math.py 197.6 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
# TODO: define math functions
18

19
import numpy as np
20

21
import paddle
22 23 24
from paddle import _C_ops, _legacy_C_ops
from paddle.common_ops_import import VarDesc, dygraph_only, dygraph_utils

25 26 27
# TODO: define math functions
from paddle.utils.inplace_utils import inplace_apis_in_dygraph_only

28
from ..common_ops_import import Variable
29 30
from ..fluid.data_feeder import (
    check_dtype,
31 32
    check_type,
    check_variable_and_dtype,
33 34
    convert_dtype,
)
35 36
from ..framework import (
    LayerHelper,
37
    _dygraph_tracer,
38 39 40 41 42 43 44
    convert_np_dtype_to_dtype_,
    core,
    in_dygraph_mode,
)
from .creation import _complex_to_real_dtype
from .layer_function_generator import generate_layer_fn, templatedoc
from .manipulation import cast
45 46
from .ops import abs  # noqa: F401
from .ops import acos  # noqa: F401
47
from .ops import acosh  # noqa: F401
48
from .ops import asin  # noqa: F401
49 50 51
from .ops import asinh  # noqa: F401
from .ops import atan  # noqa: F401
from .ops import atanh  # noqa: F401
52 53 54 55
from .ops import ceil  # noqa: F401
from .ops import ceil_  # noqa: F401
from .ops import cos  # noqa: F401
from .ops import cosh  # noqa: F401
56
from .ops import erf  # noqa: F401
57 58 59 60 61 62 63 64 65 66 67
from .ops import exp  # noqa: F401
from .ops import exp_  # noqa: F401
from .ops import expm1  # noqa: F401
from .ops import floor  # noqa: F401
from .ops import floor_  # noqa: F401
from .ops import reciprocal  # noqa: F401
from .ops import reciprocal_  # noqa: F401
from .ops import round  # noqa: F401
from .ops import round_  # noqa: F401
from .ops import rsqrt  # noqa: F401
from .ops import rsqrt_  # noqa: F401
68 69
from .ops import sigmoid  # noqa: F401
from .ops import sigmoid_  # noqa: F401
70 71
from .ops import sin  # noqa: F401
from .ops import sinh  # noqa: F401
72 73
from .ops import sqrt  # noqa: F401
from .ops import sqrt_  # noqa: F401
74 75
from .ops import square  # noqa: F401
from .ops import tan  # noqa: F401
76

77 78
__all__ = []

79 80 81 82 83 84 85 86 87 88 89 90 91
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

92

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
def _get_reduce_axis(axis, x):
    """
    Internal function for max, min, amax and amin.
    It computes the attribute reduce_all value based on axis.
    """
    if axis is not None and not isinstance(axis, list):
        if isinstance(axis, (tuple, range)):
            axis = list(axis)
        elif isinstance(axis, int):
            axis = [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(
                    type(axis)
                )
            )
    if axis is None:
        axis = []
    if axis == [] or len(axis) == len(x.shape):
        reduce_all = True
    else:
        reduce_all = False
    return reduce_all, axis


def _get_reduce_axis_with_tensor(axis, x):
    if isinstance(axis, Variable):
        if axis.shape[0] == len(x.shape):
            reduce_all = True
        else:
            reduce_all = False
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
126 127
        if paddle.utils._contain_var(axis):
            axis = paddle.utils._convert_to_tensor_list(axis)
128 129 130
    return reduce_all, axis


131 132
def log(x, name=None):
    r"""
C
Chen Long 已提交
133
    Calculates the natural log of the given input Tensor, element-wise.
134 135 136

    .. math::

137
        Out = \ln(x)
138 139

    Args:
140
        x (Tensor): Input Tensor. Must be one of the following types: float16, float32, float64.
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The natural log of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python

            import paddle

            x = [[2,3,4], [7,8,9]]
            x = paddle.to_tensor(x, dtype='float32')
            res = paddle.log(x)
            # [[0.693147, 1.09861, 1.38629], [1.94591, 2.07944, 2.19722]]
    """
    if in_dygraph_mode():
        return _C_ops.log(x)
160
    else:
161
        check_variable_and_dtype(
162
            x, 'x', ['uint16', 'float16', 'float32', 'float64'], "log"
163
        )
164 165 166 167 168 169
        inputs = {'X': [x]}
        helper = LayerHelper('log', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
        return out
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188


def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)

    Args:
189 190 191 192 193 194
        x (Tensor): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
        scale (float|Tensor): The scale factor of the input, it should be a float number or a Tensor with shape [1] and data type as float32.
        bias (float): The bias to be put on the input.
        bias_after_scale (bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act (str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
195 196

    Returns:
C
Chen Long 已提交
197
        Tensor: Output Tensor of scale operator, with shape and data type same as input.
198 199 200

    Examples:
        .. code-block:: python
201

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
            # scale as a float32 number
            import paddle

            data = paddle.randn(shape=[2,3], dtype='float32')
            res = paddle.scale(data, scale=2.0, bias=1.0)

        .. code-block:: python

            # scale with parameter scale as a Tensor
            import paddle

            data = paddle.randn(shape=[2, 3], dtype='float32')
            factor = paddle.to_tensor([2], dtype='float32')
            res = paddle.scale(data, scale=factor, bias=1.0)

    """

    if in_dygraph_mode():
W
Weilong Wu 已提交
220 221
        if act is None:
            return _C_ops.scale(x, scale, float(bias), bias_after_scale)
W
wanghuancoder 已提交
222 223
        out = _C_ops.scale(x, scale, float(bias), bias_after_scale)
        return dygraph_utils._append_activation_in_dygraph(out, act)
224 225
    else:
        check_variable_and_dtype(
226
            x,
227 228 229 230 231 232 233 234 235 236 237 238 239
            "x",
            [
                'float16',
                'uint16',
                'float32',
                'float64',
                'int8',
                'int16',
                'int32',
                'int64',
                'uint8',
            ],
            "scale",
240
        )
241 242 243 244 245 246 247 248 249 250 251
        inputs = {'X': [x]}
        attrs = {
            'bias': float(bias),
            'bias_after_scale': bias_after_scale,
        }
        if isinstance(scale, Variable):
            inputs['ScaleTensor'] = [scale]
        else:
            attrs['scale'] = float(scale)
        helper = LayerHelper('scale', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
252

253 254 255 256
        helper.append_op(
            type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return helper.append_activation(out)
257 258 259


def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
260 261
    r"""

262 263 264 265
    stanh activation.

    .. math::

266
        out = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}
267 268 269 270 271

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        scale_a (float, optional): The scale factor a of the input. Default is 0.67.
        scale_b (float, optional): The scale factor b of the output. Default is 1.7159.
272
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
273 274 275 276 277 278 279 280 281 282 283 284 285 286

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = paddle.stanh(x, scale_a=0.67, scale_b=1.72) # [1.00616539, 1.49927628, 1.65933108, 1.70390463]

    """

287
    if in_dygraph_mode():
Z
zyfncg 已提交
288
        return _C_ops.stanh(x, scale_a, scale_b)
289 290
    else:
        check_variable_and_dtype(
291
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'stanh'
292
        )
293

294 295 296 297 298 299 300 301 302
        helper = LayerHelper('stanh', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='stanh',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'scale_a': scale_a, 'scale_b': scale_b},
        )
        return out
303

304

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
def multiplex(inputs, index, name=None):
    """

    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.

    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .

    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .

    For Example:

            .. code-block:: text

                Given:

                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

                index = [[3],[0],[1],[2]]

                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]


    Args:
        inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
        index (Tensor): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
336
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
337

338 339 340 341 342 343 344 345
    Returns:
        Tensor: Output of multiplex OP, with data type being float32, float64, int32, int64.

    Examples:

        .. code-block:: python

            import paddle
346

347 348 349 350
            img1 = paddle.to_tensor([[1, 2], [3, 4]], dtype=paddle.float32)
            img2 = paddle.to_tensor([[5, 6], [7, 8]], dtype=paddle.float32)
            inputs = [img1, img2]
            index = paddle.to_tensor([[1], [0]], dtype=paddle.int32)
351
            res = paddle.multiplex(inputs, index)
352
            print(res) # Tensor([[5., 6.], [3., 4.]], dtype=float32)
353 354

    """
355 356
    if in_dygraph_mode():
        return _C_ops.multiplex(inputs, index)
357 358
    else:
        helper = LayerHelper('multiplex', **locals())
359

360 361 362 363 364 365 366 367 368 369 370 371
        check_type(inputs, 'inputs', (list), 'multiplex')
        if len(inputs) < 2:
            raise ValueError(
                "inputs should be a list object with at least 2 elements."
            )
        for id, x in enumerate(inputs):
            check_variable_and_dtype(
                x,
                'input[' + str(id) + ']',
                ['float32', 'float64', 'int32', 'int64'],
                'multiplex',
            )
372
        check_variable_and_dtype(
373
            index, "index", ['int32', 'int64'], 'multiplex'
374
        )
375

376 377 378 379 380 381 382
        out = helper.create_variable_for_type_inference(inputs[0].dtype)
        helper.append_op(
            type='multiplex',
            inputs={'X': inputs, 'Ids': index},
            outputs={'Out': [out]},
        )
        return out
383

384

385 386 387 388 389 390
@inplace_apis_in_dygraph_only
def scale_(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Inplace version of ``scale`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_scale`.
    """
391
    if in_dygraph_mode():
392
        return _C_ops.scale_(x, scale, float(bias), bias_after_scale)
393 394


395
def pow(x, y, name=None):
396
    """
C
Chen Long 已提交
397
    Compute the power of Tensor elements. The equation is:
S
swtkiwi 已提交
398

399
    .. math::
400
        out = x^{y}
401

402
    Note:
I
Infinity_lee 已提交
403 404 405
        ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensors
406 407


408
    Args:
409
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
410
        y (float|int|Tensor): If it is an N-D Tensor, its data type should be the same as `x`.
411
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
412

413
    Returns:
414
        N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as `x`.
415 416 417

    Examples:

418
        ..  code-block:: python
419 420 421

            import paddle

422 423 424 425 426 427 428 429 430 431 432 433
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            # example 1: y is a float or int
            res = paddle.pow(x, 2)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
            res = paddle.pow(x, 2.5)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1.         , 5.65685415 , 15.58845711])

434
            # example 2: y is a Tensor
435
            y = paddle.to_tensor([2], dtype='float32')
436
            res = paddle.pow(x, y)
437 438 439
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
440 441

    """
442
    # in dynamic graph mode
443
    if in_dygraph_mode():
444
        if isinstance(y, (int, float)):
445
            return _C_ops.pow(x, y)
446
        elif isinstance(y, (paddle.Tensor, Variable)):
447
            return _C_ops.elementwise_pow(x, y)
448
        else:
449
            raise TypeError(
450 451
                'y must be scalar or tensor type, but received: %s ' % (y.dtype)
            )
452 453
    else:
        # in static graph mode
454
        if isinstance(y, (int, float)):
455 456 457 458 459 460
            helper = LayerHelper('pow', **locals())
            inputs = {'X': x}
            attrs = {'factor': y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs
461
            )
462 463 464 465 466 467
            return out
        elif isinstance(y, (paddle.Tensor, Variable)):
            # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
            helper = LayerHelper('elementwise_pow', **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
468
        else:
469
            raise TypeError(
470
                'y must be scalar or tensor type, but received: %s ' % (type(y))
471
            )
472 473


474
OP_NAMEMAPPING = {
475 476 477 478 479 480 481 482
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
483
    'elementwise_mod': 'remainder',
484
}
485

486

487 488 489 490 491 492
def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

493 494
    out = helper.kwargs.get('out', None)

495 496
    assert x is not None, f'x cannot be None in {original_op_type}'
    assert y is not None, f'y cannot be None in {original_op_type}'
497 498 499 500 501
    bf16_and_complex_supported_ops = [
        "elementwise_add",
        "elementwise_sub",
        "elementwise_mul",
        "elementwise_div",
502
        "elementwise_max",
503 504 505 506 507 508 509 510 511 512 513 514 515 516
    ]
    if original_op_type in bf16_and_complex_supported_ops:
        data_type = [
            'uint16',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'bool',
            'complex64',
            'complex128',
        ]
    else:
517 518 519 520 521 522 523 524 525
        data_type = [
            'float16',
            'uint16',
            'float32',
            'float64',
            'int32',
            'int64',
            'bool',
        ]
526
    check_variable_and_dtype(
527 528
        x,
        'x',
529
        data_type,
530 531
        original_op_type,
    )
532
    check_variable_and_dtype(
533 534
        y,
        'y',
535
        data_type,
536 537
        original_op_type,
    )
538 539 540 541

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
542 543 544 545 546

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
547 548 549 550 551 552 553 554 555 556
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False
            )

    helper.append_op(
        type=op_type,
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis, 'use_mkldnn': use_mkldnn},
    )
557 558 559
    return helper.append_activation(out)


Y
Yang Zhang 已提交
560
def add(x, y, name=None):
561
    """
562 563 564 565 566 567 568 569
    Elementwise Add Operator.
    Add two tensors element-wise
    The equation is:

    ..  math::

        Out=X+Y

570 571
    $X$ the tensor of any dimension.
    $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.
572 573

    There are two cases for this operator:
574 575 576 577

    1. The shape of $Y$ is the same with $X$.
    2. The shape of $Y$ is a continuous subsequence of $X$.

578
    For case 2:
579 580

    1. Broadcast $Y$ to match the shape of $X$, where axis is the start dimension index for broadcasting $Y$ onto $X$.
H
HongyuJia 已提交
581
    2. If $axis$ is -1 (default), $axis$=rank($X$)-rank($Y$).
582
    3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape($Y$) = (2, 1) => (2).
583 584 585 586

        For example:

        ..  code-block:: python
587

588 589 590 591 592 593
            shape(X) = (2, 3, 4, 5), shape(Y) = (,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
            shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
            shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
            shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
594

595
    Args:
596 597 598
        x (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        y (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        name (string, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
599 600

    Returns:
H
HongyuJia 已提交
601
        N-D Tensor. A location into which the result is stored. It's dimension equals with x.
602 603 604 605

    Examples:

        ..  code-block:: python
606

607
            import paddle
608

609 610 611 612
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.to_tensor([1, 5, 2], 'float64')
            z = paddle.add(x, y)
            print(z)  # [3., 8., 6. ]
613
    """
614

J
Jiabin Yang 已提交
615
    if in_dygraph_mode():
616
        return _C_ops.add(x, y)
J
Jiabin Yang 已提交
617
    else:
618
        return _elementwise_op(LayerHelper('elementwise_add', **locals()))
619 620


621 622 623 624 625 626 627 628 629
@inplace_apis_in_dygraph_only
def add_(x, y, name=None):
    """
    Inplace version of ``add`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_add`.
    """

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
630
        raise ValueError(
631 632 633 634
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
635

636
    return _C_ops.add_(x, y)
637 638


639 640
def subtract(x, y, name=None):
    """
W
Wei Shengyu 已提交
641
    Substract two tensors element-wise. The equation is:
642 643 644 645

    .. math::
        out = x - y

646
    Note:
I
Infinity_lee 已提交
647 648 649
        ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
650 651 652 653 654 655 656 657 658 659 660 661

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
W
Wei Shengyu 已提交
662

663 664 665 666 667 668
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[5, 6], [3, 4]])
            res = paddle.subtract(x, y)
            print(res)
669 670 671
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[-4, -4],
            #         [ 4,  4]])
672 673 674 675 676

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([1, 0, 4])
            res = paddle.subtract(x, y)
            print(res)
677 678 679
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[ 0,  2, -1],
            #          [ 0,  2, -1]]])
680

681 682
            x = paddle.to_tensor([2, float('nan'), 5], dtype='float32')
            y = paddle.to_tensor([1, 4, float('nan')], dtype='float32')
683 684
            res = paddle.subtract(x, y)
            print(res)
685 686
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1. , nan, nan])
687

688
            x = paddle.to_tensor([5, float('inf'), -float('inf')], dtype='float64')
689 690 691
            y = paddle.to_tensor([1, 4, 5], dtype='float64')
            res = paddle.subtract(x, y)
            print(res)
692 693
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 4.  ,  inf., -inf.])
694
    """
J
Jiabin Yang 已提交
695
    if in_dygraph_mode():
696
        return _C_ops.subtract(x, y)
J
Jiabin Yang 已提交
697
    else:
698
        return _elementwise_op(LayerHelper('elementwise_sub', **locals()))
699 700


701 702 703 704 705 706 707 708 709
@inplace_apis_in_dygraph_only
def subtract_(x, y, name=None):
    """
    Inplace version of ``subtract`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_subtract`.
    """

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
710
        raise ValueError(
711 712 713 714
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
715

716
    return _C_ops.subtract_(x, y)
717 718


719
def divide(x, y, name=None):
720
    """
721
    Divide two tensors element-wise. The equation is:
722

723 724
    .. math::
        out = x / y
725

726
    Note:
I
Infinity_lee 已提交
727 728 729
        ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
730

731 732 733 734
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
735

736
    Returns:
737
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
738

739
    Examples:
740

741
        ..  code-block:: python
742

743
            import paddle
744

745 746
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
747
            z = paddle.divide(x, y)
748
            print(z)  # [2., 0.6, 2.]
749

750
    """
J
Jiabin Yang 已提交
751
    if in_dygraph_mode():
752
        return _C_ops.divide(x, y)
J
Jiabin Yang 已提交
753
    else:
754
        return _elementwise_op(LayerHelper('elementwise_div', **locals()))
755 756


757 758
def floor_divide(x, y, name=None):
    """
L
Lin Manhui 已提交
759
    Floor divide two tensors element-wise and rounds the quotinents to the nearest integer toward zero. The equation is:
760

761
    .. math::
L
Lin Manhui 已提交
762
        out = trunc(x / y)
763

H
hg-1099255210 已提交
764 765 766
    - :math:`x`: Multidimensional Tensor.
    - :math:`y`: Multidimensional Tensor.

