paddle.arange(0, length - 1), axis=axis)
        )
        * dx,
        axis=axis,
    )


def trapezoid(y, x=None, dx=None, axis=-1, name=None):
    """
    Integrate along the given axis using the composite trapezoidal rule. Use the sum method.

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
        If :attr:`y` is a 1D tensor, then the result is a float. If N is greater than 1, then the result is an (N-1)-D tensor.

    Examples:
        .. code-block:: python

            import paddle

            y = paddle.to_tensor([4, 5, 6], dtype='float32')

            print(paddle.trapezoid(y))
            # Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [10.])

            print(paddle.trapezoid(y, dx=2.))
            # Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [20.])

            y = paddle.to_tensor([4, 5, 6], dtype='float32')
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            print(paddle.trapezoid(y, x))
            # Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [10.])


            y = paddle.to_tensor([1, 2, 3], dtype='float64')
            x = paddle.to_tensor([8, 6, 4], dtype='float64')

            print(paddle.trapezoid(y, x))
            # Tensor(shape=[1], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [-8.])
            y = paddle.arange(6).reshape((2, 3)).astype('float32')

            print(paddle.trapezoid(y, axis=0))
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1.50000000, 2.50000000, 3.50000000])
            print(paddle.trapezoid(y, axis=1))
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [2., 8.])
    """
    return _trapezoid(y, x, dx, axis, mode='sum')


def cumulative_trapezoid(y, x=None, dx=None, axis=-1, name=None):
    """
    Integrate along the given axis using the composite trapezoidal rule. Use the cumsum method

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
        The result is an N-D tensor.

    Examples:
        .. code-block:: python

            import paddle

            y = paddle.to_tensor([4, 5, 6], dtype='float32')

            print(paddle.cumulative_trapezoid(y))
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [4.50000000, 10.       ])

            print(paddle.cumulative_trapezoid(y, dx=2.))
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [9. , 20.])

            y = paddle.to_tensor([4, 5, 6], dtype='float32')
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            print(paddle.cumulative_trapezoid(y, x))
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [4.50000000, 10.       ])

            y = paddle.to_tensor([1, 2, 3], dtype='float64')
            x = paddle.to_tensor([8, 6, 4], dtype='float64')

            print(paddle.cumulative_trapezoid(y, x))
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [-3., -8.])

            y = paddle.arange(6).reshape((2, 3)).astype('float32')

            print(paddle.cumulative_trapezoid(y, axis=0))
            # Tensor(shape=[1, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[1.50000000, 2.50000000, 3.50000000]])
            print(paddle.cumulative_trapezoid(y, axis=1))
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0.50000000, 2.        ],
            #         [3.50000000, 8.        ]])
    """
    return _trapezoid(y, x, dx, axis, mode='cumsum')
5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492


def vander(x, n=None, increasing=False, name=None):
    """
    Generate a Vandermonde matrix.

    The columns of the output matrix are powers of the input vector. Order of the powers is
    determined by the increasing Boolean parameter. Specifically, when the increment is
    "false", the ith output column is a step-up in the order of the elements of the input
    vector to the N - i - 1 power. Such a matrix with a geometric progression in each row
    is named after Alexandre-Theophile Vandermonde.

    Args:
        x (Tensor): The input tensor, it must be 1-D Tensor, and it's data type should be ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'].
        n (int): Number of columns in the output. If n is not specified, a square array is returned (n = len(x)).
        increasing(bool): Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
    Returns:
        Tensor, A vandermonde matrix with shape (len(x), N). If increasing is False, the first column is :math:`x^{(N-1)}`, the second :math:`x^{(N-2)}` and so forth.
        If increasing is True, the columns are :math:`x^0`, :math:`x^1`, ..., :math:`x^{(N-1)}`.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([1., 2., 3.], dtype="float32")
            out = paddle.vander(x)
            print(out.numpy())
            # [[1., 1., 1.],
            #  [4., 2., 1.],
            #  [9., 3., 1.]]
            out1 = paddle.vander(x,2)
            print(out1.numpy())
            # [[1., 1.],
            #  [2., 1.],
            #  [3., 1.]]
            out2 = paddle.vander(x, increasing = True)
            print(out2.numpy())
            # [[1., 1., 1.],
            #  [1., 2., 4.],
            #  [1., 3., 9.]]
            real = paddle.to_tensor([2., 4.])
            imag = paddle.to_tensor([1., 3.])
            complex = paddle.complex(real, imag)
            out3 = paddle.vander(complex)
            print(out3.numpy())
            # [[2.+1.j, 1.+0.j],
            #  [4.+3.j, 1.+0.j]]
    """
    check_variable_and_dtype(
        x,
        'x',
        ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'],
        'vander',
    )
    if x.dim() != 1:
        raise ValueError(
            "The input of x is expected to be a 1-D Tensor."
            "But now the dims of Input(X) is %d." % x.dim()
        )

    if n is None:
        n = x.shape[0]

    if n < 0:
        raise ValueError("N must be non-negative.")

    res = paddle.empty([x.shape[0], n], dtype=x.dtype)

    if n > 0:
        res[:, 0] = paddle.to_tensor([1], dtype=x.dtype)
    if n > 1:
        res[:, 1:] = x[:, None]
        res[:, 1:] = paddle.cumprod(res[:, 1:], dim=-1)
    res = res[:, ::-1] if not increasing else res
    return res
5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528


def nextafter(x, y, name=None):
    r"""
    Return the next floating-point value after input towards other, elementwise.
    The shapes of input and other must be broadcastable.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        y (Tensor): An N-D Tensor, the data type is float32, float64.
        name(str, optional):Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
            out = paddle.nextafter(paddle.to_tensor([1.0,2.0]),paddle.to_tensor([2.0,1.0]))
            print(out)
            #Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #       [1.00000012, 1.99999988])
    """
    if in_dygraph_mode():
        return _C_ops.nextafter(x, y)
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'nextafter')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'nextafter')
        op_type = "nextafter"
        helper = LayerHelper(op_type, **locals())
        inputs = {"x": x, "y": y}
        out = helper.create_variable_for_type_inference(dtype=paddle.float32)
        outputs = {"out": out}
        helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out