layers.py 43.3 KB
Newer Older
Y
Yu Yang 已提交
1
import paddle.v2.framework.core as core
2
import paddle.v2.framework.proto.framework_pb2 as framework_pb2
Y
Yu Yang 已提交
3 4 5 6
from paddle.v2.framework.framework import OpProtoHolder, Variable, Program, \
    Operator
from paddle.v2.framework.initializer import ConstantInitializer, \
    NormalInitializer
7
from paddle.v2.framework.layer_helper import LayerHelper, unique_name
Y
Yu Yang 已提交
8
import re
9
import cStringIO
Y
Yu Yang 已提交
10

Q
QI JUN 已提交
11
__all__ = [
Y
Yu Yang 已提交
12
    'fc', 'data', 'cross_entropy', 'conv2d', 'pool2d', 'embedding', 'concat',
D
dzhwinter 已提交
13 14
    'StaticRNN', 'cast', 'sequence_conv', 'sequence_pool', 'sums', 'cos_sim',
    'batch_norm', 'accuracy'
Q
QI JUN 已提交
15
]
Y
Yu Yang 已提交
16 17


F
fengjiayi 已提交
18 19 20
def fc(input,
       size,
       param_attr=None,
Q
QI JUN 已提交
21
       bias_attr=None,
F
fengjiayi 已提交
22 23 24
       name=None,
       act=None,
       num_flatten_dims=1,
25 26
       main_program=None,
       startup_program=None):
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
    """
    Fully Connected Layer.

    Args:
       input: The input tensor to the function
       size: The size of the layer
       param_attr: The parameters/weights to the FC Layer
       bias_attr: The bias parameter for the FC layer
       name: Name/alias of the function
       act: Activation to be applied to the output of FC layer
       num_flatten_dims: Number of columns in input
       main_program: Name of the main program that calls this
       startup_program: Name of the startup program

    This function can take in multiple inputs and performs the Fully Connected
    function (linear transformation) on top of each of them.
    So for input x, the output will be : Wx + b. Where W is the parameter,
    b the bias and x is the input.

    The function also applies an activation (non-linearity) on top of the
    output, if activation is passed in the input.

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

    """
Y
Yu Yang 已提交
53 54 55 56 57 58 59
    helper = LayerHelper('fc', **locals())

    dtype = helper.input_dtype()

    mul_results = []
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
60 61 62
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
Yu Yang 已提交
63 64 65 66 67 68 69 70 71 72
        w = helper.create_parameter(
            attr=param_attr, shape=param_shape, dtype=dtype)
        tmp = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="mul",
            inputs={
                "X": input_var,
                "Y": w,
            },
            outputs={"Out": tmp},
Y
Yu Yang 已提交
73 74
            attrs={'x_num_col_dims': num_flatten_dims,
                   'y_num_col_dims': 1})
Y
Yu Yang 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
        mul_results.append(tmp)

    # sum
    if len(mul_results) == 1:
        pre_bias = mul_results[0]
    else:
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
    pre_activation = helper.append_bias_op(pre_bias)
    # add activation
    return helper.append_activation(pre_activation)


Q
QI JUN 已提交
90 91 92
def embedding(input,
              size,
              data_type='float32',
93
              is_sparse=False,
Q
QI JUN 已提交
94
              param_attr=None,
95 96
              main_program=None,
              startup_program=None):
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    """
    Embedding Layer.

    Args:
       input: The input to the function
       size: The size of the layer
       data_type: The type of data : float32, float_16, int etc
       is_sparse: A flag that decleares whether the input is sparse
       param_attr: Parameters for this layer
       main_program: Name of the main program that calls this
       startup_program: Name of the startup program

    This function can take in the input (which is a vector of IDs) and
    performs a lookup in the lookup_table using these IDs, to result into
    the embedding of each ID in the input.

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

    """
Q
QI JUN 已提交
117 118 119 120 121 122 123 124
    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=data_type)
    tmp = helper.create_tmp_variable(data_type)
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
125 126
        outputs={'Out': tmp},
        attrs={'is_sparse': is_sparse})
Q
QI JUN 已提交
127 128 129
    return tmp


Q
QI JUN 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
# TODO(qijun): expose H0 and C0
def dynamic_lstm(input,
                 size,
                 data_type='float32',
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 main_program=None,
                 startup_program=None):
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=data_type)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=data_type, suffix='b')

    hidden = helper.create_tmp_variable(data_type)
    cell = helper.create_tmp_variable(data_type)
    batch_gate = helper.create_tmp_variable(data_type)
    batch_cell_pre_act = helper.create_tmp_variable(data_type)

    helper.append_op(
        type='lstm',
        inputs={'Input': input,
                'Weight': weight,
                'Bias': bias},
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


F
fengjiayi 已提交
179 180 181 182
def data(name,
         shape,
         data_type='float32',
         type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
183
         append_batch_size=True,
184
         main_program=None,
185 186
         startup_program=None,
         stop_gradient=True):
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    """
    Data Layer.