767
    Note:
I
Infinity_lee 已提交
768 769 770 771
        ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor

L
Lin Manhui 已提交
772
        Also note that the name ``floor_divide`` can be misleading, as the quotinents are actually rounded toward zero, not toward negative infinite.
773

774 775 776 777
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
778

779 780
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
781

782
    Examples:
783

784
        ..  code-block:: python
785

786
            import paddle
787

788 789
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
790
            z = paddle.floor_divide(x, y)
791
            print(z)  # [2, 0, 2, 2]
792

793
    """
794 795
    if in_dygraph_mode():
        return _C_ops.floor_divide(x, y)
796
    else:
797
        return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))
798 799


800
def remainder(x, y, name=None):
801
    r"""
802 803 804
    Mod two tensors element-wise. The equation is:

    .. math::
805

806 807
        out = x \% y

808
    Note:
I
Infinity_lee 已提交
809 810 811
        ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
812 813

    Args:
814 815
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
816 817 818
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
819
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
820 821 822 823 824 825 826

    Examples:

        ..  code-block:: python

            import paddle

827 828
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
829
            z = paddle.remainder(x, y)
W
WangXi 已提交
830
            print(z)  # [0, 3, 2, 1]
831 832

    """
833 834
    if in_dygraph_mode():
        return _C_ops.remainder(x, y)
835
    else:
836
        return _elementwise_op(LayerHelper('elementwise_mod', **locals()))
837 838


839 840 841 842 843 844 845 846 847
@inplace_apis_in_dygraph_only
def remainder_(x, y, name=None):
    r"""
    Inplace version of ``remainder`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_remainder`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
848 849 850 851
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
852
    return _C_ops.remainder_(x, y)
853 854


855 856
mod = remainder  # noqa: F841
floor_mod = remainder  # noqa: F841
857 858


859
def multiply(x, y, name=None):
860
    """
861
    multiply two tensors element-wise. The equation is:
862

863 864
    .. math::
        out = x * y
865

866
    Note:
I
Infinity_lee 已提交
867 868 869
        ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
870

871
    Args:
W
will-jl944 已提交
872 873
        x (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
        y (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
874
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
875

876
    Returns:
877
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
878

879 880 881 882 883 884
    Examples:

        ..  code-block:: python

            import paddle

885 886
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
887
            res = paddle.multiply(x, y)
888
            print(res) # [[5, 12], [21, 32]]
889

890
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
891 892 893
            y = paddle.to_tensor([2])
            res = paddle.multiply(x, y)
            print(res) # [[[2, 4, 6], [2, 4, 6]]]
894 895

    """
J
Jiabin Yang 已提交
896
    if in_dygraph_mode():
897
        return _C_ops.multiply(x, y)
J
Jiabin Yang 已提交
898
    else:
899 900 901 902
        if x.dtype != y.dtype:
            raise TypeError(
                'Input tensors must be same type, but received type of x: %s, type of y: %s '
                % (x.dtype, y.dtype)
903
            )
904

905
        return _elementwise_op(LayerHelper('elementwise_mul', **locals()))
906

907

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
@inplace_apis_in_dygraph_only
def multiply_(x, y, name=None):
    """
    Inplace version of ``multiply`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_multiply`.
    """

    assert (
        _dygraph_tracer()._has_grad is False
    ), "The current inplace version of multiply_ needs to be used in the context of paddle.no_grad() since inplace multiply_grad is not yet supported."

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )

    return _C_ops.multiply_(x, y)


930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
@dygraph_only
def _elementwise_op_with_axis_in_dygraph(
    x, y, axis=-1, name=None, op_type="Undifined"
):
    assert (
        in_dygraph_mode()
    ), "You can only call `_elementwise_op_with_axis_in_dygraph` function within in_dygraph_mode"
    assert op_type in ["add", "subtract", "multiply", "divide"], (
        "op_name input error! _elementwise_op_with_axis is an inner function to replace elementwise_add/sub/mul/div. Input op_name=%s, Expect op_name=[add|subtract|multiply|divide]\n"
        % op_type
    )
    op = getattr(_C_ops, op_type)
    x_shape = list(x.shape)
    y_shape = list(y.shape)
    if axis == -1 or len(x_shape) == len(y_shape):
        return op(x, y)
    if len(x_shape) > len(y_shape):
        padding = len(x_shape) - len(y_shape) - axis
        y = paddle.reshape(y, [1] * axis + y_shape + [1] * padding)
    else:
        padding = len(y_shape) - len(x_shape) - axis
        x = paddle.reshape(x, [1] * axis + y_shape + [1] * padding)
    return op(x, y)


def _add_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
    if in_dygraph_mode():
        return _elementwise_op_with_axis_in_dygraph(x, y, axis, name, "add")
    else:
        op_type = 'elementwise_add'
961
        return _elementwise_op(LayerHelper(op_type, **locals()))
962 963 964 965 966 967 968 969 970 971


def _subtract_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
    if in_dygraph_mode():
        return _elementwise_op_with_axis_in_dygraph(
            x, y, axis, name, "subtract"
        )
    else:
        op_type = 'elementwise_sub'
972
        return _elementwise_op(LayerHelper(op_type, **locals()))
973 974 975 976 977 978 979 980 981 982


def _multiply_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
    if in_dygraph_mode():
        return _elementwise_op_with_axis_in_dygraph(
            x, y, axis, name, "multiply"
        )
    else:
        op_type = 'elementwise_mul'
983
        return _elementwise_op(LayerHelper(op_type, **locals()))
984 985 986 987 988 989 990 991


def _divide_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
    if in_dygraph_mode():
        return _elementwise_op_with_axis_in_dygraph(x, y, axis, name, "divide")
    else:
        op_type = 'elementwise_div'
992
        return _elementwise_op(LayerHelper(op_type, **locals()))
993 994


995
def maximum(x, y, name=None):
996
    """
W
Wei Shengyu 已提交
997
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
998

999 1000
    .. math::
        out = max(x, y)
1001

1002
    Note:
I
Infinity_lee 已提交
1003 1004 1005
        ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to  `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.maximum(x, y)
            print(res)
1025 1026 1027
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 4],
            #         [7, 8]])
1028 1029 1030 1031 1032

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.maximum(x, y)
            print(res)
1033 1034 1035
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 2, 4],
            #         [3, 2, 4]])
1036 1037

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1038
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
1039 1040
            res = paddle.maximum(x, y)
            print(res)
1041 1042
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [2. , nan, nan])
1043

1044 1045
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
1046 1047
            res = paddle.maximum(x, y)
            print(res)
1048 1049
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [5.  , 3.  , inf.])
1050
    """
1051 1052
    if in_dygraph_mode():
        return _C_ops.maximum(x, y)
1053
    else:
1054
        return _elementwise_op(LayerHelper('elementwise_max', **locals()))
1055

1056

1057
def minimum(x, y, name=None):
1058
    """
C
Chen Long 已提交
1059
    Compare two tensors and return a new tensor containing the element-wise minima. The equation is:
1060

1061 1062
    .. math::
        out = min(x, y)
1063

1064
    Note:
I
Infinity_lee 已提交
1065 1066 1067
        ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1068 1069 1070 1071 1072 1073 1074

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
C
Chen Long 已提交
1075
        Tensor. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.minimum(x, y)
            print(res)
1087 1088 1089
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 2],
            #         [5, 6]])
1090 1091 1092 1093 1094

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.minimum(x, y)
            print(res)
1095 1096 1097
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[1, 0, 3],
            #          [1, 0, 3]]])
1098 1099

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1100
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
1101 1102
            res = paddle.minimum(x, y)
            print(res)
1103 1104
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1. , nan, nan])
1105

1106 1107
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
1108 1109
            res = paddle.minimum(x, y)
            print(res)
1110 1111
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 1.  , -inf.,  5.  ])
1112
    """
1113 1114
    if in_dygraph_mode():
        return _C_ops.minimum(x, y)
1115
    else:
1116
        return _elementwise_op(LayerHelper('elementwise_min', **locals()))
1117

1118

L
LJQ❤️ 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127
def fmax(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the maximum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmax(x, y)

1128
    Note:
I
Infinity_lee 已提交
1129 1130 1131
        ``paddle.fmax`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
LJQ❤️ 已提交
1132 1133

    Args:
1134 1135
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmax(x, y)
            print(res)
1151 1152 1153
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 4],
            #         [7, 8]])
L
LJQ❤️ 已提交
1154 1155 1156 1157 1158

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmax(x, y)
            print(res)
1159 1160 1161
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 2, 4],
            #         [3, 2, 4]])
L
LJQ❤️ 已提交
1162 1163

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1164
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
L
LJQ❤️ 已提交
1165 1166
            res = paddle.fmax(x, y)
            print(res)
1167 1168
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [2., 3., 5.])
L
LJQ❤️ 已提交
1169

1170 1171
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
L
LJQ❤️ 已提交
1172 1173
            res = paddle.fmax(x, y)
            print(res)
1174 1175
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [5.  , 3.  , inf.])
L
LJQ❤️ 已提交
1176
    """
1177
    if in_dygraph_mode():
1178
        return _C_ops.fmax(x, y)
1179
    else:
1180
        return _elementwise_op(LayerHelper('elementwise_fmax', **locals()))
L
LJQ❤️ 已提交
1181

1182

L
LJQ❤️ 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191
def fmin(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the minimum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmin(x, y)

1192
    Note:
I
Infinity_lee 已提交
1193 1194 1195
        ``paddle.fmin`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
LJQ❤️ 已提交
1196 1197

    Args:
1198 1199
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmin(x, y)
            print(res)
1215 1216 1217
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 2],
            #         [5, 6]])
L
LJQ❤️ 已提交
1218 1219 1220 1221 1222

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmin(x, y)
            print(res)
1223 1224 1225
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[1, 0, 3],
            #          [1, 0, 3]]])
L
LJQ❤️ 已提交
1226 1227

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1228
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
L
LJQ❤️ 已提交
1229 1230
            res = paddle.fmin(x, y)
            print(res)
1231 1232
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1., 3., 5.])
L
LJQ❤️ 已提交
1233

1234 1235
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
L
LJQ❤️ 已提交
1236 1237
            res = paddle.fmin(x, y)
            print(res)
1238 1239
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 1.  , -inf.,  5.  ])
L
LJQ❤️ 已提交
1240
    """
1241
    if in_dygraph_mode():
1242
        return _C_ops.fmin(x, y)
1243
    else:
1244
        return _elementwise_op(LayerHelper('elementwise_fmin', **locals()))
L
LJQ❤️ 已提交
1245

Y
Yang Zhang 已提交
1246

1247
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
1248 1249 1250 1251
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
1252
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
1253 1254
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
1255
            Tensor with a single element, otherwise must be in the
1256 1257 1258 1259 1260 1261 1262
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
1263
            value is False.
1264
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1265 1266

    Returns:
1267
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
1268
        if `x.dtype='bool'`, `x.dtype='int32'`, it's data type is `'int64'`,
1269
        otherwise it's data type is the same as `x`.
1270 1271 1272 1273 1274

    Examples:
        .. code-block:: python

            import paddle
1275

1276
            # x is a Tensor with following elements:
1277 1278 1279
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
1280 1281
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1282
            out1 = paddle.sum(x)  # [3.5]
1283 1284 1285
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
1286

1287
            # y is a Tensor with shape [2, 2, 2] and elements as below:
1288 1289 1290
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
1291
            y = paddle.to_tensor([[[1, 2], [3, 4]],
1292
                                  [[5, 6], [7, 8]]])
1293 1294
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
1295

1296 1297 1298 1299 1300 1301 1302 1303 1304
            # x is a Tensor with following elements:
            #    [[True, True, True, True]
            #     [False, False, False, False]]
            # Each example is followed by the corresponding output tensor.
            x = paddle.to_tensor([[True, True, True, True],
                                  [False, False, False, False]])
            out7 = paddle.sum(x)  # [4]
            out8 = paddle.sum(x, axis=0)  # [1, 1, 1, 1]
            out9 = paddle.sum(x, axis=1)  # [4, 0]
1305
    """
1306

1307 1308 1309 1310
    dtype_flag = False
    if dtype is not None:
        dtype_flag = True
        dtype = convert_np_dtype_to_dtype_(dtype)
F
From00 已提交
1311 1312

    if in_dygraph_mode():
1313
        return _C_ops.sum(x, axis, dtype, keepdim)
1314 1315 1316
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}
F
From00 已提交
1317

1318
        if dtype_flag:
1319
            attrs.update({'in_dtype': x.dtype, 'out_dtype': dtype})
W
wanghuancoder 已提交
1320

1321 1322 1323 1324 1325
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
1326
                'uint16',
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'sum',
        )
1338

1339 1340 1341
        check_type(
            axis, 'axis', (int, list, tuple, type(None), Variable), 'sum'
        )
1342

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
        helper = LayerHelper('sum', **locals())
        if dtype_flag:
            out = helper.create_variable_for_type_inference(dtype=dtype)
        else:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_sum',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
1355

1356

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
def nan_to_num(x, nan=0.0, posinf=None, neginf=None, name=None):
    """
    Replaces NaN, positive infinity, and negative infinity values in input tensor.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        nan (float, optional): the value to replace NaNs with. Default is 0.
        posinf (float, optional): if a Number, the value to replace positive infinity values with. If None, positive infinity values are replaced with the greatest finite value representable by input’s dtype. Default is None.
        neginf (float, optional): if a Number, the value to replace negative infinity values with. If None, negative infinity values are replaced with the lowest finite value representable by input’s dtype. Default is None.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of nan_to_num operation input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([float('nan'), 0.3, float('+inf'), float('-inf')], dtype='float32')
            out1 = paddle.nan_to_num(x)  # [0, 0.3, 3.4028235e+38, -3.4028235e+38]
            out2 = paddle.nan_to_num(x, nan=1)  # [1, 0.3, 3.4028235e+38, -3.4028235e+38]
            out3 = paddle.nan_to_num(x, posinf=5)  # [0, 0.3, 5, -3.4028235e+38]
            out4 = paddle.nan_to_num(x, nan=10, neginf=-99)  # [10, 0.3, 3.4028235e+38, -99]
    """
    # NOTE(tiancaishaonvjituizi): it seems that paddle handles the dtype of python float number
    # incorrectly, so we have to explicitly contruct tensors here
    posinf_value = paddle.full_like(x, float("+inf"))
    neginf_value = paddle.full_like(x, float("-inf"))
    nan = paddle.full_like(x, nan)
    assert x.dtype in [paddle.float32, paddle.float64]
    is_float32 = x.dtype == paddle.float32
    if posinf is None:
        posinf = (
            np.finfo(np.float32).max if is_float32 else np.finfo(np.float64).max
        )
    posinf = paddle.full_like(x, posinf)
    if neginf is None:
        neginf = (
            np.finfo(np.float32).min if is_float32 else np.finfo(np.float64).min
        )
    neginf = paddle.full_like(x, neginf)
    x = paddle.where(paddle.isnan(x), nan, x)
    x = paddle.where(x == posinf_value, posinf, x)
    x = paddle.where(x == neginf_value, neginf, x)
    return x


W
wangguanqun 已提交
1405 1406 1407 1408 1409
def nansum(x, axis=None, dtype=None, keepdim=False, name=None):
    """
    Computes the sum of tensor elements over the given axis, treating Not a Numbers (NaNs) as zero.

    Args:
1410
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
W
wangguanqun 已提交
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
        axis (int|list|tuple, optional): The dimensions along which the nansum is performed. If
            :attr:`None`, nansum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
1422
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
wangguanqun 已提交
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435

    Returns:
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,

    Examples:
        .. code-block:: python

            import paddle

            # x is a Tensor with following elements:
            #    [[nan, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, -nan, 0.7]]
            # Each example is followed by the corresponding output tensor.
1436 1437
            x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
                            [0.1, 0.2, float('-nan'), 0.7]],dtype="float32")
W
wangguanqun 已提交
1438 1439 1440 1441 1442 1443 1444 1445 1446
            out1 = paddle.nansum(x)  # [2.7]
            out2 = paddle.nansum(x, axis=0)  # [0.1, 0.5, 0.5, 1.6]
            out3 = paddle.nansum(x, axis=-1)  # [1.7, 1.0]
            out4 = paddle.nansum(x, axis=1, keepdim=True)  # [[1.7], [1.0]]

            # y is a Tensor with shape [2, 2, 2] and elements as below:
            #      [[[1, nan], [3, 4]],
            #      [[5, 6], [-nan, 8]]]
            # Each example is followed by the corresponding output tensor.
1447
            y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
W
wangguanqun 已提交
1448 1449 1450 1451
                            [[5, 6], [float('-nan'), 8]]])
            out5 = paddle.nansum(y, axis=[1, 2]) # [8, 19]
            out6 = paddle.nansum(y, axis=[0, 1]) # [9, 18]
    """
1452
    check_variable_and_dtype(
1453
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'nansum'
1454
    )
W
wangguanqun 已提交
1455 1456 1457 1458 1459 1460 1461
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'nansum')

    zero_tensor = paddle.zeros_like(x)
    tmp_tensor = paddle.where(isnan(x), zero_tensor, x)
    return sum(tmp_tensor, axis, dtype, keepdim, name)


1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
def nanmean(x, axis=None, keepdim=False, name=None):
    r"""
    Compute the arithmetic mean along the specified axis, ignoring NaNs.

    Args:
        x (Tensor): The input Tensor with data type uint16, float16, float32, float64.
        axis (int|list|tuple, optional):The axis along which to perform nanmean
            calculations. ``axis`` should be int, list(int) or tuple(int). If
            ``axis`` is a list/tuple of dimension(s), nanmean is calculated along
            all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
            should be in range [-D, D), where D is the dimensions of ``x`` . If
            ``axis`` or element(s) of ``axis`` is less than 0, it works the
            same way as :math:`axis + D` . If ``axis`` is None, nanmean is
            calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of arithmetic mean along ``axis`` of ``x``, with the same data
        type as ``x``.

    Examples:

        .. code-block:: python
            :name: code-example1

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
                                  [0.1, 0.2, float('-nan'), 0.7]])
            out1 = paddle.nanmean(x)
            # [0.44999996]
            out2 = paddle.nanmean(x, axis=0)
            # [0.1, 0.25, 0.5, 0.79999995]
            out3 = paddle.nanmean(x, axis=0, keepdim=True)
            # [[0.1, 0.25, 0.5, 0.79999995]]
            out4 = paddle.nanmean(x, axis=1)
            # [0.56666666 0.33333334]
            out5 = paddle.nanmean(x, axis=1, keepdim=True)
            # [[0.56666666]
            #  [0.33333334]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
                                   [[5, 6], [float('-nan'), 8]]])
            out6 = paddle.nanmean(y, axis=[1, 2])
            # [2.66666675, 6.33333349]
            out7 = paddle.nanmean(y, axis=[0, 1])
            # [3., 6.]
    """
    if isinstance(axis, int):
        axis = [axis]
1519 1520 1521
    check_variable_and_dtype(
        x, 'x/input', ['uint16', 'float16', 'float32', 'float64'], 'nanmean'
    )
1522 1523 1524
    if axis is not None:
        check_type(axis, 'axis/dim', (int, list, tuple), 'nanmean')

1525 1526 1527
    cnt = paddle.sum(~paddle.isnan(x), axis=axis, keepdim=keepdim)
    return paddle.divide(
        paddle.nansum(x, axis=axis, keepdim=keepdim, name=name),
1528 1529
        cnt.astype(x.dtype),
    )
1530 1531


1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
def count_nonzero(x, axis=None, keepdim=False, name=None):
    r"""
    Counts the number of non-zero values in the tensor x along the specified axis.

    Args:
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of count operation on the specified axis of input Tensor `x`, it's data type is `'int64'`.

    Examples:

        .. code-block:: python

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]])
            out1 = paddle.count_nonzero(x)
            # [3]
            out2 = paddle.count_nonzero(x, axis=0)
            # [0, 1, 2]
            out3 = paddle.count_nonzero(x, axis=0, keepdim=True)
            # [[0, 1, 2]]
            out4 = paddle.count_nonzero(x, axis=1)
            # [2, 1, 0]
            out5 = paddle.count_nonzero(x, axis=1, keepdim=True)
            #[[2],
            # [1],
            # [0]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]],
                                  [[0., 2.5, 2.6], [0., 0., 2.4], [2.1, 2.2, 2.3]]])
            out6 = paddle.count_nonzero(y, axis=[1, 2])
            # [3, 6]
            out7 = paddle.count_nonzero(y, axis=[0, 1])
            # [1, 3, 5]
    """

    if axis is not None:
        if isinstance(axis, int):
            axis = [axis]
        dims = len(x.shape)
        for i in range(len(axis)):
1586 1587 1588
            if not isinstance(axis[i], int) or not (
                axis[i] < dims and axis[i] >= -dims
            ):
1589 1590 1591 1592 1593 1594 1595 1596 1597
                raise ValueError(
                    "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
                )

    bool_tensor = paddle.cast(x, 'bool')
    int_tensor = paddle.cast(bool_tensor, 'int64')
    return paddle.sum(int_tensor, axis=axis, keepdim=keepdim, name=name)


1598
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
1599
def add_n(inputs, name=None):
1600
    """
1601
    Sum one or more Tensor of the input.
1602

S
Steffy-zxf 已提交
1603 1604 1605
    For example:

    .. code-block:: text
1606

S
Steffy-zxf 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
1620

S
Steffy-zxf 已提交
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
1636 1637

    Args:
1638
        inputs (Tensor|list[Tensor]|tuple[Tensor]):  A Tensor or a list/tuple of Tensors. The shape and data type of the list/tuple elements should be consistent.
S
Steffy-zxf 已提交
1639
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
1640
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1641 1642

    Returns:
S
Steffy-zxf 已提交
1643
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
1644 1645 1646

    Examples:
        .. code-block:: python
1647

1648 1649
            import paddle

S
Steffy-zxf 已提交
1650 1651 1652
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
1653
            # [[8., 10., 12.],
S
Steffy-zxf 已提交
1654
            #  [14., 16., 18.]]
1655
    """
1656 1657 1658
    if in_dygraph_mode():
        if isinstance(inputs, Variable):
            inputs = [inputs]
1659
        return _C_ops.add_n(inputs)
1660
    else:
1661 1662
        helper = LayerHelper('add_n', **locals())
        check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
1663
        if isinstance(inputs, (list, tuple)):
1664 1665 1666 1667 1668
            if len(inputs) > 0:
                for input in inputs:
                    check_variable_and_dtype(
                        input,
                        "inputs",
1669 1670 1671 1672 1673 1674 1675 1676
                        [
                            'float16',
                            'float32',
                            'float64',
                            'int32',
                            'int64',
                            'uint16',
                        ],
1677 1678 1679 1680 1681 1682
                        'add_n',
                    )
        else:
            check_variable_and_dtype(
                inputs,
                "inputs",
1683
                ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
1684 1685
                'add_n',
            )
1686

1687 1688 1689 1690 1691 1692 1693 1694 1695
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('inputs')
        )
        helper.append_op(
            type='sum',
            inputs={'X': inputs},
            outputs={'Out': out},
            attrs={'use_mkldnn': False},
        )
1696

1697
        return out
1698 1699


1700 1701 1702
def trunc(input, name=None):
    '''
    This API is used to returns a new tensor with the truncated integer values of input.
1703

1704 1705 1706
    Args:
        input (Tensor): The input tensor, it's data type should be int32, int64, float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1707

1708 1709
    Returns:
        Tensor: The output Tensor of trunc.
1710

1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand([2,2],'float32')
            print(input)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0.02331470, 0.42374918],
            #         [0.79647720, 0.74970269]])

            output = paddle.trunc(input)
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0., 0.],
            #         [0., 0.]]))
    '''
J
Jiabin Yang 已提交
1728
    if in_dygraph_mode():
1729
        return _C_ops.trunc(input)
1730
    else:
1731 1732
        inputs = {"X": input}
        attrs = {}
1733

1734 1735 1736 1737 1738
        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(
            input, 'X', ['int32', 'int64', 'float32', 'float64'], 'trunc'
        )
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
1739

1740 1741 1742 1743
        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
1744 1745


W
WuHaobo 已提交
1746
def mm(input, mat2, name=None):
1747
    """
S
swtkiwi 已提交
1748

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
1760
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
1761
        mat2 (Tensor): The input tensor which is a Tensor.
1762
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1763 1764

    Returns:
N
Noel 已提交
1765
        Tensor: The product Tensor.
1766

W
wawltor 已提交
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
    ::

        * example 1:

        input: [B, ..., M, K], mat2: [B, ..., K, N]
        out: [B, ..., M, N]

        * example 2:

        input: [B, M, K], mat2: [B, K, N]
        out: [B, M, N]

        * example 3:

        input: [B, M, K], mat2: [K, N]
        out: [B, M, N]

        * example 4:

        input: [M, K], mat2: [K, N]
        out: [M, N]

        * example 5:

        input: [B, M, K], mat2: [K]
        out: [B, M]

        * example 6:

        input: [K], mat2: [K]
        out: [1]

1799 1800 1801 1802
    Examples:
        .. code-block:: python

            import paddle
1803 1804 1805 1806 1807 1808 1809 1810
            input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            out = paddle.mm(input, mat2)
            print(out)
            #        [[11., 14., 17., 20.],
            #         [23., 30., 37., 44.],
            #         [35., 46., 57., 68.]])

N
Noel 已提交
1811

1812
    """
1813
    if in_dygraph_mode():
1814
        return _C_ops.matmul(input, mat2, False, False)
1815
    else:
1816

1817 1818 1819 1820 1821
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float16', 'float32', 'float64'], 'mm'
1822
                )
1823 1824 1825 1826 1827 1828
            x_shape = list(x.shape)
            y_shape = list(y.shape)
            if len(x_shape) == 1:
                x_shape = [1] + x_shape
            if len(y_shape) == 1:
                y_shape = y_shape + [1]
1829

1830 1831 1832
            # check the inner 2 dimensions
            if x_shape[-1] != y_shape[-2]:
                if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
1833
                    raise ValueError(
1834 1835 1836 1837
                        "After performing an optional transpose, Input X's width should be "
                        "equal to Y's width for multiplication "
                        "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                        % (x_shape, y_shape)
1838
                    )
1839

1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
            if len(y_shape) > 2 and len(x_shape) > 2:
                for i, dim_x in enumerate(x_shape[:-2]):
                    # don't check neg shape
                    if dim_x < 0 or y_shape[i] < 0:
                        continue
                    if dim_x != y_shape[i]:
                        raise ValueError(
                            "When the matrix is larger than 2 dimensions, the higher "
                            "dimensional values of the two matrices need to be equal. "
                            "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                            "Y's shape: %s.\n" % (i, i, x_shape, y_shape)
                        )

        __check_input(input, mat2)

        helper = LayerHelper('mm', **locals())
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='matmul_v2',
            inputs={'X': input, 'Y': mat2},
            outputs={'Out': out},
        )
        return out
1863

1864

Y
yaoxuefeng 已提交
1865
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
1866 1867 1868
    """
    **addmm**

1869
    Perform matrix multiplication for input $x$ and $y$.
1870 1871 1872 1873 1874 1875 1876 1877 1878
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
1879 1880 1881
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
1882 1883
        beta (float, optional): Coefficient of $input$, default is 1.
        alpha (float, optional): Coefficient of $x*y$, default is 1.
1884
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1885 1886

    Returns:
1887
        Tensor: The output Tensor of addmm.
1888 1889 1890

    Examples:
        ..  code-block:: python
1891

1892 1893
            import paddle

Y
yaoxuefeng 已提交
1894 1895 1896
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
1897

Y
yaoxuefeng 已提交
1898
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
1899

N
Noel 已提交
1900
            print(out)
1901 1902 1903
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
1904 1905 1906
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
1907
    if not len(x_shape) == len(y_shape) == 2:
1908
        raise ValueError(
1909 1910 1911 1912
            "The dimention of x, y should be 2 but receive x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
Y
yaoxuefeng 已提交
1913
    if x_shape[1] != y_shape[0]:
1914
        raise ValueError(
1915 1916 1917 1918
            "The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(
                x_shape, y_shape
            )
        )
1919 1920 1921
    if len(input_shape) == 2:
        if input_shape[0] != x_shape[0]:
            if input_shape[0] != 1:
1922
                raise ValueError(
1923 1924 1925 1926
                    "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(
                        input_shape[0]
                    )
                )
1927
            if input_shape[1] != y_shape[1] and input_shape[1] != 1:
1928
                raise ValueError(
1929 1930 1931 1932
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
1933 1934
        if input_shape[1] != y_shape[1]:
            if input_shape[1] != 1:
1935
                raise ValueError(
1936 1937 1938 1939
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
1940 1941
    elif len(input_shape) == 1:
        if input_shape[0] not in (y_shape[1], 1):
1942
            raise ValueError(
1943 1944 1945 1946
                "The input's shape: {} is not broadcastable with [x.shape[0], y.shape[1]]: [{},{}]".format(
                    input_shape, x_shape[0], y_shape[1]
                )
            )
1947
    else:
1948
        raise ValueError(
1949 1950 1951 1952
            "The dimention of input should be 2 or 1 but receive input's shape: {}".format(
                input_shape
            )
        )
Y
yaoxuefeng 已提交
1953

J
Jiabin Yang 已提交
1954
    if in_dygraph_mode():
1955
        return _C_ops.addmm(input, x, y, beta, alpha)
J
Jiabin Yang 已提交
1956
    else:
1957 1958
        inputs = {'Input': input, "X": x, "Y": y}
        attrs = {'Alpha': alpha, 'Beta': beta}
1959

1960 1961 1962 1963 1964 1965 1966
        helper = LayerHelper("addmm", **locals())
        check_variable_and_dtype(
            input, 'Input', ['float32', 'float64'], 'addmm'
        )
        check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
        check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1967

1968 1969 1970 1971
        helper.append_op(
            type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
1972

1973

S
seemingwang 已提交
1974 1975 1976 1977 1978 1979 1980
def renorm(x, p, axis, max_norm):
    """
    **renorm**

    This operator is used to calculate the p-norm along the axis,
    suppose the input-shape on axis dimension has the value of T, then
    the tensor is split into T parts, the p-norm should be calculated for each
1981
    part, if the p-norm for part i is larger than max-norm, then each element
S
seemingwang 已提交
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
    in part i should be re-normalized at the same scale so that part-i' p-norm equals
    max-norm exactly, otherwise part-i stays unchanged.

    Args:
        x (Tensor): The input Tensor
        p (float): The power of the norm operation.
        axis (int): the dimension to slice the tensor.
        max-norm (float): the maximal norm limit.

    Returns:
        Tensor: the renorm Tensor.

    Examples:
        ..  code-block:: python
1996

S
seemingwang 已提交
1997 1998 1999 2000
            import paddle
            input = [[[2.0,2,-2],[3,0.3,3]],[[2,-8,2],[3.1,3.7,3]]]
            x = paddle.to_tensor(input,dtype='float32')
            y = paddle.renorm(x, 1.0, 2, 2.05)
2001
            print(y)
S
seemingwang 已提交
2002 2003 2004 2005
    #        [[[ 0.40594056,  0.29285714, -0.41000000],
    #          [ 0.60891086,  0.04392857,  0.61500001]],
    #         [[ 0.40594056, -1.17142856,  0.41000000],
    #          [ 0.62920785,  0.54178572,  0.61500001]]])
2006

S
seemingwang 已提交
2007 2008 2009
    """
    input_shape = x.shape
    if not axis < len(input_shape):
2010 2011
        raise ValueError(
            "the axis:{} should be less then the shape's size {}:{}".format(
2012 2013 2014
                axis, len(input_shape), input_shape
            )
        )
2015
    if not axis >= 0:
S
seemingwang 已提交
2016
        if not axis >= -1 * len(input_shape):
2017
            raise ValueError(
2018 2019 2020 2021
                "the axis:{} should not be less than -1 * length of input_shape:{}".format(
                    axis, -1 * len(input_shape)
                )
            )
S
seemingwang 已提交
2022
        axis = axis + len(input_shape)
S
seemingwang 已提交
2023
    if in_dygraph_mode():
2024
        out = _C_ops.renorm(x, p, axis, max_norm)
S
seemingwang 已提交
2025
        return out
2026
    else:
2027
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'renorm')
2028 2029
        inputs = {'X': x}
        attrs = {'p': p, 'axis': axis, 'max_norm': max_norm}
S
seemingwang 已提交
2030

2031 2032
        helper = LayerHelper("renorm", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
seemingwang 已提交
2033

2034 2035 2036 2037
        helper.append_op(
            type="renorm", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
S
seemingwang 已提交
2038

2039

Z
zhiboniu 已提交
2040 2041 2042 2043
def inner(x, y, name=None):
    """

    Inner product of two input Tensor.
2044

Z
zhiboniu 已提交
2045 2046 2047 2048 2049
    Ordinary inner product for 1-D Tensors, in higher dimensions a sum product over the last axes.

    Args:
        x (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match y's.
        y (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match x's.
2050
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072

    Returns:
        Tensor: The inner-product Tensor, the output shape is x.shape[:-1] + y.shape[:-1].

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 7).reshape((2, 3)).astype('float32')
            y = paddle.arange(1, 10).reshape((3, 3)).astype('float32')
            out = paddle.inner(x, y)
            print(out)
            #        ([[14, 32, 50],
            #         [32, 77, 122]])


    """
    if x.size == 1 or y.size == 1:
        return multiply(x, y)
    else:
        xshape = x.shape
        yshape = y.shape
2073
        dstshape = list(xshape[:-1]) + list(yshape[:-1])
2074

Z
zhiboniu 已提交
2075 2076 2077
        nx = x.reshape((-1, xshape[-1]))
        ny = y.reshape((-1, yshape[-1]))

2078
        if in_dygraph_mode():
2079
            return _C_ops.matmul(nx, ny.T, False, False).reshape(dstshape)
2080
        else:
Z
zhiboniu 已提交
2081

2082 2083 2084 2085 2086
            def __check_input(x, y):
                var_names = {'x': x, 'y': y}
                for name, val in var_names.items():
                    check_variable_and_dtype(
                        val, name, ['float16', 'float32', 'float64'], 'inner'
2087
                    )
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
                x_shape = list(xshape)
                y_shape = list(yshape)

                # check the inner 2 dimensions
                if x_shape[-1] != y_shape[-1]:
                    if not ((x_shape[-1] == -1) or (y_shape[-1] == -1)):
                        raise ValueError(
                            "After performing an optional transpose, Input X's last dim should be "
                            "equal to Y's last dim for multiplication "
                            "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                            % (x_shape, y_shape)
                        )

            __check_input(nx, ny)

            helper = LayerHelper('inner', **locals())
            out = helper.create_variable_for_type_inference(dtype=nx.dtype)
            helper.append_op(
                type='matmul_v2',
                inputs={'X': nx, 'Y': ny.T},
                outputs={'Out': out},
            )
            return out.reshape(dstshape)
Z
zhiboniu 已提交
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120


def outer(x, y, name=None):
    """

    Outer product of two Tensors.

    Input is flattened if not already 1-dimensional.

    Args:
2121 2122
        x (Tensor): An N-D Tensor or a Scalar Tensor.
        y (Tensor): An N-D Tensor or a Scalar Tensor.
2123
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144

    Returns:
        Tensor: The outer-product Tensor.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 4).astype('float32')
            y = paddle.arange(1, 6).astype('float32')
            out = paddle.outer(x, y)
            print(out)
            #        ([[1, 2, 3, 4, 5],
            #         [2, 4, 6, 8, 10],
            #         [3, 6, 9, 12, 15]])


    """
    nx = x.reshape((-1, 1))
    ny = y.reshape((1, -1))

2145
    if in_dygraph_mode():
2146
        return _C_ops.matmul(nx, ny, False, False)
2147
    else:
Z
zhiboniu 已提交
2148

2149 2150 2151 2152 2153 2154
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float16', 'float32', 'float64'], 'inner'
                )
Z
zhiboniu 已提交
2155

2156
        __check_input(nx, ny)
Z
zhiboniu 已提交
2157

2158 2159 2160 2161 2162 2163
        helper = LayerHelper('outer', **locals())
        out = helper.create_variable_for_type_inference(dtype=nx.dtype)
        helper.append_op(
            type='matmul_v2', inputs={'X': nx, 'Y': ny}, outputs={'Out': out}
        )
        return out
Z
zhiboniu 已提交
2164 2165


2166
def logsumexp(x, axis=None, keepdim=False, name=None):
2167
    r"""
2168
    Calculates the log of the sum of exponentials of ``x`` along ``axis`` .
2169

2170
    .. math::
2171
       logsumexp(x) = \log\sum exp(x)
2172

2173
    Args:
2174
        x (Tensor): The input Tensor with data type float16, float32 or float64, which
S
Shang Zhizhou 已提交
2175
            have no more than 4 dimensions.
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2192

2193
    Returns:
2194 2195
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
2196

2197
    Examples:
2198

2199
    .. code-block:: python
2200

2201 2202
        import paddle

2203
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
2204 2205
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
2206 2207

    """
2208
    reduce_all, axis = _get_reduce_axis(axis, x)
2209

2210
    if in_dygraph_mode():
2211
        return _C_ops.logsumexp(x, axis, keepdim, reduce_all)
2212
    else:
2213
        check_variable_and_dtype(
2214
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'logsumexp'
2215
        )
2216 2217 2218 2219 2220 2221

        helper = LayerHelper('logsumexp', **locals())
        attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all': reduce_all}
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs
2222
        )
2223
        return out
2224

S
swtkiwi 已提交
2225

2226 2227
def inverse(x, name=None):
    """
2228 2229 2230 2231 2232
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
2233
        x (Tensor): The input tensor. The last two
2234 2235 2236
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
2237
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2238 2239

    Returns:
2240
        Tensor: A Tensor holds the inverse of x. The shape and data type
2241
                        is the same as x.
2242 2243 2244 2245 2246

    Examples:
        .. code-block:: python

            import paddle
2247 2248

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
2249 2250
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
2251 2252

    """
2253
    if in_dygraph_mode():
W
wanghuancoder 已提交
2254
        return _C_ops.inverse(x)
2255
    else:
2256

2257 2258 2259 2260 2261 2262 2263 2264
        def _check_input(x):
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'inverse')
            if len(x.shape) < 2:
                raise ValueError(
                    "The input of inverse is expected to be a Tensor whose number "
                    "of dimensions is no less than 2. But reviced: %d, "
                    "x's shape: %s." % (len(x.shape), x.shape)
                )
2265

2266 2267 2268 2269 2270 2271 2272
        _check_input(x)
        helper = LayerHelper('inverse', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='inverse', inputs={'Input': [x]}, outputs={'Output': [out]}
        )
        return out
2273

2274

2275
def max(x, axis=None, keepdim=False, name=None):
2276
    """
S
swtkiwi 已提交
2277

2278
    Computes the maximum of tensor elements over the given axis.
2279

T
Tao Luo 已提交
2280 2281
    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2282
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2283 2284 2285
        while max propagates gradient to all of them.