    Args:
       name: The name/alias of the function
       shape: Tuple declaring the shape.
       data_type: The type of data : float32, float_16, int etc
       type: The output type. By default it is LOD_TENSOR.
       append_batch_size: Whether or not to append the data as a batch.
       main_program: Name of the main program that calls this
       startup_program: Name of the startup program
       stop_gradient: A boolean that mentions whether gradient should flow.

    This function takes in input and based on whether data has
    to be returned back as a minibatch, it creates the global variable using
    the helper functions. The global variables can be accessed by all the
    following operations and layers in the graph.

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

    """
Y
Yu Yang 已提交
209
    helper = LayerHelper('data', **locals())
Y
Yu Yang 已提交
210 211 212 213 214 215 216 217
    shape = list(shape)
    for i in xrange(len(shape)):
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

Y
Yu Yang 已提交
218 219
    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1
Y
Yu Yang 已提交
220

Y
Yu Yang 已提交
221
    return helper.create_global_variable(
222 223 224 225 226
        name=name,
        shape=shape,
        dtype=data_type,
        type=type,
        stop_gradient=stop_gradient)
Y
Yu Yang 已提交
227 228 229


def _convert_(name):
230 231 232 233 234 235 236 237 238 239 240
    """
    Formatting.

    Args:
       name: The name/alias

    This function takes in a name and converts it to a standard format of
    group1_group2. Where as per the regular expression, group1 can have
    alphabets and numbers and group2 has capital alphabets.

    """
Y
Yu Yang 已提交
241 242 243 244
    s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
    return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()


245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
def _generate_doc_string_(op_proto):
    """
    Generate docstring by OpProto
    
    Args:
        op_proto (framework_pb2.OpProto): a protobuf message typed OpProto

    Returns:
        str: the document string
    """

    def _type_to_str_(tp):
        return framework_pb2.AttrType.Name(tp)

    if not isinstance(op_proto, framework_pb2.OpProto):
        raise TypeError("OpProto should be `framework_pb2.OpProto`")

    buf = cStringIO.StringIO()
    buf.write(op_proto.comment)
    buf.write('\nArgs:\n')
    for each_input in op_proto.inputs:
        line_begin = '    {0}: '.format(_convert_(each_input.name))
        buf.write(line_begin)
        buf.write(each_input.comment)
        buf.write('\n')
        buf.write(' ' * len(line_begin))
        buf.write('Duplicable: ')
        buf.write(str(each_input.duplicable))
        buf.write('  Optional: ')
        buf.write(str(each_input.dispensable))
        buf.write('\n')

    for each_attr in op_proto.attrs:
        buf.write('    ')
        buf.write(each_attr.name)
        buf.write(' (')
        buf.write(_type_to_str_(each_attr.type))
        buf.write('): ')
        buf.write(each_attr.comment)
        buf.write('\n')

    if len(op_proto.outputs) != 0:
        buf.write('\nReturns:\n')
        buf.write('    ')
        for each_opt in op_proto.outputs:
            if not each_opt.intermediate:
                break
        buf.write(each_opt.comment)

    return buf.getvalue()


Y
Yu Yang 已提交
297
def _create_op_func_(op_type):
298 299 300 301 302 303 304 305 306 307
    """
    Create an Operator for a Function.

    Args:
       op_type: The name of the operator to be created

    This function takes in the operator type (sigmoid, mean , average etc) and
    creates the operator functionality.

    """
Y
Yu Yang 已提交
308
    op_proto = OpProtoHolder.instance().get_op_proto(op_type)
309 310 311 312 313 314
    not_intermediate_outputs = \
        filter(lambda output: not output.intermediate, op_proto.outputs)
    intermediate_outputs = \
        filter(lambda output: output.intermediate, op_proto.outputs)

    if len(not_intermediate_outputs) != 1:
315 316
        raise ValueError("Only one non intermediate output operator can be",
                         "automatically generated")
Y
Yu Yang 已提交
317

318
    if not_intermediate_outputs[0].duplicable:
Y
Yu Yang 已提交
319
        raise ValueError(
320
            "Only non duplicable op can be automatically generated")
Y
Yu Yang 已提交
321

322 323
    for output in intermediate_outputs:
        if output.duplicable:
324 325
            raise ValueError("The op can be automatically generated only when ",
                             "all intermediate ops are not duplicable")
326 327 328

    o_name = not_intermediate_outputs[0].name
    intermediate_output_names = [output.name for output in intermediate_outputs]
Y
Yu Yang 已提交
329

Y
Yang Yang(Tony) 已提交
330
    def infer_and_check_data_type(op_proto, **kwargs):
331 332 333 334
        """
        This function performs the sanity check for data_type and
        instance type.
        """
Y
Yu Yang 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
        dtype = None
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
            for each in val:
                if not isinstance(each, Variable):
                    raise ValueError("input of {0} must be variable".format(
                        op_type))

                if dtype is None:
                    dtype = each.data_type
                elif dtype != each.data_type:
                    raise ValueError(
                        "operator {0} must input same dtype".format(op_type))
Y
Yang Yang(Tony) 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364

        return dtype

    def func(**kwargs):
        helper = LayerHelper(op_type, **kwargs)

        dtype = infer_and_check_data_type(op_proto, **kwargs)

        inputs = dict()
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
Y
Yu Yang 已提交
365 366
            inputs[ipt.name] = val