2286
    Args:
2287 2288
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
2289
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
2290
            `x` and return a Tensor with a single element,
2291 2292
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2293
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2294
            output Tensor. The result tensor will have one fewer dimension
2295
            than the `x` unless :attr:`keepdim` is true, default
2296
            value is False.
2297
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2298 2299

    Returns:
2300
        Tensor, results of maximum on the specified axis of input tensor,
2301
        it's data type is the same as `x`.
2302 2303 2304

    Examples:
        .. code-block:: python
2305

2306
            import paddle
2307

N
Noel 已提交
2308
            # data_x is a Tensor with shape [2, 4]
2309
            # the axis is a int element
2310
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2311
                                  [0.1, 0.2, 0.6, 0.7]],
2312
                                 dtype='float64', stop_gradient=False)
2313
            result1 = paddle.max(x)
2314
            result1.backward()
2315
            print(result1, x.grad)
2316 2317 2318
            #[0.9], [[0., 0., 0., 1.], [0., 0., 0., 0.]]

            x.clear_grad()
2319
            result2 = paddle.max(x, axis=0)
2320
            result2.backward()
2321
            print(result2, x.grad)
2322 2323 2324
            #[0.2, 0.3, 0.6, 0.9], [[1., 1., 0., 1.], [0., 0., 1., 0.]]

            x.clear_grad()
2325
            result3 = paddle.max(x, axis=-1)
2326
            result3.backward()
2327
            print(result3, x.grad)
2328 2329 2330
            #[0.9, 0.7], [[0., 0., 0., 1.], [0., 0., 0., 1.]]

            x.clear_grad()
2331
            result4 = paddle.max(x, axis=1, keepdim=True)
2332
            result4.backward()
2333
            print(result4, x.grad)
2334
            #[[0.9], [0.7]], [[0., 0., 0., 1.], [0., 0., 0., 1.]]
2335

N
Noel 已提交
2336
            # data_y is a Tensor with shape [2, 2, 2]
2337
            # the axis is list
2338
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2339 2340
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2341
            result5 = paddle.max(y, axis=[1, 2])
2342
            result5.backward()
2343
            print(result5, y.grad)
2344 2345 2346
            #[4., 8.], [[[0., 0.], [0., 1.]], [[0., 0.], [0., 1.]]]

            y.clear_grad()
2347
            result6 = paddle.max(y, axis=[0, 1])
2348
            result6.backward()
2349
            print(result6, y.grad)
2350
            #[7., 8.], [[[0., 0.], [0., 0.]], [[0., 0.], [1., 1.]]]
2351 2352
    """

2353
    if in_dygraph_mode():
2354
        return _C_ops.max(x, axis, keepdim)
2355 2356 2357 2358
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        helper = LayerHelper('max', **locals())
        check_variable_and_dtype(
2359 2360 2361 2362
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            'max',
2363
        )
2364 2365
        if not isinstance(axis, Variable) and paddle.utils._contain_var(axis):
            axis = paddle.utils._convert_to_tensor_list(axis)
2366

2367 2368 2369 2370 2371 2372 2373 2374
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_max',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
2375

2376

2377
def min(x, axis=None, keepdim=False, name=None):
2378
    """
S
swtkiwi 已提交
2379

2380
    Computes the minimum of tensor elements over the given axis
2381

T
Tao Luo 已提交
2382 2383
    Note:
        The difference between min and amin is: If there are multiple minimum elements,
2384
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2385 2386
        while min propagates gradient to all of them.

2387
    Args:
2388 2389
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
2390
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
2391
            `x` and return a Tensor with a single element,
2392 2393
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2394
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2395
            output Tensor. The result tensor will have one fewer dimension
2396
            than the `x` unless :attr:`keepdim` is true, default
2397
            value is False.
2398
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2399

2400
    Returns:
2401
        Tensor, results of minimum on the specified axis of input tensor,
2402
        it's data type is the same as input's Tensor.
2403

2404 2405 2406
    Examples:
        .. code-block:: python

2407
            import paddle
2408

2409
            # data_x is a Tensor with shape [2, 4]
2410
            # the axis is a int element
2411
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2412
                                  [0.1, 0.2, 0.6, 0.7]],
2413
                                 dtype='float64', stop_gradient=False)
2414
            result1 = paddle.min(x)
2415
            result1.backward()
2416
            print(result1, x.grad)
2417 2418 2419
            #[0.1], [[0., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2420
            result2 = paddle.min(x, axis=0)
2421
            result2.backward()
2422
            print(result2, x.grad)
2423 2424 2425
            #[0.1, 0.2, 0.5, 0.7], [[0., 0., 1., 0.], [1., 1., 0., 1.]]

            x.clear_grad()
2426
            result3 = paddle.min(x, axis=-1)
2427
            result3.backward()
2428
            print(result3, x.grad)
2429 2430 2431
            #[0.2, 0.1], [[1., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2432
            result4 = paddle.min(x, axis=1, keepdim=True)
2433
            result4.backward()
2434
            print(result4, x.grad)
2435
            #[[0.2], [0.1]], [[1., 0., 0., 0.], [1., 0., 0., 0.]]
2436

2437
            # data_y is a Tensor with shape [2, 2, 2]
2438
            # the axis is list
2439
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2440 2441
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2442
            result5 = paddle.min(y, axis=[1, 2])
2443
            result5.backward()
2444
            print(result5, y.grad)
2445 2446 2447
            #[1., 5.], [[[1., 0.], [0., 0.]], [[1., 0.], [0., 0.]]]

            y.clear_grad()
2448
            result6 = paddle.min(y, axis=[0, 1])
2449
            result6.backward()
2450
            print(result6, y.grad)
2451
            #[1., 2.], [[[1., 1.], [0., 0.]], [[0., 0.], [0., 0.]]]
2452
    """
2453

2454
    if in_dygraph_mode():
2455
        return _C_ops.min(x, axis, keepdim)
2456 2457 2458 2459
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        helper = LayerHelper('min', **locals())
        check_variable_and_dtype(
2460 2461 2462 2463
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            'min',
2464
        )
2465

2466 2467 2468 2469 2470 2471 2472 2473
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_min',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
2474

2475

T
Tao Luo 已提交
2476 2477 2478 2479 2480 2481
def amax(x, axis=None, keepdim=False, name=None):
    """
    Computes the maximum of tensor elements over the given axis.

    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2482
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2483 2484 2485
        while max propagates gradient to all of them.

    Args:
2486
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2487
            the dimension is no more than 4.
2488
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
T
Tao Luo 已提交
2489 2490 2491 2492
            If :attr:`None`, compute the maximum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2493
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2494 2495 2496
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2497
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510

    Returns:
        Tensor, results of maximum on the specified axis of input tensor,
        it's data type is the same as `x`.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple maximum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.1, 0.9, 0.9, 0.9],
2511
                                  [0.9, 0.9, 0.6, 0.7]],
T
Tao Luo 已提交
2512
                                 dtype='float64', stop_gradient=False)
2513 2514
            # There are 5 maximum elements:
            # 1) amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2515
            #    thus the corresponding gradients are 1/5=0.2;
2516
            # 2) while max propagates gradient to all of them,
T
Tao Luo 已提交
2517
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2518 2519
            result1 = paddle.amax(x)
            result1.backward()
2520
            print(result1, x.grad)
T
Tao Luo 已提交
2521 2522
            #[0.9], [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]

T
Tao Luo 已提交
2523 2524 2525
            x.clear_grad()
            result1_max = paddle.max(x)
            result1_max.backward()
2526
            print(result1_max, x.grad)
T
Tao Luo 已提交
2527 2528 2529 2530
            #[0.9], [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]

            ###############################

T
Tao Luo 已提交
2531 2532 2533
            x.clear_grad()
            result2 = paddle.amax(x, axis=0)
            result2.backward()
2534
            print(result2, x.grad)
T
Tao Luo 已提交
2535 2536 2537 2538 2539
            #[0.9, 0.9, 0.9, 0.9], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amax(x, axis=-1)
            result3.backward()
2540
            print(result3, x.grad)
T
Tao Luo 已提交
2541 2542 2543 2544 2545
            #[0.9, 0.9], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amax(x, axis=1, keepdim=True)
            result4.backward()
2546
            print(result4, x.grad)
T
Tao Luo 已提交
2547 2548 2549
            #[[0.9], [0.9]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
2550
            # the axis is list
T
Tao Luo 已提交
2551 2552 2553 2554 2555
            y = paddle.to_tensor([[[0.1, 0.9], [0.9, 0.9]],
                                  [[0.9, 0.9], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amax(y, axis=[1, 2])
            result5.backward()
2556
            print(result5, y.grad)
T
Tao Luo 已提交
2557 2558 2559 2560 2561
            #[0.9., 0.9], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amax(y, axis=[0, 1])
            result6.backward()
2562
            print(result6, y.grad)
T
Tao Luo 已提交
2563 2564
            #[0.9., 0.9], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """
2565
    if in_dygraph_mode():
2566
        return _C_ops.amax(x, axis, keepdim)
2567

2568 2569 2570 2571 2572
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        helper = LayerHelper('amax', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amax'
2573
        )
T
Tao Luo 已提交
2574

2575 2576 2577 2578 2579 2580 2581 2582
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_amax',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
T
Tao Luo 已提交
2583

2584

T
Tao Luo 已提交
2585 2586 2587 2588 2589 2590 2591
def amin(x, axis=None, keepdim=False, name=None):
    """

    Computes the minimum of tensor elements over the given axis

    Note:
        The difference between min and amin is: If there are multiple minimum elements,
2592
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2593 2594 2595
        while min propagates gradient to all of them.

    Args:
2596
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2597
            the dimension is no more than 4.
2598
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
T
Tao Luo 已提交
2599 2600 2601 2602
            If :attr:`None`, compute the minimum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2603
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2604 2605 2606
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2607
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620

    Returns:
        Tensor, results of minimum on the specified axis of input tensor,
        it's data type is the same as input's Tensor.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple minimum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.2, 0.1, 0.1, 0.1],
2621
                                  [0.1, 0.1, 0.6, 0.7]],
T
Tao Luo 已提交
2622
                                 dtype='float64', stop_gradient=False)
2623 2624
            # There are 5 minimum elements:
            # 1) amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2625
            #    thus the corresponding gradients are 1/5=0.2;
2626
            # 2) while min propagates gradient to all of them,
T
Tao Luo 已提交
2627
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2628 2629
            result1 = paddle.amin(x)
            result1.backward()
2630
            print(result1, x.grad)
T
Tao Luo 已提交
2631 2632
            #[0.1], [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]

T
Tao Luo 已提交
2633 2634 2635
            x.clear_grad()
            result1_min = paddle.min(x)
            result1_min.backward()
2636
            print(result1_min, x.grad)
T
Tao Luo 已提交
2637 2638 2639 2640
            #[0.1], [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]

            ###############################

T
Tao Luo 已提交
2641 2642 2643
            x.clear_grad()
            result2 = paddle.amin(x, axis=0)
            result2.backward()
2644
            print(result2, x.grad)
T
Tao Luo 已提交
2645 2646 2647 2648 2649
            #[0.1, 0.1, 0.1, 0.1], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amin(x, axis=-1)
            result3.backward()
2650
            print(result3, x.grad)
T
Tao Luo 已提交
2651 2652 2653 2654 2655
            #[0.1, 0.1], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amin(x, axis=1, keepdim=True)
            result4.backward()
2656
            print(result4, x.grad)
T
Tao Luo 已提交
2657 2658 2659
            #[[0.1], [0.1]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
2660
            # the axis is list
T
Tao Luo 已提交
2661 2662 2663 2664 2665
            y = paddle.to_tensor([[[0.2, 0.1], [0.1, 0.1]],
                                  [[0.1, 0.1], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amin(y, axis=[1, 2])
            result5.backward()
2666
            print(result5, y.grad)
T
Tao Luo 已提交
2667 2668 2669 2670 2671
            #[0.1., 0.1], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amin(y, axis=[0, 1])
            result6.backward()
2672
            print(result6, y.grad)
T
Tao Luo 已提交
2673 2674
            #[0.1., 0.1], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """
2675
    if in_dygraph_mode():
2676
        return _C_ops.amin(x, axis, keepdim)
2677

2678 2679 2680 2681 2682
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        helper = LayerHelper('amin', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amin'
2683
        )
T
Tao Luo 已提交
2684

2685 2686 2687 2688 2689 2690 2691 2692
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_amin',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
T
Tao Luo 已提交
2693

2694

W
WuHaobo 已提交
2695
def log1p(x, name=None):
2696
    r"""
2697
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
2698

2699
    .. math::
2700
        Out = \ln(x+1)
S
Steffy-zxf 已提交
2701

2702
    Args:
2703
        x (Tensor): Input Tensor. Must be one of the following types: float16, float32, float64.
2704
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2705

2706
    Returns:
S
Steffy-zxf 已提交
2707
        Tensor, the natural log of the input Tensor computed element-wise.
2708

2709 2710
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
2711

2712
            import paddle
S
Steffy-zxf 已提交
2713 2714 2715 2716

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
2717 2718
    """

2719
    if in_dygraph_mode():
W
wanghuancoder 已提交
2720
        return _C_ops.log1p(x)
2721
    else:
2722
        check_variable_and_dtype(
2723
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], "log1p"
2724
        )
2725 2726 2727 2728 2729 2730
        inputs = {'X': [x]}
        helper = LayerHelper('log1p', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
        return out
B
Bai Yifan 已提交
2731

2732

J
joejiong 已提交
2733
def log2(x, name=None):
2734
    r"""
J
joejiong 已提交
2735 2736 2737 2738
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

2739
        Out = \log_2x
J
joejiong 已提交
2740 2741 2742

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
2743
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2744 2745 2746 2747 2748 2749 2750 2751


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
2752

J
joejiong 已提交
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [2.0]])
            res = paddle.log2(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]
    """
2771
    if in_dygraph_mode():
W
wanghuancoder 已提交
2772
        return _C_ops.log2(x)
2773 2774
    else:
        check_variable_and_dtype(
2775
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], "log2"
2776 2777 2778 2779 2780 2781 2782
        )
        inputs = {'X': [x]}
        helper = LayerHelper('log2', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
        return out
W
WuHaobo 已提交
2783

J
joejiong 已提交
2784 2785

def log10(x, name=None):
2786
    r"""
J
joejiong 已提交
2787 2788 2789 2790
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

2791
        Out = \log_10_x
J
joejiong 已提交
2792 2793 2794

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
2795
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2796 2797 2798 2799 2800 2801 2802 2803


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
2804

J
joejiong 已提交
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [10.0]])
            res = paddle.log10(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]
    """
2823
    if in_dygraph_mode():
W
wanghuancoder 已提交
2824
        return _C_ops.log10(x)
2825 2826
    else:
        check_variable_and_dtype(
2827
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], "log10"
2828 2829 2830 2831 2832 2833 2834
        )
        inputs = {'X': [x]}
        helper = LayerHelper('log10', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
        return out
J
joejiong 已提交
2835 2836


Y
Yang Zhang 已提交
2837
def clip(x, min=None, max=None, name=None):
2838
    """
Y
Yang Zhang 已提交
2839
    This operator clip all elements in input into the range [ min, max ] and return
2840 2841 2842 2843
    a resulting tensor as the following equation:

    .. math::

2844
        Out = MIN(MAX(x, min), max)
2845 2846

    Args:
2847
        x (Tensor): An N-D Tensor with data type float16, float32, float64, int32 or int64.
2848
        min (float|int|Tensor, optional): The lower bound with type ``float`` , ``int`` or a ``Tensor``
2849
            with shape [1] and type ``int32``, ``float16``, ``float32``, ``float64``.
2850
        max (float|int|Tensor, optional): The upper bound with type ``float``, ``int`` or a ``Tensor``
2851
            with shape [1] and type ``int32``, ``float16``, ``float32``, ``float64``.
2852
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2853 2854

    Returns:
Y
Yang Zhang 已提交
2855
        Tensor: A Tensor with the same data type and data shape as input.
2856 2857 2858 2859 2860

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
2861

2862
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
2863 2864
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
2865
            print(out1)
Y
Yang Zhang 已提交
2866 2867
            # [[3.5, 3.5]
            # [4.5, 5.0]]
2868
            print(out2)
Y
Yang Zhang 已提交
2869 2870
            # [[2.5, 3.5]
            # [[4.5, 6.4]
2871 2872
    """

2873 2874 2875 2876 2877 2878 2879
    x_dtype = str(x.dtype)
    if x_dtype == 'paddle.int32':
        min_ = np.iinfo(np.int32).min
        max_ = np.iinfo(np.int32).max - 2**7
    elif x_dtype == 'paddle.int64':
        min_ = np.iinfo(np.int64).min
        max_ = np.iinfo(np.int64).max - 2**39
2880 2881 2882
    elif x_dtype == 'paddle.float16':
        min_ = float(np.finfo(np.float16).min)
        max_ = float(np.finfo(np.float16).max)
2883 2884 2885
    else:
        min_ = float(np.finfo(np.float32).min)
        max_ = float(np.finfo(np.float32).max)
2886

C
chentianyu03 已提交
2887 2888
    if in_dygraph_mode():
        if isinstance(min, Variable):
2889
            min = min.item(0)
C
chentianyu03 已提交
2890
        if isinstance(max, Variable):
2891
            max = max.item(0)
C
chentianyu03 已提交
2892 2893
        min = min_ if min is None else min
        max = max_ if max is None else max
2894
        return _C_ops.clip(x, min, max)
2895 2896 2897 2898 2899 2900 2901
    else:
        if min is not None:
            check_type(min, 'min', (float, int, Variable), 'clip')
            if isinstance(min, Variable):
                check_dtype(
                    min.dtype,
                    'min',
2902
                    ['float16', 'float32', 'float64', 'int32', 'uint16'],
2903 2904 2905 2906 2907 2908 2909 2910 2911
                    'clip',
                    '(When the type of min in clip is Variable.)',
                )
        if max is not None:
            check_type(max, 'max', (float, int, Variable), 'clip')
            if isinstance(max, Variable):
                check_dtype(
                    max.dtype,
                    'max',
2912
                    ['float16', 'float32', 'float64', 'int32', 'uint16'],
2913 2914 2915
                    'clip',
                    '(When the type of max in clip is Variable.)',
                )
C
chentianyu03 已提交
2916

2917
        check_variable_and_dtype(
2918 2919 2920 2921
            x,
            'x',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
            'clip',
2922
        )
Y
Yang Zhang 已提交
2923

2924 2925
        inputs = {'X': x}
        attrs = {'min': min_, 'max': max_}
2926

2927 2928 2929 2930 2931
        if isinstance(min, Variable):
            min.stop_gradient = True
            inputs['Min'] = min
        elif min is not None:
            attrs['min'] = min
2932

2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
        if isinstance(max, Variable):
            max.stop_gradient = True
            inputs['Max'] = max
        elif max is not None:
            attrs['max'] = max

        helper = LayerHelper('clip', **locals())
        output = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('x')
        )
        helper.append_op(
            type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs
        )
2946

2947
        return output
F
Feiyu Chan 已提交
2948

W
WuHaobo 已提交
2949

2950 2951 2952 2953 2954 2955 2956 2957 2958
@inplace_apis_in_dygraph_only
def clip_(x, min=None, max=None, name=None):
    """
    Inplace version of ``clip`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_clip`.
    """
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
    if isinstance(min, Variable):
2959
        min = min.item(0)
2960
    if isinstance(max, Variable):
2961
        max = max.item(0)
2962 2963
    min = fmin if min is None else min
    max = fmax if max is None else max
C
chentianyu03 已提交
2964 2965

    if in_dygraph_mode():
2966
        return _C_ops.clip_(x, min, max)
C
chentianyu03 已提交
2967

2968

2969
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
2970
    """
S
swtkiwi 已提交
2971

2972
    Computes the sum along diagonals of the input tensor x.
2973 2974

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
2975

2976
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
2977
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
2978
    of the input tensor x.
L
Li Fuchen 已提交
2979

2980
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
2981 2982 2983 2984

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
2985
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
2986

L
Li Fuchen 已提交
2987
    Args:
2988 2989 2990 2991 2992
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
L
Li Fuchen 已提交
2993 2994

    Returns:
2995
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
2996 2997 2998 2999 3000

    Examples:
        .. code-block:: python

            import paddle
3001

3002 3003 3004
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
3005 3006 3007
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
3008
    """
3009

Z
zyfncg 已提交
3010
    def __check_input(x, offset, axis1, axis2):
3011 3012 3013 3014 3015 3016
        check_dtype(
            x.dtype,
            'Input',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'trace',
        )
L
Li Fuchen 已提交
3017

3018
        input_shape = list(x.shape)
3019 3020 3021 3022
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "But received Input x's dimensional: %s.\n" % len(input_shape)
        )
L
Li Fuchen 已提交
3023

3024 3025
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
3026

3027 3028
        assert (0 <= axis1_) and (axis1_ < len(input_shape)), (
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
3029
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
3030
        )
L
Li Fuchen 已提交
3031

3032 3033
        assert (0 <= axis2_) and (axis2_ < len(input_shape)), (
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
3034
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
3035
        )
L
Li Fuchen 已提交
3036

3037 3038 3039 3040
        assert axis1_ != axis2_, (
            "axis1 and axis2 cannot be the same axis."
            "But received axis1 = %d, axis2 = %d\n" % (axis1, axis2)
        )
L
Li Fuchen 已提交
3041

H
hong 已提交
3042
    if in_dygraph_mode():
3043
        return _C_ops.trace(x, offset, axis1, axis2)
3044 3045
    else:
        __check_input(x, offset, axis1, axis2)
H
hong 已提交
3046

3047 3048
        helper = LayerHelper('trace', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
3049

3050 3051 3052 3053 3054 3055 3056
        helper.append_op(
            type='trace',
            inputs={'Input': [x]},
            attrs={'offset': offset, 'axis1': axis1, 'axis2': axis2},
            outputs={'Out': [out]},
        )
        return out
L
Li Fuchen 已提交
3057

3058

3059 3060
def diagonal(x, offset=0, axis1=0, axis2=1, name=None):
    """
3061
    Computes the diagonals of the input tensor x.
3062 3063

    If ``x`` is 2D, returns the diagonal.
3064
    If ``x`` has larger dimensions, diagonals be taken from the 2D planes specified by axis1 and axis2.
3065 3066 3067 3068 3069 3070 3071
    By default, the 2D planes formed by the first and second axis of the input tensor x.

    The argument ``offset`` determines where diagonals are taken from input tensor x:

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
3072

3073
    Args:
3074 3075 3076 3077 3078
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be bool, int32, int64, float16, float32, float64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121

    Returns:
        Tensor: a partial view of input tensor in specify two dimensions, the output data type is the same as input data type.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([2,2,3],'float32')
            print(x)
            # Tensor(shape=[2, 2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[[0.45661032, 0.03751532, 0.90191704],
            #          [0.43760979, 0.86177313, 0.65221709]],

            #         [[0.17020577, 0.00259554, 0.28954273],
            #          [0.51795638, 0.27325270, 0.18117726]]])

            out1 = paddle.diagonal(x)
            print(out1)
            #Tensor(shape=[3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.51795638],
            #        [0.03751532, 0.27325270],
            #        [0.90191704, 0.18117726]])

            out2 = paddle.diagonal(x, offset=0, axis1=2, axis2=1)
            print(out2)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])

            out3 = paddle.diagonal(x, offset=1, axis1=0, axis2=1)
            print(out3)
            #Tensor(shape=[3, 1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.43760979],
            #        [0.86177313],
            #        [0.65221709]])

            out4 = paddle.diagonal(x, offset=0, axis1=1, axis2=2)
            print(out4)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])
3122

3123
    """
J
Jiabin Yang 已提交
3124
    if in_dygraph_mode():
3125
        return _C_ops.diagonal(x, offset, axis1, axis2)
J
Jiabin Yang 已提交
3126
    else:
W
wanghuancoder 已提交
3127

3128 3129 3130 3131
        def __check_input(x, offset, axis1, axis2):
            check_dtype(
                x.dtype,
                'Input',
3132 3133 3134 3135 3136 3137 3138 3139 3140
                [
                    'bool',
                    'int32',
                    'int64',
                    'float16',
                    'uint16',
                    'float32',
                    'float64',
                ],
3141 3142
                'diagonal',
            )
3143

3144 3145 3146 3147 3148
            input_shape = list(x.shape)
            assert len(input_shape) >= 2, (
                "The x must be at least 2-dimensional, "
                "But received Input x's dimensional: %s.\n" % len(input_shape)
            )
3149

3150 3151
            axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
            axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
3152

3153 3154 3155 3156
            assert axis1_ < len(input_shape), (
                "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
                % (-(len(input_shape)), len(input_shape) - 1, axis1)
            )
3157

3158 3159 3160 3161
            assert axis2_ < len(input_shape), (
                "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
                % (-(len(input_shape)), len(input_shape) - 1, axis2)
            )
3162

3163 3164 3165 3166
            assert axis1_ != axis2_, (
                "axis1 and axis2 cannot be the same axis."
                "But received axis1 = %d, axis2 = %d\n" % (axis1, axis2)
            )
3167

3168 3169 3170
        __check_input(x, offset, axis1, axis2)
        helper = LayerHelper('diagonal', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
3171

3172 3173 3174 3175 3176 3177 3178
        helper.append_op(
            type='diagonal',
            inputs={'Input': [x]},
            attrs={'offset': offset, 'axis1': axis1, 'axis2': axis2},
            outputs={'Out': [out]},
        )
        return out
3179 3180


W
WuHaobo 已提交
3181
def kron(x, y, name=None):
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
    r"""
    Compute the Kronecker product of two tensors, a
    composite tensor made of blocks of the second tensor scaled by the
    first.
    Assume that the rank of the two tensors, $X$ and $Y$
    are the same, if necessary prepending the smallest with ones. If the
    shape of $X$ is [$r_0$, $r_1$, ..., $r_N$] and the shape of $Y$ is
    [$s_0$, $s_1$, ..., $s_N$], then the shape of the output tensor is
    [$r_{0}s_{0}$, $r_{1}s_{1}$, ..., $r_{N}s_{N}$]. The elements are
    products of elements from $X$ and $Y$.
    The equation is:
    $$
    output[k_{0}, k_{1}, ..., k_{N}] = X[i_{0}, i_{1}, ..., i_{N}] *
    Y[j_{0}, j_{1}, ..., j_{N}]
    $$
    where
    $$
    k_{t} = i_{t} * s_{t} + j_{t}, t = 0, 1, ..., N
    $$
F
Feiyu Chan 已提交
3201 3202

    Args:
3203 3204
        x (Tensor): the fist operand of kron op, data type: float16, float32, float64, int32 or int64.
        y (Tensor): the second operand of kron op, data type: float16, float32, float64, int32 or int64. Its data type should be the same with x.
3205
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
F
Feiyu Chan 已提交
3206 3207

    Returns:
3208
        Tensor: The output of kron, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
3209 3210 3211

    Examples:
        .. code-block:: python
3212

3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
            import paddle
            x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            out = paddle.kron(x, y)
            print(out)
            #        [[1, 2, 3, 2, 4, 6],
            #         [ 4,  5,  6,  8, 10, 12],
            #         [ 7,  8,  9, 14, 16, 18],
            #         [ 3,  6,  9,  4,  8, 12],
            #         [12, 15, 18, 16, 20, 24],
            #         [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
3224
    """
3225
    if in_dygraph_mode():
3226 3227 3228 3229 3230 3231 3232 3233 3234
        return _legacy_C_ops.kron(x, y)
    else:
        helper = LayerHelper('kron', **locals())
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron'
        )
        check_variable_and_dtype(
            y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron'
        )
F
Feiyu Chan 已提交
3235

3236 3237 3238 3239 3240
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
        return out
3241 3242 3243 3244


def cumsum(x, axis=None, dtype=None, name=None):
    """
3245 3246
    The cumulative sum of the elements along a given axis.

3247
    Note:
3248
        The first element of the result is the same as the first element of the input.
3249 3250

    Args:
3251
        x (Tensor): The input tensor needed to be cumsumed.
3252
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
3253
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
3254 3255 3256
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3257
        Tensor, the result of cumsum operator.
3258 3259 3260

    Examples:
        .. code-block:: python
3261

3262
            import paddle
3263

3264 3265
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
3266 3267 3268 3269 3270 3271 3272 3273

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
3274

3275 3276 3277 3278 3279 3280 3281
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
3282
            # paddle.float64
3283 3284 3285 3286 3287 3288
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3289
        x = cast(x, dtype)
3290

H
hong 已提交
3291
    if in_dygraph_mode():
3292 3293
        if axis is None:
            axis = -1
3294
        return _C_ops.cumsum(x, axis, flatten, False, False)
3295
    else:
3296 3297 3298
        check_variable_and_dtype(
            x,
            'x',
3299
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
3300 3301
            'cumsum',
        )
3302 3303
        check_type(x, 'x', (Variable), 'cumsum')
        locals_var = locals().copy()
3304
        kwargs = {}
3305 3306 3307 3308 3309
        for name, val in locals_var.items():
            if val is not None:
                kwargs[name] = val
        _cum_sum_ = generate_layer_fn('cumsum')
        return _cum_sum_(**kwargs)
G
guofei 已提交
3310

3311 3312 3313

def logcumsumexp(x, axis=None, dtype=None, name=None):
    r"""
3314
    The logarithm of the cumulative summation of the exponentiation of the elements along a given axis.
3315 3316 3317 3318 3319 3320

    For summation index j given by `axis` and other indices i, the result is

    .. math::

        logcumsumexp(x)_{ij} = log \sum_{i=0}^{j}exp(x_{ij})
3321

3322 3323 3324 3325 3326 3327
    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor.
        axis (int, optional): The dimension to do the operation along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
3328
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
3329 3330 3331
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3332
        Tensor, the result of logcumsumexp operator.
3333 3334 3335

    Examples:
        .. code-block:: python
3336

3337
            import paddle
3338

3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
            data = paddle.arange(12, dtype='float64')
            data = paddle.reshape(data, (3, 4))

            y = paddle.logcumsumexp(data)
            # [ 0.         1.3132617  2.4076061  3.4401898  4.4519143  5.4561934
            #   6.4577627  7.4583397  8.458551   9.45863   10.458658  11.458669 ]

            y = paddle.logcumsumexp(data, axis=0)
            # [[ 0.        1.        2.        3.      ]
            #  [ 4.01815   5.01815   6.01815   7.01815 ]
            #  [ 8.018479  9.018479 10.018479 11.018479]]
3350

3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
            y = paddle.logcumsumexp(data, axis=-1)
            # [[ 0.         1.3132617  2.4076061  3.4401898]
            #  [ 4.         5.3132615  6.407606   7.44019  ]
            #  [ 8.         9.313262  10.407606  11.440189 ]]

            y = paddle.logcumsumexp(data, dtype='float64')
            print(y.dtype)
            # paddle.float64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = cast(x, dtype)

    if in_dygraph_mode():
3368 3369
        if axis is None:
            axis = -1
3370
        return _C_ops.logcumsumexp(x, axis, flatten, False, False)
3371 3372
    else:
        check_variable_and_dtype(
3373
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], "logcumsumexp"
3374
        )
3375

3376 3377 3378 3379 3380 3381 3382 3383 3384
        helper = LayerHelper('logcumsumexp', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logcumsumexp',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'axis': axis, 'flatten': flatten},
        )
        return out
3385 3386


H
hlygit66666 已提交
3387 3388 3389 3390
def cumprod(x, dim=None, dtype=None, name=None):
    """
    Compute the cumulative product of the input tensor x along a given dimension dim.

3391 3392
    Note:
        The first element of the result is the same as the first element of the input.
H
hlygit66666 已提交
3393 3394 3395

    Args:
        x (Tensor): the input tensor need to be cumproded.
Z
Zman 已提交
3396 3397 3398 3399 3400 3401 3402
        dim (int, optional): the dimension along which the input tensor will be accumulated. It need to be in the range of [-x.rank, x.rank),
                    where x.rank means the dimensions of the input tensor x and -1 means the last dimension.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64, complex64,
                    complex128. If specified, the input tensor is casted to dtype before the operation is performed.
                    This is useful for preventing data type overflows. The default value is None.
        name (str, optional): Name for the operation (optional, default is None). For more information,
                    please refer to :ref:`api_guide_Name`.
H
hlygit66666 已提交
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438

    Returns:
        Tensor, the result of cumprod operator.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
            # [[ 0  1  2  3 ]
            #  [ 4  5  6  7 ]
            #  [ 8  9  10 11]]

            y = paddle.cumprod(data, dim=0)
            # [[ 0  1   2   3]
            #  [ 0  5  12  21]
            #  [ 0 45 120 231]]

            y = paddle.cumprod(data, dim=-1)
            # [[ 0   0   0    0]
            #  [ 4  20 120  840]
            #  [ 8  72 720 7920]]

            y = paddle.cumprod(data, dim=1, dtype='float64')
            # [[ 0.   0.   0.    0.]
            #  [ 4.  20. 120.  840.]
            #  [ 8.  72. 720. 7920.]]

            print(y.dtype)
            # paddle.float64

    """

    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3439
        x = cast(x, dtype)
H
hlygit66666 已提交
3440

3441
    if in_dygraph_mode():
3442
        return _C_ops.cumprod(x, dim)
3443 3444 3445 3446
    else:
        check_variable_and_dtype(
            x,
            "x",
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
            [
                'complex64',
                'complex128',
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
            ],
3457 3458 3459
            'cumprod',
        )
        check_type(dim, 'dim', int, 'cumprod')
H
hlygit66666 已提交
3460

3461 3462 3463 3464 3465 3466 3467 3468 3469
        helper = LayerHelper('cumprod', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='cumprod',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': dim},
        )
        return out
H
hlygit66666 已提交
3470

3471

J
Jack Zhou 已提交
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
3488

3489
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3490
            out = paddle.isfinite(x)
N
Noel 已提交
3491
            print(out)  # [False  True  True False  True False False]
J
Jack Zhou 已提交
3492
    """
H
hong 已提交
3493
    if in_dygraph_mode():
3494
        return _C_ops.isfinite(x)
3495 3496 3497 3498 3499
    else:
        helper = LayerHelper("isfinite_v2", **locals())
        check_variable_and_dtype(
            x,
            'x',
3500 3501 3502 3503 3504 3505 3506 3507
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
3508 3509 3510 3511 3512 3513 3514
            'isfinite',
        )
        out = helper.create_variable_for_type_inference('bool')
        helper.append_op(
            type="isfinite_v2", inputs={"X": x}, outputs={"Out": out}
        )
        return out
J
Jack Zhou 已提交
3515

3516

J
Jack Zhou 已提交
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3533

3534
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3535
            out = paddle.isinf(x)
N
Noel 已提交
3536
            print(out)  # [ True False False  True False False False]
J
Jack Zhou 已提交
3537
    """
H
hong 已提交
3538
    if in_dygraph_mode():
3539
        return _C_ops.isinf(x)
3540 3541 3542
    else:
        helper = LayerHelper("isinf_v2", **locals())
        check_variable_and_dtype(
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
            'isinf',
3554 3555 3556 3557
        )
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
        return out
J
Jack Zhou 已提交
3558

3559

J
Jack Zhou 已提交
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
3576

3577
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3578
            out = paddle.isnan(x)
N
Noel 已提交
3579
            print(out)  # [False False False False False  True  True]
J
Jack Zhou 已提交
3580
    """
H
hong 已提交
3581
    if in_dygraph_mode():
3582
        return _C_ops.isnan(x)
3583 3584 3585
    else:
        helper = LayerHelper("isnan_v2", **locals())
        check_variable_and_dtype(
3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
            'isnan',
3597 3598 3599 3600
        )
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
        return out
J
Jack Zhou 已提交
3601 3602


G
guofei 已提交
3603 3604 3605 3606 3607
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
3608
        x (Tensor): The input tensor, its data type should be float32, float64, int32, int64.
3609 3610 3611
        axis (int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`,
            multiply all elements of `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`,
G
guofei 已提交
3612
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
3613
        keepdim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result
3614
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
3615 3616 3617
        dtype (str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64,
            int32, int64. If specified, the input tensor is casted to dtype before operator performed.
            This is very useful for avoiding data type overflows. The default value is None, the dtype
G
guofei 已提交
3618
            of output is the same as input Tensor `x`.
3619
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
G
guofei 已提交
3620 3621 3622

    Returns:
        Tensor, result of product on the specified dim of input tensor.
3623

G
guofei 已提交
3624 3625 3626 3627 3628 3629
    Examples:
        .. code-block:: python

            import paddle

            # the axis is a int element
3630 3631
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
            out1 = paddle.prod(x)
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            # [0.02 0.06 0.3  0.63]

            out4 = paddle.prod(x, 0, keepdim=True)
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            # [0 0 0 0]

            # the axis is list
3648 3649
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
3650 3651 3652 3653 3654 3655 3656 3657
            out6 = paddle.prod(y, [0, 1])
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            # [  24. 1680.]

    """
    if dtype is not None:
3658 3659 3660
        check_dtype(
            dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod'
        )
G
guofei 已提交
3661
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3662
            x = cast(x, dtype)
G
guofei 已提交
3663

3664
    reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
3665
    if in_dygraph_mode():
3666
        return _C_ops.prod(x, axis, keepdim, reduce_all)
3667 3668 3669 3670 3671 3672 3673
    else:
        helper = LayerHelper('reduce_prod', **locals())
        check_variable_and_dtype(
            x,
            'x/input',
            ['float32', 'float64', 'int32', 'int64'],
            'reduce_prod',
3674
        )
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
        helper.append_op(
            type='reduce_prod',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
W
WangXi 已提交
3685 3686 3687 3688


def sign(x, name=None):
    """
3689
    Returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
W
WangXi 已提交
3690 3691

    Args:
3692 3693
        x (Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
WangXi 已提交
3694 3695 3696 3697 3698 3699 3700 3701 3702

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

3703
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
3704 3705 3706
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
H
hong 已提交
3707
    if in_dygraph_mode():
3708
        return _C_ops.sign(x)
3709 3710
    else:
        check_variable_and_dtype(
C
chenxujun 已提交
3711
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'sign'
3712 3713 3714
        )
        helper = LayerHelper("sign", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
hong 已提交
3715

3716
        helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})
W
WangXi 已提交
3717

3718
        return out
W
WangXi 已提交
3719 3720 3721


def tanh(x, name=None):
3722
    r"""
W
WangXi 已提交
3723 3724 3725
    Tanh Activation Operator.

    .. math::
3726
        out = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
3727 3728

    Args:
3729
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type bfloat16, float32, float64 or float16.
W
WangXi 已提交
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

3741
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
3742
            out = paddle.tanh(x)
N
Noel 已提交
3743
            print(out)
W
WangXi 已提交
3744 3745
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
H
hong 已提交
3746
    if in_dygraph_mode():
3747
        return _C_ops.tanh(x)
3748 3749
    else:
        check_variable_and_dtype(
3750
            x, 'x', ['uint16', 'float16', 'float32', 'float64'], 'tanh'
3751 3752 3753 3754 3755 3756
        )
        check_type(x, 'x', (Variable), 'tanh')
        helper = LayerHelper('tanh', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
        return out
S
Steffy-zxf 已提交
3757

3758

3759
@inplace_apis_in_dygraph_only
3760 3761 3762 3763 3764
def tanh_(x, name=None):
    r"""
    Inplace version of ``tanh`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_tanh`.
    """
3765
    return _C_ops.tanh_(x)
3766 3767


S
Steffy-zxf 已提交
3768 3769
def increment(x, value=1.0, name=None):
    """
3770
    The API is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
S
Steffy-zxf 已提交
3771 3772 3773 3774
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
3775
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
S
Steffy-zxf 已提交
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
H
hong 已提交
3791
    if in_dygraph_mode():
3792
        return _C_ops.increment_(x, value)
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
    else:
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'increment'
        )
        helper = LayerHelper("increment", **locals())
        helper.append_op(
            type='increment',
            inputs={'X': [x]},
            outputs={'Out': [x]},
            attrs={'step': float(value)},
        )
        return x
3805 3806 3807 3808


def all(x, axis=None, keepdim=False, name=None):
    """
3809
    Computes the ``logical and`` of tensor elements over the given dimension.
3810 3811 3812 3813 3814

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
3815
            Tensor with a single element, otherwise must be in the
3816 3817 3818 3819 3820 3821
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
3822
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3823 3824 3825 3826 3827 3828 3829 3830

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3831

N
Noel 已提交
3832
            # x is a bool Tensor with following elements:
3833 3834
            #    [[True, False]
            #     [True, True]]
C
Chen Long 已提交
3835
            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
3836
            print(x)
S
syyxsxx 已提交
3837
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
3838

3839 3840 3841
            # out1 should be [False]
            out1 = paddle.all(x)  # [False]
            print(out1)
C
Chen Long 已提交
3842

3843 3844 3845
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
C
Chen Long 已提交
3846 3847

            # keepdim=False, out3 should be [False, True], out.shape should be (2,)
3848 3849
            out3 = paddle.all(x, axis=-1)  # [False, True]
            print(out3)
C
Chen Long 已提交
3850 3851 3852

            # keepdim=True, out4 should be [[False], [True]], out.shape should be (2,1)
            out4 = paddle.all(x, axis=1, keepdim=True) # [[False], [True]]
3853
            print(out4)
3854

3855
    """
3856
    if in_dygraph_mode():
3857
        return _C_ops.all(x, axis, keepdim)
3858 3859 3860 3861 3862 3863 3864 3865
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        attrs = {
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all,
        }
        check_variable_and_dtype(x, 'x', ['bool'], 'all')
3866

3867
        check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')
3868

3869 3870 3871 3872 3873 3874 3875 3876 3877
        helper = LayerHelper('all', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_all',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
3878 3879 3880 3881


def any(x, axis=None, keepdim=False, name=None):
    """
C
Chen Long 已提交
3882
    Computes the ``logical or`` of tensor elements over the given dimension, and return the result.
3883 3884 3885 3886 3887

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
3888
            Tensor with a single element, otherwise must be in the
3889 3890 3891 3892 3893 3894
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
3895
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3896 3897 3898 3899 3900 3901 3902 3903

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3904 3905 3906

            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
            x = paddle.assign(x)
3907
            print(x)
S
syyxsxx 已提交
3908
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
3909 3910 3911 3912
            # x is a bool Tensor with following elements:
            #    [[True, False]
            #     [True, True]]

3913 3914 3915
            # out1 should be [True]
            out1 = paddle.any(x)  # [True]
            print(out1)
C
Chen Long 已提交
3916

3917 3918
            # out2 should be [True, True]
            out2 = paddle.any(x, axis=0)  # [True, True]
3919
            print(out2)
C
Chen Long 已提交
3920 3921

            # keepdim=False, out3 should be [True, True], out.shape should be (2,)
3922
            out3 = paddle.any(x, axis=-1)  # [True, True]
3923
            print(out3)
C
Chen Long 已提交
3924 3925 3926

            # keepdim=True, result should be [[True], [True]], out.shape should be (2,1)
            out4 = paddle.any(x, axis=1, keepdim=True)  # [[True], [True]]
3927 3928
            print(out4)

3929
    """
3930
    if in_dygraph_mode():
3931
        return _C_ops.any(x, axis, keepdim)
3932 3933 3934 3935 3936 3937 3938
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        attrs = {
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all,
        }
3939

3940
        check_variable_and_dtype(x, 'x', ['bool'], 'any')
3941

3942
        check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')
3943

3944 3945 3946 3947 3948 3949 3950 3951 3952
        helper = LayerHelper('any', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_any',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
L
Leo Chen 已提交
3953

3954

L
Leo Chen 已提交
3955 3956
def broadcast_shape(x_shape, y_shape):
    """
I
Infinity_lee 已提交
3957 3958 3959 3960 3961 3962
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape.

    Note:
        If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
Leo Chen 已提交
3963 3964 3965 3966

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
3967

L
Leo Chen 已提交
3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

            import paddle

            shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            # [2, 3, 3]
3979

L
Leo Chen 已提交
3980 3981 3982 3983 3984 3985
            # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            # ValueError (terminated with error message).

    """

    return core.broadcast_shape(x_shape, y_shape)
3986

3987

3988 3989 3990 3991 3992
def conj(x, name=None):
    r"""
    This function computes the conjugate of the Tensor elementwisely.

    Args:
3993
        x (Tensor): The input Tensor which hold the complex numbers.
3994
            Optional data types are:float16, complex64, complex128, float32, float64, int32 or int64.
3995
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3996 3997

    Returns:
C
Chen Long 已提交
3998
        out (Tensor): The conjugate of input. The shape and data type is the same with input. If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.
3999 4000 4001 4002 4003

    Examples:
        .. code-block:: python

          import paddle
4004

4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
          data=paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1+1j), (2+2j), (3+3j)],
          #        [(4+4j), (5+5j), (6+6j)]])

          conj_data=paddle.conj(data)
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1-1j), (2-2j), (3-3j)],
          #        [(4-4j), (5-5j), (6-6j)]])

    """
H
hong 已提交
4016
    if in_dygraph_mode():
4017
        return _C_ops.conj(x)
4018 4019 4020 4021
    else:
        check_variable_and_dtype(
            x,
            "x",
4022 4023 4024 4025
            [
                'complex64',
                'complex128',
                'float16',
4026
                'uint16',
4027 4028 4029 4030 4031
                'float32',
                'float64',
                'int32',
                'int64',
            ],
4032 4033
            'conj',
        )
H
hong 已提交
4034

4035 4036 4037 4038
        helper = LayerHelper('conj', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
4039

4040 4041
        helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
        return out
4042

4043

Z
zyfncg 已提交
4044 4045 4046 4047 4048 4049 4050 4051 4052
def digamma(x, name=None):
    r"""
    Calculates the digamma of the given input tensor, element-wise.

    .. math::
        Out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
4053
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zyfncg 已提交
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069
    Returns:
        Tensor, the digamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([[1, 1.5], [0, -2.2]], dtype='float32')
            res = paddle.digamma(data)
            print(res)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[-0.57721591,  0.03648996],
            #        [ nan       ,  5.32286835]])
    """

J
Jiabin Yang 已提交
4070
    if in_dygraph_mode():
4071
        return _C_ops.digamma(x)
J
Jiabin Yang 已提交
4072
    else:
4073 4074 4075
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'digamma'
        )
4076 4077 4078 4079
        helper = LayerHelper('digamma', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='digamma', inputs={'X': x}, outputs={'Out': out})
        return out
Z
zyfncg 已提交
4080

4081

4082 4083 4084 4085 4086 4087 4088 4089 4090
def lgamma(x, name=None):
    r"""
    Calculates the lgamma of the given input tensor, element-wise.

    This operator performs elementwise lgamma for input $X$.
    :math:`out = log\Gamma(x)`


    Args:
4091
        x (Tensor): Input Tensor. Must be one of the following types: float16, float32, float64, uint16.
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the lgamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.lgamma(x)
            print(out)
            # [1.31452441, 1.76149750, 2.25271273, 1.09579802]
    """
    if in_dygraph_mode():
        return _C_ops.lgamma(x)
4109
    else:
4110 4111 4112
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'lgamma'
        )
4113 4114 4115 4116
        helper = LayerHelper('lgamma', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='lgamma', inputs={'X': x}, outputs={'Out': out})
        return out
4117 4118


4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
def neg(x, name=None):
    """
    This function computes the negative of the Tensor elementwisely.

    Args:
        x (Tensor): Input of neg operator, an N-D Tensor, with data type float32, float64, int8, int16, int32, or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The negative of input Tensor. The shape and data type are the same with input Tensor.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.neg(x)
            print(out)
            # [0.4 0.2 -0.1 -0.3]
    """

4141 4142 4143
    return scale(
        x, scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name
    )
4144

R
ronnywang 已提交
4145

4146
def atan2(x, y, name=None):
R
ronnywang 已提交
4147
    r"""
4148
    Element-wise arctangent of x/y with consideration of the quadrant.
R
ronnywang 已提交
4149 4150 4151 4152

    Equation:
        .. math::

4153 4154 4155 4156 4157 4158 4159 4160
            atan2(x,y)=\left\{\begin{matrix}
            & tan^{-1}(\frac{x}{y}) & y > 0 \\
            & tan^{-1}(\frac{x}{y}) + \pi & x>=0, y < 0 \\
            & tan^{-1}(\frac{x}{y}) - \pi & x<0, y < 0 \\
            & +\frac{\pi}{2} & x>0, y = 0 \\
            & -\frac{\pi}{2} & x<0, y = 0 \\
            &\text{undefined} & x=0, y = 0
            \end{matrix}\right.
R
ronnywang 已提交
4161 4162

    Args:
4163 4164
        x (Tensor): An N-D Tensor, the data type is int32, int64, float16, float32, float64.
        y (Tensor): An N-D Tensor, must have the same type as `x`.
R
ronnywang 已提交
4165 4166 4167 4168 4169 4170 4171 4172
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float64 when the input data type is int).

    Examples:
        .. code-block:: python

4173
            import paddle
R
ronnywang 已提交
4174

4175 4176 4177
            x = paddle.to_tensor([-1, +1, +1, -1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  1,  1, -1])
R
ronnywang 已提交
4178

4179 4180 4181
            y = paddle.to_tensor([-1, -1, +1, +1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  -1,  1, 1])
R
ronnywang 已提交
4182

4183 4184 4185
            out = paddle.atan2(x, y)
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-2.35619450,  2.35619450,  0.78539819, -0.78539819])
R
ronnywang 已提交
4186 4187 4188

    """

J
Jiabin Yang 已提交
4189
    if in_dygraph_mode():
4190
        return _C_ops.atan2(x, y)
R
ronnywang 已提交
4191
    else:
4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
        check_variable_and_dtype(
            x,
            'x',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'atan2',
        )
        check_variable_and_dtype(
            y,
            'y',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'atan2',
        )
R
ronnywang 已提交
4204

4205 4206 4207 4208 4209
        helper = LayerHelper('atan2', **locals())
        inputs = {'X1': x, 'X2': y}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='atan2', inputs=inputs, outputs={'Out': out})
        return out
A
andyjpaddle 已提交
4210

4211

W
wangzhen38 已提交
4212 4213 4214 4215 4216
def logit(x, eps=None, name=None):
    r"""
    This function generates a new tensor with the logit of the elements of input x. x is clamped to [eps, 1-eps] when eps is not zero. When eps is zero and x < 0 or x > 1, the function will yields NaN.

    .. math::
4217

W
wangzhen38 已提交
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
        logit(x) = ln(\frac{x}{1 - x})

    where

    .. math::

        x_i=
            \left\{\begin{array}{rcl}
                x_i & &\text{if } eps == Default \\
                eps & &\text{if } x_i < eps \\
                x_i & &\text{if } eps <= x_i <= 1-eps \\
                1-eps & &\text{if } x_i > 1-eps
            \end{array}\right.

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        eps (float, optional):  the epsilon for input clamp bound. Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out(Tensor): A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0.2635, 0.0106, 0.2780, 0.2097, 0.8095])
            out1 = paddle.logit(x)
            print(out1)
4249
            # [-1.0277, -4.5365, -0.9544, -1.3269,  1.4468]
W
wangzhen38 已提交
4250 4251

    """
4252
    if eps is None:
W
wangzhen38 已提交
4253
        eps = 0.0
4254
    if in_dygraph_mode():
4255
        return _C_ops.logit(x, eps)
4256 4257
    else:
        check_variable_and_dtype(
4258
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'logit'
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
        )
        helper = LayerHelper("logit", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logit',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'eps': eps},
        )
        return out
W
wangzhen38 已提交
4269

4270

4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
def lerp(x, y, weight, name=None):
    r"""
    Does a linear interpolation between x and y based on weight.

    Equation:
        .. math::

            lerp(x, y, weight) = x + weight * (y - x).

    Args:
4281 4282 4283
        x (Tensor): An N-D Tensor with starting points, the data type is float16, float32, float64.
        y (Tensor): An N-D Tensor with ending points, the data type is float16, float32, float64.
        weight (float|Tensor): The weight for the interpolation formula. When weight is Tensor, the data type is float16, float32, float64.
4284 4285 4286 4287 4288 4289 4290 4291 4292
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Example:
        .. code-block:: python

            import paddle
4293

4294 4295 4296
            x = paddle.arange(1., 5., dtype='float32')
            y = paddle.empty([4], dtype='float32')
            y.fill_(10.)
4297
            out = paddle.lerp(x, y, 0.5)
4298
            # out: [5.5, 6., 6.5, 7.]
4299 4300

    """
4301 4302
    if isinstance(weight, float):
        weight = paddle.full(shape=[], fill_value=weight, dtype=x.dtype)
H
hong 已提交
4303

4304
    if in_dygraph_mode():
4305
        return _C_ops.lerp(x, y, weight)
4306 4307
    else:
        check_variable_and_dtype(
4308 4309 4310 4311 4312 4313 4314
            x, 'x', ['float16', 'float32', 'float64'], 'lerp'
        )
        check_variable_and_dtype(
            y, 'y', ['float16', 'float32', 'float64'], 'lerp'
        )
        check_variable_and_dtype(
            weight, 'weight', ['float16', 'float32', 'float64'], 'lerp'
4315
        )
4316

4317 4318 4319 4320 4321
        helper = LayerHelper('lerp', **locals())
        inputs = {'X': x, 'Y': y, 'Weight': weight}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='lerp', inputs=inputs, outputs={'Out': out})
        return out
4322

4323

4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
@inplace_apis_in_dygraph_only
def lerp_(x, y, weight, name=None):
    r"""
    Inplace version of ``lerp`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_lerp`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
    if isinstance(weight, float):
        weight = paddle.to_tensor([weight], dtype=x.dtype)
    elif isinstance(weight, (paddle.Tensor, Variable)):
        out_shape = broadcast_shape(out_shape, weight.shape)
    if out_shape != x.shape:
4337
        raise ValueError(
4338 4339 4340 4341
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
4342
    return _C_ops.lerp_(x, y, weight)
4343

4344

W
wuhuanzhou 已提交
4345 4346
def erfinv(x, name=None):
    r"""
4347
    The inverse error function of x. Please refer to :ref:`api_paddle_erf`
W
wuhuanzhou 已提交
4348 4349 4350 4351 4352 4353 4354 4355 4356 4357

        .. math::

            erfinv(erf(x)) = x.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4358
        out (Tensor), an N-D Tensor, the shape and data type is the same with input.
W
wuhuanzhou 已提交
4359 4360 4361 4362 4363

    Example:
        .. code-block:: python

            import paddle
4364

W
wuhuanzhou 已提交
4365 4366 4367 4368 4369
            x = paddle.to_tensor([0, 0.5, -1.], dtype="float32")
            out = paddle.erfinv(x)
            # out: [0, 0.4769, -inf]

    """
H
hong 已提交
4370
    if in_dygraph_mode():
4371
        return _C_ops.erfinv(x)
4372 4373 4374 4375 4376 4377
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'erfinv')
        helper = LayerHelper('erfinv', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='erfinv', inputs={'X': x}, outputs={'Out': out})
        return out
W
wuhuanzhou 已提交
4378

4379

W
wuhuanzhou 已提交
4380 4381 4382 4383 4384 4385 4386
@inplace_apis_in_dygraph_only
def erfinv_(x, name=None):
    r"""
    Inplace version of ``erfinv`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_erfinv`.
    """
    check_type(x, 'x', (paddle.Tensor, Variable), 'erfinv')
4387
    return _C_ops.erfinv_(x)
W
wuhuanzhou 已提交
4388

4389

4390
def rad2deg(x, name=None):
4391
    r"""
4392
    Convert each of the elements of input x from angles in radians to degrees.
4393

4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409
    Equation:
        .. math::

            rad2deg(x)=180/ \pi * x

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
4410
            import math
4411

4412 4413 4414 4415 4416 4417 4418
            x1 = paddle.to_tensor([3.142, -3.142, 6.283, -6.283, 1.570, -1.570])
            result1 = paddle.rad2deg(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [180.02334595, -180.02334595,  359.98937988, -359.98937988,
            #           9.95437622 , -89.95437622])

4419
            x2 = paddle.to_tensor(math.pi/2)
4420 4421 4422 4423
            result2 = paddle.rad2deg(x2)
            print(result2)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [90.])
4424

4425 4426 4427
            x3 = paddle.to_tensor(1)
            result3 = paddle.rad2deg(x3)
            print(result3)
4428 4429
            # Tensor(shape=[], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        57.29578018)
4430 4431
    """
    rad2deg_scale = 180 / np.pi
4432 4433 4434
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4435
        return _C_ops.scale(x, rad2deg_scale, 0.0, True)
4436
    else:
4437 4438 4439
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float32', 'float64'], 'rad2deg'
        )
4440 4441 4442
        helper = LayerHelper('rad2deg', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
4443
            out_cast = helper.create_variable_for_type_inference(
4444 4445 4446 4447 4448 4449 4450 4451
                dtype=paddle.float32
            )
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': paddle.float32},
            )
4452
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
4453 4454 4455 4456 4457 4458
        helper.append_op(
            type='scale',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'scale': rad2deg_scale},
        )
4459 4460
        return out

4461

4462
def deg2rad(x, name=None):
4463
    r"""
4464
    Convert each of the elements of input x from degrees to angles in radians.
4465

4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
        .. math::

            deg2rad(x)=\pi * x / 180

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
4481

4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
            x1 = paddle.to_tensor([180.0, -180.0, 360.0, -360.0, 90.0, -90.0])
            result1 = paddle.deg2rad(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274, -3.14159274,  6.28318548, -6.28318548,  1.57079637,
            #           -1.57079637])

            x2 = paddle.to_tensor(180)
            result2 = paddle.deg2rad(x2)
            print(result2)
4492 4493
            # Tensor(shape=[], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        3.14159274)
4494 4495
    """
    deg2rad_scale = np.pi / 180.0
4496 4497 4498
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4499
        return _C_ops.scale(x, deg2rad_scale, 0.0, True)
4500
    else:
4501 4502 4503
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float32', 'float64'], 'deg2rad'
        )
4504 4505 4506
        helper = LayerHelper('deg2rad', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
4507
            out_cast = helper.create_variable_for_type_inference(
4508 4509 4510 4511 4512 4513 4514 4515
                dtype=paddle.float32
            )
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': paddle.float32},
            )
4516
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
4517 4518 4519 4520 4521 4522
        helper.append_op(
            type='scale',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'scale': deg2rad_scale},
        )
4523
        return out
A
andyjpaddle 已提交
4524

4525

T
Tao Luo 已提交
4526 4527 4528 4529
def gcd(x, y, name=None):
    """
    Computes the element-wise greatest common divisor (GCD) of input |x| and |y|.
    Both x and y must have integer types.
4530

T
Tao Luo 已提交
4531 4532 4533
    Note:
        gcd(0,0)=0, gcd(0, y)=|y|

T
Tao Luo 已提交
4534 4535
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4536
    Args:
4537 4538
        x (Tensor): An N-D Tensor, the data type is int32,int64.
        y (Tensor): An N-D Tensor, the data type is int32,int64.
T
Tao Luo 已提交
4539 4540 4541 4542 4543 4544 4545 4546 4547
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
4548

T
Tao Luo 已提交
4549 4550 4551
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.gcd(x1, x2)
4552 4553
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        4)
T
Tao Luo 已提交
4554

T
Tao Luo 已提交
4555
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4556 4557 4558 4559 4560 4561
            paddle.gcd(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20, 1 , 2 , 1 , 4 , 5])

            x4 = paddle.to_tensor(0)
            paddle.gcd(x4, x2)
4562 4563
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        20)
T
Tao Luo 已提交
4564 4565

            paddle.gcd(x4, x4)
4566 4567
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        0)
4568

T
Tao Luo 已提交
4569 4570
            x5 = paddle.to_tensor(-20)
            paddle.gcd(x1, x5)
4571 4572
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        4)
T
Tao Luo 已提交
4573 4574 4575 4576 4577 4578 4579 4580
    """
    shape = paddle.broadcast_shape(x.shape, y.shape)
    x = paddle.broadcast_to(x, shape)
    y = paddle.broadcast_to(y, shape)
    x = paddle.abs(x)
    y = paddle.abs(y)

    def _gcd_cond_fn(x, y):
4581
        return paddle.any(y != 0)
T
Tao Luo 已提交
4582 4583 4584 4585 4586

    def _gcd_body_fn(x, y):
        # paddle.mod will raise an error when any element of y is 0. To avoid
        # that, we change those zeros to ones. Their values don't matter because
        # they won't be used.
4587
        y_not_equal_0 = y != 0
T
Tao Luo 已提交
4588
        y_safe = paddle.where(y_not_equal_0, y, paddle.ones(y.shape, y.dtype))
4589 4590 4591 4592 4593 4594 4595 4596
        x, y = (
            paddle.where(y_not_equal_0, y, x),
            paddle.where(
                y_not_equal_0,
                paddle.mod(x, y_safe),
                paddle.zeros(y.shape, y.dtype),
            ),
        )
T
Tao Luo 已提交
4597 4598
        return (paddle.where(x < y, y, x), paddle.where(x < y, x, y))

4599
    if in_dygraph_mode():
T
Tao Luo 已提交
4600 4601 4602 4603 4604
        while _gcd_cond_fn(x, y):
            x, y = _gcd_body_fn(x, y)

        return x
    else:
T
Tao Luo 已提交
4605 4606
        check_variable_and_dtype(x, 'x', ['int32', 'int64'], 'gcd')
        check_variable_and_dtype(y, 'y', ['int32', 'int64'], 'gcd')
T
Tao Luo 已提交
4607 4608 4609
        out, _ = paddle.static.nn.while_loop(_gcd_cond_fn, _gcd_body_fn, [x, y])
        return out

4610

T
Tao Luo 已提交
4611 4612 4613 4614
def lcm(x, y, name=None):
    """
    Computes the element-wise least common multiple (LCM) of input |x| and |y|.
    Both x and y must have integer types.
4615

T
Tao Luo 已提交
4616 4617 4618
    Note:
        lcm(0,0)=0, lcm(0, y)=0

T
Tao Luo 已提交
4619 4620
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4621
    Args:
4622 4623
        x (Tensor): An N-D Tensor, the data type is int32,int64.
        y (Tensor): An N-D Tensor, the data type is int32,int64.
T
Tao Luo 已提交
4624 4625 4626 4627 4628 4629 4630 4631 4632
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
4633

T
Tao Luo 已提交
4634 4635 4636
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.lcm(x1, x2)
4637 4638
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        60)
T
Tao Luo 已提交
4639

T
Tao Luo 已提交
4640
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4641 4642 4643 4644 4645 4646
            paddle.lcm(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0, 20, 20, 60, 20, 20])

            x4 = paddle.to_tensor(0)
            paddle.lcm(x4, x2)
4647 4648
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        0)
T
Tao Luo 已提交
4649 4650

            paddle.lcm(x4, x4)
4651 4652
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        0)
4653

T
Tao Luo 已提交
4654 4655
            x5 = paddle.to_tensor(-20)
            paddle.lcm(x1, x5)
4656 4657
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        60)
T
Tao Luo 已提交
4658 4659 4660 4661 4662 4663 4664
    """
    d = paddle.gcd(x, y)
    # paddle.mod will raise an error when any element of y is 0. To avoid
    # that, we change those zeros to ones. Their values don't matter because
    # they won't be used.
    d_equal_0 = paddle.equal(d, 0)
    d_safe = paddle.where(d_equal_0, paddle.ones(d.shape, d.dtype), d)
4665 4666 4667
    out = paddle.where(
        d_equal_0, paddle.zeros(d.shape, d.dtype), paddle.abs(x * y) // d_safe
    )
T
Tao Luo 已提交
4668 4669
    return out

4670

A
andyjpaddle 已提交
4671 4672 4673
def diff(x, n=1, axis=-1, prepend=None, append=None, name=None):
    r"""
    Computes the n-th forward difference along the given axis.
4674
    The first-order differences is computed by using the following formula:
A
andyjpaddle 已提交
4675 4676 4677 4678

    .. math::

        out[i] = x[i+1] - x[i]
4679 4680

    Higher-order differences are computed by using paddle.diff() recursively.
A
andyjpaddle 已提交
4681 4682 4683
    Only n=1 is currently supported.

    Args:
4684
        x (Tensor): The input tensor to compute the forward difference on, the data type is float16, float32, float64, bool, int32, int64.
4685
        n (int, optional): The number of times to recursively compute the difference.
A
andyjpaddle 已提交
4686
                          Only support n=1. Default:1
4687 4688
        axis (int, optional): The axis to compute the difference along. Default:-1
        prepend (Tensor, optional): The tensor to prepend to input along axis before computing the difference.
4689
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
4690
                                   and its shapes must match x's shape except on axis.
4691 4692
        append (Tensor, optional): The tensor to append to input along axis before computing the difference,
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
4693
                                   and its shapes must match x's shape except on axis.
4694
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4695

A
andyjpaddle 已提交
4696 4697 4698 4699 4700 4701 4702
    Returns:
        Tensor: The output tensor with same dtype with x.

    Examples:
        .. code-block:: python

            import paddle
4703

A
andyjpaddle 已提交
4704 4705 4706 4707 4708 4709 4710 4711 4712
            x = paddle.to_tensor([1, 4, 5, 2])
            out = paddle.diff(x)
            print(out)
            # out:
            # [3, 1, -3]

            y = paddle.to_tensor([7, 9])
            out = paddle.diff(x, append=y)
            print(out)
4713
            # out:
A
andyjpaddle 已提交
4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734
            # [3, 1, -3, 5, 2]

            z = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            out = paddle.diff(z, axis=0)
            print(out)
            # out:
            # [[3, 3, 3]]
            out = paddle.diff(z, axis=1)
            print(out)
            # out:
            # [[1, 1], [1, 1]]
    """

    if axis < 0:
        axis = axis + len(x.shape)
    if axis > len(x.shape):
        axis = len(x.shape)
    if axis < 0:
        axis = 0
    dtype = x.dtype
    axes = [axis]
4735
    infer_flags = [1 for i in range(len(axes))]
4736
    if in_dygraph_mode():
A
andyjpaddle 已提交
4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True
        if has_pend:
4749
            new_input = _C_ops.concat(input_list, axis)
A
andyjpaddle 已提交
4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761
        else:
            new_input = x

        attrs_1 = ()
        attrs_2 = ()

        dim_len = new_input.shape[axis]

        starts_1 = [0]
        attrs_1 += ('starts', starts_1)
        ends_1 = [dim_len - 1]
        attrs_1 += ('ends', ends_1)
4762 4763 4764
        input_front = _C_ops.slice(
            new_input, axes, starts_1, ends_1, infer_flags, []
        )
A
andyjpaddle 已提交
4765 4766 4767 4768
        starts_2 = [1]
        attrs_2 += ('starts', starts_2)
        ends_2 = [dim_len]
        attrs_2 += ('ends', ends_2)
4769 4770 4771
        input_back = _C_ops.slice(
            new_input, axes, starts_2, ends_2, infer_flags, []
        )
4772 4773

        if x.dtype == paddle.bool:
4774
            return _C_ops.logical_xor(input_back, input_front)
4775
        else:
4776
            return _C_ops.subtract(input_back, input_front)
A
andyjpaddle 已提交
4777
    else:
4778
        check_variable_and_dtype(
4779 4780 4781 4782
            x,
            'x',
            ['float16', 'float32', 'float64', 'bool', 'int32', 'int64'],
            'diff',
4783
        )
A
andyjpaddle 已提交
4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799
        check_type(axis, 'axis', (int), 'diff')
        helper = LayerHelper('diff', **locals())
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True

        if has_pend:
            new_input = helper.create_variable_for_type_inference(dtype)
4800 4801 4802 4803 4804 4805
            helper.append_op(
                type='concat',
                inputs={'X': input_list},
                outputs={'Out': [new_input]},
                attrs={'axis': axis},
            )
A
andyjpaddle 已提交
4806 4807 4808 4809 4810 4811 4812 4813 4814 4815
        else:
            new_input = x

        dim_len = new_input.shape[axis]
        attrs_1 = {'axes': axes}
        starts_1 = [0]
        ends_1 = [dim_len - 1]
        attrs_1['starts'] = starts_1
        attrs_1['ends'] = ends_1
        input_front = helper.create_variable_for_type_inference(dtype)
4816 4817 4818 4819 4820 4821
        helper.append_op(
            type='slice',
            inputs={'Input': new_input},
            attrs=attrs_1,
            outputs={'Out': input_front},
        )
A
andyjpaddle 已提交
4822 4823 4824 4825 4826 4827
        attrs_2 = {'axes': axes}
        starts_2 = [1]
        ends_2 = [dim_len]
        attrs_2['starts'] = starts_2
        attrs_2['ends'] = ends_2
        input_back = helper.create_variable_for_type_inference(dtype)
4828 4829 4830 4831 4832 4833
        helper.append_op(
            type='slice',
            inputs={'Input': new_input},
            attrs=attrs_2,
            outputs={'Out': input_back},
        )
A
andyjpaddle 已提交
4834 4835 4836

        if dtype == paddle.bool:
            out = helper.create_variable_for_type_inference(dtype)
4837 4838 4839 4840 4841
            helper.append_op(
                type='logical_xor',
                inputs={"X": input_back, "Y": input_front},
                outputs={"Out": out},
            )
A
andyjpaddle 已提交
4842
        else:
Z
zyfncg 已提交
4843
            out = paddle.tensor.math.subtract(input_back, input_front)
A
andyjpaddle 已提交
4844
        return out
F
Feiyu Chan 已提交
4845

4846

F
Feiyu Chan 已提交
4847 4848
def angle(x, name=None):
    r"""
4849
    Element-wise angle of complex numbers. For non-negative real numbers, the angle is 0 while
F
Feiyu Chan 已提交
4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861
    for negative real numbers, the angle is :math:`\pi`.

    Equation:
        .. math::

            angle(x)=arctan2(x.imag, x.real)

    Args:
        x (Tensor): An N-D Tensor, the data type is complex64, complex128, or float32, float64 .
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4862
        Tensor: An N-D Tensor of real data type with the same precision as that of x's data type.
F
Feiyu Chan 已提交
4863 4864 4865 4866 4867 4868 4869 4870 4871

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-2, -1, 0, 1]).unsqueeze(-1).astype('float32')
            y = paddle.to_tensor([-2, -1, 0, 1]).astype('float32')
            z = x + 1j * y
4872 4873 4874 4875 4876 4877
            print(z)
            # Tensor(shape=[4, 4], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[(-2-2j), (-2-1j), (-2+0j), (-2+1j)],
            #         [(-1-2j), (-1-1j), (-1+0j), (-1+1j)],
            #         [-2j    , -1j    ,  0j    ,  1j    ],
            #         [ (1-2j),  (1-1j),  (1+0j),  (1+1j)]])
F
Feiyu Chan 已提交
4878 4879

            theta = paddle.angle(z)
4880 4881 4882 4883 4884 4885
            print(theta)
            # Tensor(shape=[4, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-2.35619450, -2.67794514,  3.14159274,  2.67794514],
            #         [-2.03444386, -2.35619450,  3.14159274,  2.35619450],
            #         [-1.57079637, -1.57079637,  0.        ,  1.57079637],
            #         [-1.10714877, -0.78539819,  0.        ,  0.78539819]])
F
Feiyu Chan 已提交
4886 4887
    """

W
WangZhen 已提交
4888
    if in_dygraph_mode():
F
Feiyu Chan 已提交
4889
        return _C_ops.angle(x)
4890 4891
    else:
        check_variable_and_dtype(
C
chenxujun 已提交
4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'complex64',
                'complex128',
                'uint16',
            ],
            'angle',
4903 4904 4905 4906 4907 4908 4909 4910 4911 4912
        )
        op_type = "angle"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": x}
        out = helper.create_variable_for_type_inference(
            dtype=_complex_to_real_dtype(x.dtype)
        )
        outputs = {"Out": out}
        helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
        return out
4913

4914

4915
def heaviside(x, y, name=None):
4916
    r"""
4917 4918 4919 4920 4921
    Computes the Heaviside step function determined by corresponding element in y for each element in x. The equation is

    .. math::
        heaviside(x, y)=
            \left\{
4922 4923 4924 4925
                \begin{array}{lcl}
                0,& &\text{if} \ x < 0, \\
                y,& &\text{if} \ x = 0, \\
                1,& &\text{if} \ x > 0.
4926
                \end{array}
4927
            \right.
4928

4929
    Note:
I
Infinity_lee 已提交
4930 4931 4932
        ``paddle.heaviside`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
4933 4934

    Args:
4935 4936
        x (Tensor): The input tensor of Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
        y (Tensor): The tensor that determines a Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x and y have different shapes and are broadcastable, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-0.5, 0, 0.5])
            y = paddle.to_tensor([0.1])
            paddle.heaviside(x, y)
            #    [0.        , 0.10000000, 1.        ]
            x = paddle.to_tensor([[-0.5, 0, 0.5], [-0.5, 0.5, 0]])
            y = paddle.to_tensor([0.1, 0.2, 0.3])
            paddle.heaviside(x, y)
            #    [[0.        , 0.20000000, 1.        ],
            #     [0.        , 1.        , 0.30000001]]
4955
    """
4956
    if in_dygraph_mode():
4957
        return _C_ops.heaviside(x, y)
4958
    else:
W
Weilong Wu 已提交
4959
        op_type = 'elementwise_heaviside'
4960
        return _elementwise_op(LayerHelper(op_type, **locals()))
4961

4962

4963 4964 4965 4966 4967 4968
def frac(x, name=None):
    """
    This API is used to return the fractional portion of each element in input.

    Args:
        x (Tensor): The input tensor, which data type should be int32, int64, float32, float64.
4969
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4970 4971 4972 4973 4974

    Returns:
        Tensor: The output Tensor of frac.

    Examples:
4975
        .. code-block:: python
4976 4977 4978

            import paddle

4979 4980
            input = paddle.to_tensor([[12.22000003, -1.02999997],
                                    [-0.54999995, 0.66000003]])
4981
            output = paddle.frac(input)
4982 4983 4984 4985
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[ 0.22000003, -0.02999997],
            #         [-0.54999995,  0.66000003]])
4986
    """
4987
    if x.dtype not in [
4988 4989 4990 4991
        paddle.int32,
        paddle.int64,
        paddle.float32,
        paddle.float64,
4992
    ]:
4993
        raise TypeError(
4994 4995 4996 4997
            "The data type of input must be one of ['int32', 'int64', 'float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
4998
    if in_dygraph_mode():
4999 5000
        y = _C_ops.trunc(x)
        return _C_ops.subtract(x, y)
5001
    else:
5002 5003
        inputs = {"X": x}
        attrs = {}
5004

5005 5006 5007 5008 5009 5010 5011 5012
        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(
            x, "X", ['int32', 'int64', 'float32', 'float64'], 'trunc'
        )
        y = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": y}
        )
5013
        return _elementwise_op(LayerHelper('elementwise_sub', **locals()))
5014

5015

5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040
def sgn(x, name=None):
    """
    For complex tensor, this API returns a new tensor whose elements have the same angles as the corresponding
    elements of input and absolute values of one.
    For other float dtype tensor,
    this API returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero, same as paddle.sign.

    Args:
        x (Tensor): The input tensor, which data type should be float16, float32, float64, complex64, complex128.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A sign Tensor for real input, or normalized Tensor for complex input, shape and data type are same as input.

    Examples:
        .. code-block:: Python

            import paddle

            x = paddle.to_tensor([[3 + 4j, 7 - 24j, 0, 1 + 2j], [6 + 8j, 3, 0, -2]])
            print(paddle.sgn(x))
            #[[0.6+0.8j       0.28-0.96j      0.+0.j      0.4472136+0.8944272j]
            # [0.6+0.8j       1.+0.j          0.+0.j      -1.+0.j]]

    """
5041
    if x.dtype not in [
5042 5043 5044 5045 5046
        paddle.float16,
        paddle.float32,
        paddle.float64,
        paddle.complex64,
        paddle.complex128,
5047
    ]:
5048
        raise TypeError(
5049 5050 5051 5052
            "The data type of input must be one of ['float16', 'float32', 'float64', 'complex64', 'complex128'], but got {}".format(
                x.dtype
            )
        )
5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063
    if paddle.is_complex(x):
        expand_x = paddle.as_real(x)
        x_abs = paddle.abs(x)
        x_abs = paddle.unsqueeze(x_abs, axis=-1)
        output = expand_x / x_abs
        zeros = paddle.zeros_like(output)
        output = paddle.where(paddle.isnan(output), zeros, output)

        return paddle.as_complex(output)
    else:
        return paddle.sign(x)
5064

5065

5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132
def take(x, index, mode='raise', name=None):
    """
    Returns a new tensor with the elements of input tensor x at the given index.
    The input tensor is treated as if it were viewed as a 1-D tensor.
    The result takes the same shape as the index.

    Args:
        x (Tensor): An N-D Tensor, its data type should be int32, int64, float32, float64.
        index (Tensor): An N-D Tensor, its data type should be int32, int64.
        mode (str, optional): Specifies how out-of-bounds index will behave. the candicates are ``'raise'``, ``'wrap'`` and ``'clip'``.

            - ``'raise'``: raise an error (default);
            - ``'wrap'``: wrap around;
            - ``'clip'``: clip to the range. ``'clip'`` mode means that all indices that are too large are replaced by the index that addresses the last element. Note that this disables indexing with negative numbers.

        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Tensor with the same shape as index, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x_int = paddle.arange(0, 12).reshape([3, 4])
            x_float = x_int.astype(paddle.float64)

            idx_pos = paddle.arange(4, 10).reshape([2, 3])  # positive index
            idx_neg = paddle.arange(-2, 4).reshape([2, 3])  # negative index
            idx_err = paddle.arange(-2, 13).reshape([3, 5])  # index out of range

            paddle.take(x_int, idx_pos)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[4, 5, 6],
            #         [7, 8, 9]])

            paddle.take(x_int, idx_neg)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[10, 11, 0 ],
            #         [1 , 2 , 3 ]])

            paddle.take(x_float, idx_pos)
            # Tensor(shape=[2, 3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[4., 5., 6.],
            #         [7., 8., 9.]])

            x_int.take(idx_pos)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[4, 5, 6],
            #         [7, 8, 9]])

            paddle.take(x_int, idx_err, mode='wrap')
            # Tensor(shape=[3, 5], dtype=int32, place=Place(cpu), stop_gradient=True,
            #        [[10, 11, 0 , 1 , 2 ],
            #         [3 , 4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11, 0 ]])

            paddle.take(x_int, idx_err, mode='clip')
            # Tensor(shape=[3, 5], dtype=int32, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 1 , 2 ],
            #         [3 , 4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11, 11]])

    """
    if mode not in ['raise', 'wrap', 'clip']:
        raise ValueError(
5133 5134 5135 5136
            "'mode' in 'take' should be 'raise', 'wrap', 'clip', but received {}.".format(
                mode
            )
        )
5137

5138
    if in_dygraph_mode():
5139 5140
        if not isinstance(index, (paddle.Tensor, Variable)):
            raise TypeError(
5141
                "The type of 'index' must be Tensor, but got {}".format(
5142 5143 5144
                    type(index)
                )
            )
5145 5146
        if index.dtype not in [paddle.int32, paddle.int64]:
            raise TypeError(
5147 5148 5149 5150
                "The data type of 'index' must be one of ['int32', 'int64'], but got {}".format(
                    index.dtype
                )
            )
5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163

    else:
        check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'take')

    input_1d = x.flatten()
    index_1d = index.flatten()
    max_index = input_1d.shape[-1]

    if mode == 'raise':
        # This processing enables 'take' to handle negative indexes within the correct range.
        index_1d = paddle.where(index_1d < 0, index_1d + max_index, index_1d)
    elif mode == 'wrap':
        # The out of range indices are constrained by taking the remainder.
5164
        index_1d = paddle.where(index_1d < 0, index_1d % max_index, index_1d)
5165 5166 5167
        index_1d = paddle.where(
            index_1d >= max_index, index_1d % max_index, index_1d
        )
5168 5169 5170 5171 5172 5173 5174
    elif mode == 'clip':
        # 'clip' mode disables indexing with negative numbers.
        index_1d = clip(index_1d, 0, max_index - 1)

    out = input_1d.index_select(index_1d).reshape(index.shape)

    return out
5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200


def frexp(x, name=None):
    """
    The function used to decompose a floating point number into mantissa and exponent.

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
    Returns:

        - mantissa (Tensor), A mantissa Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

        - exponent (Tensor), A exponent Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3, 4]], dtype="float32")
            print(paddle.tensor.math.frexp(x))
            # (Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,[[0.50000000, 0.50000000, 0.75000000, 0.50000000]]),
            #  Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,[[1., 2., 2., 3.]]))
5201
    """
5202 5203
    if x.dtype not in [paddle.float32, paddle.float64]:
        raise TypeError(
5204 5205 5206 5207
            "The data type of input must be one of ['float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
5208 5209
    input_x = paddle.abs(x)
    exponent = paddle.floor(paddle.log2(input_x))
5210 5211 5212
    exponent = paddle.where(
        paddle.isinf(exponent), paddle.full_like(exponent, 0), exponent
    )
5213 5214 5215 5216

    # 0填充
    mantissa = paddle.divide(input_x, 2**exponent)
    # 计算exponent
5217 5218 5219 5220 5221 5222 5223 5224 5225 5226
    exponent = paddle.where(
        (mantissa >= 1),
        paddle.add(exponent, paddle.ones_like(exponent)),
        exponent,
    )
    mantissa = paddle.where(
        (mantissa >= 1),
        paddle.divide(mantissa, 2 ** paddle.ones_like(exponent)),
        mantissa,
    )
5227 5228 5229

    mantissa = paddle.where((x < 0), mantissa * -1, mantissa)
    return mantissa, exponent
5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271


def _trapezoid(y, x=None, dx=None, axis=-1, mode='sum'):
    """
    Integrate along the given axis using the composite trapezoidal rule.

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
        sum_mode (str): use a different summation. The default is `sum`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
    """
    if mode == 'sum':
        sum_mode = paddle.sum
    elif mode == 'cumsum':
        sum_mode = paddle.cumsum

    if not (x is None or dx is None):
        raise ValueError("Not permitted to specify both x and dx input args.")
    if y.dtype not in [paddle.float16, paddle.float32, paddle.float64]:
        raise TypeError(
            "The data type of input must be Tensor, and dtype should be one of ['paddle.float16', 'paddle.float32', 'paddle.float64'], but got {}".format(
                y.dtype
            )
        )

    y_shape = y.shape
    length = y_shape[axis]
    if axis < 0:
        axis += y.dim()
    if x is None:
        if dx is None:
            dx = 1.0
        dx = paddle.to_tensor(dx)
        if dx.dim() > 1:
5272
            raise ValueError(f'Expected dx to be a scalar, got dx={dx}')
5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412
    else:
        if x.dtype not in [paddle.float16, paddle.float32, paddle.float64]:
            raise TypeError(
                "The data type of input must be Tensor, and dtype should be one of ['paddle.float16', 'paddle.float32', 'paddle.float64'], but got {}".format(
                    x.dtype
                )
            )
        # Reshape to correct shape
        if x.dim() == 1:
            dx = paddle.diff(x)
            shape = [1] * y.dim()
            shape[axis] = dx.shape[0]
            dx = dx.reshape(shape)
        else:
            dx = paddle.diff(x, axis=axis)
    return 0.5 * sum_mode(
        (
            paddle.gather(y, paddle.arange(1, length), axis=axis)
            + paddle.gather(y, paddle.arange(0, length - 1), axis=axis)
        )
        * dx,
        axis=axis,
    )


def trapezoid(y, x=None, dx=None, axis=-1, name=None):
    """
    Integrate along the given axis using the composite trapezoidal rule. Use the sum method.

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
        If :attr:`y` is a 1D tensor, then the result is a float. If N is greater than 1, then the result is an (N-1)-D tensor.

    Examples:
        .. code-block:: python

            import paddle

            y = paddle.to_tensor([4, 5, 6], dtype='float32')

            print(paddle.trapezoid(y))
            # Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [10.])

            print(paddle.trapezoid(y, dx=2.))
            # Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [20.])

            y = paddle.to_tensor([4, 5, 6], dtype='float32')
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            print(paddle.trapezoid(y, x))
            # Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [10.])


            y = paddle.to_tensor([1, 2, 3], dtype='float64')
            x = paddle.to_tensor([8, 6, 4], dtype='float64')

            print(paddle.trapezoid(y, x))
            # Tensor(shape=[1], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [-8.])
            y = paddle.arange(6).reshape((2, 3)).astype('float32')

            print(paddle.trapezoid(y, axis=0))
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1.50000000, 2.50000000, 3.50000000])
            print(paddle.trapezoid(y, axis=1))
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [2., 8.])
    """
    return _trapezoid(y, x, dx, axis, mode='sum')


def cumulative_trapezoid(y, x=None, dx=None, axis=-1, name=None):
    """
    Integrate along the given axis using the composite trapezoidal rule. Use the cumsum method

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
        The result is an N-D tensor.

    Examples:
        .. code-block:: python

            import paddle

            y = paddle.to_tensor([4, 5, 6], dtype='float32')

            print(paddle.cumulative_trapezoid(y))
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [4.50000000, 10.       ])

            print(paddle.cumulative_trapezoid(y, dx=2.))
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [9. , 20.])

            y = paddle.to_tensor([4, 5, 6], dtype='float32')
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            print(paddle.cumulative_trapezoid(y, x))
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [4.50000000, 10.       ])

            y = paddle.to_tensor([1, 2, 3], dtype='float64')
            x = paddle.to_tensor([8, 6, 4], dtype='float64')

            print(paddle.cumulative_trapezoid(y, x))
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [-3., -8.])

            y = paddle.arange(6).reshape((2, 3)).astype('float32')

            print(paddle.cumulative_trapezoid(y, axis=0))
            # Tensor(shape=[1, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[1.50000000, 2.50000000, 3.50000000]])
            print(paddle.cumulative_trapezoid(y, axis=1))
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0.50000000, 2.        ],
            #         [3.50000000, 8.        ]])
    """
    return _trapezoid(y, x, dx, axis, mode='cumsum')
5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488


def vander(x, n=None, increasing=False, name=None):
    """
    Generate a Vandermonde matrix.

    The columns of the output matrix are powers of the input vector. Order of the powers is
    determined by the increasing Boolean parameter. Specifically, when the increment is
    "false", the ith output column is a step-up in the order of the elements of the input
    vector to the N - i - 1 power. Such a matrix with a geometric progression in each row
    is named after Alexandre-Theophile Vandermonde.

    Args:
        x (Tensor): The input tensor, it must be 1-D Tensor, and it's data type should be ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'].
        n (int): Number of columns in the output. If n is not specified, a square array is returned (n = len(x)).
        increasing(bool): Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
    Returns:
        Tensor, A vandermonde matrix with shape (len(x), N). If increasing is False, the first column is :math:`x^{(N-1)}`, the second :math:`x^{(N-2)}` and so forth.
        If increasing is True, the columns are :math:`x^0`, :math:`x^1`, ..., :math:`x^{(N-1)}`.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([1., 2., 3.], dtype="float32")
            out = paddle.vander(x)
            print(out.numpy())
            # [[1., 1., 1.],
            #  [4., 2., 1.],
            #  [9., 3., 1.]]
            out1 = paddle.vander(x,2)
            print(out1.numpy())
            # [[1., 1.],
            #  [2., 1.],
            #  [3., 1.]]
            out2 = paddle.vander(x, increasing = True)
            print(out2.numpy())
            # [[1., 1., 1.],
            #  [1., 2., 4.],
            #  [1., 3., 9.]]
            real = paddle.to_tensor([2., 4.])
            imag = paddle.to_tensor([1., 3.])
            complex = paddle.complex(real, imag)
            out3 = paddle.vander(complex)
            print(out3.numpy())
            # [[2.+1.j, 1.+0.j],
            #  [4.+3.j, 1.+0.j]]
    """
    check_variable_and_dtype(
        x,
        'x',
        ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'],
        'vander',
    )
    if x.dim() != 1:
        raise ValueError(
            "The input of x is expected to be a 1-D Tensor."
            "But now the dims of Input(X) is %d." % x.dim()
        )

    if n is None:
        n = x.shape[0]

    if n < 0:
        raise ValueError("N must be non-negative.")

    res = paddle.empty([x.shape[0], n], dtype=x.dtype)

    if n > 0:
        res[:, 0] = paddle.to_tensor([1], dtype=x.dtype)
    if n > 1:
        res[:, 1:] = x[:, None]
        res[:, 1:] = paddle.cumprod(res[:, 1:], dim=-1)
    res = res[:, ::-1] if not increasing else res
    return res
5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524


def nextafter(x, y, name=None):
    r"""
    Return the next floating-point value after input towards other, elementwise.
    The shapes of input and other must be broadcastable.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        y (Tensor): An N-D Tensor, the data type is float32, float64.
        name(str, optional):Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
            out = paddle.nextafter(paddle.to_tensor([1.0,2.0]),paddle.to_tensor([2.0,1.0]))
            print(out)
            #Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #       [1.00000012, 1.99999988])
    """
    if in_dygraph_mode():
        return _C_ops.nextafter(x, y)
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'nextafter')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'nextafter')
        op_type = "nextafter"
        helper = LayerHelper(op_type, **locals())
        inputs = {"x": x, "y": y}
        out = helper.create_variable_for_type_inference(dtype=paddle.float32)
        outputs = {"out": out}
        helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out