367
        outputs = dict()
Y
Yu Yang 已提交
368
        out = helper.create_tmp_variable(dtype=dtype)
369 370 371
        outputs[o_name] = [out]
        for name in intermediate_output_names:
            outputs[name] = [helper.create_tmp_variable(dtype=dtype)]
Y
Yu Yang 已提交
372
        helper.append_op(
373
            type=op_type, inputs=inputs, outputs=outputs, attrs=kwargs)
Q
Qiao Longfei 已提交
374
        return helper.append_activation(out)
Y
Yu Yang 已提交
375 376 377

    func.__name__ = op_type
    globals()[op_type] = func
378
    func.__doc__ = _generate_doc_string_(op_proto)
Y
Yu Yang 已提交
379 380 381 382 383
    global __all__
    __all__.append(op_type)


_create_op_func_('mean')
Y
Yu Yang 已提交
384
_create_op_func_('mul')
Q
Qiao Longfei 已提交
385
_create_op_func_('elementwise_add')
386
_create_op_func_('dropout')
Q
Qiao Longfei 已提交
387
_create_op_func_('reshape')
Y
Yu Yang 已提交
388 389 390
_create_op_func_('elementwise_add')
_create_op_func_('sigmoid')
_create_op_func_('scale')
Y
Yang Yang(Tony) 已提交
391 392 393 394 395
_create_op_func_('reshape')
_create_op_func_('transpose')


def fill_constant(data_type, shape, value=None, program=None):
396 397 398 399 400
    """
    This function creates a tensor , with shape as mentioned in the input and
    specified data_type and fills this up with a constant value that
    comes in the input.
    """
Y
Yang Yang(Tony) 已提交
401 402 403 404 405 406 407 408 409
    helper = LayerHelper('fill_constant', **locals())
    out = helper.create_tmp_variable(dtype=data_type)
    helper.append_op(
        type='fill_constant',
        outputs={'Out': [out]},
        attrs={'data_type': data_type,
               'shape': shape,
               'value': value})
    return out
Y
Yu Yang 已提交
410 411


412
def cast(x, data_type, main_program=None):
413 414 415 416
    """
    This function takes in the input with input_data_type
    and casts it to the output_data_type as the output.
    """
Y
Yu Yang 已提交
417 418 419 420 421 422 423 424 425 426 427
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=data_type)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_data_type': x.data_type,
               'out_data_type': out.data_type})
    return out


428
def concat(input, axis, main_program=None, startup_program=None):
429 430 431 432
    """
    This function concats the input along the axis mentioned
    and returns that as the output.
    """
Q
QI JUN 已提交
433
    helper = LayerHelper('concat', **locals())
D
dzhwinter 已提交
434
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Q
QI JUN 已提交
435 436 437 438 439 440 441 442
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


443
def sums(input, main_program=None, startup_program=None):
444 445 446 447
    """
    This function takes in the input and performs the sum operation on it
    and returns that as the output.
    """
D
dzhwinter 已提交
448 449
    helper = LayerHelper('sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Y
Yu Yang 已提交
450
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
D
dzhwinter 已提交
451 452 453
    return out


454
def cos_sim(X, Y, **kwargs):
455 456 457 458
    """
    This function performs the cosine similarity between two tensors
    X and Y and returns that as the output.
    """
459 460 461 462
    helper = LayerHelper('cos_sim', **kwargs)
    out = helper.create_tmp_variable(dtype=X.data_type)
    xnorm = helper.create_tmp_variable(dtype=X.data_type)
    ynorm = helper.create_tmp_variable(dtype=X.data_type)
D
dzhwinter 已提交
463 464 465 466 467 468 469
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
470
    return out
D
dzhwinter 已提交
471 472


Y
Yu Yang 已提交
473
def cross_entropy(input, label, **kwargs):
474 475 476
    """
    This function computes cross_entropy using the input and label.
    """
Y
Yu Yang 已提交
477 478 479 480 481 482 483 484 485 486 487 488
    helper = LayerHelper('cross_entropy', **kwargs)
    out = helper.create_tmp_variable(dtype=input.data_type)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs=kwargs)
    return out


def square_error_cost(input, label, **kwargs):
489 490 491 492
    """
    This functions returns the squared error cost using the input and label.
    The output is appending the op to do the above.
    """
Y
Yu Yang 已提交
493 494 495 496 497 498 499 500 501 502
    helper = LayerHelper('square_error_cost', **kwargs)
    minus_out = helper.create_tmp_variable(dtype=input.data_type)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.data_type)
    helper.append_op(
Q
QI JUN 已提交
503
        type='square', inputs={'X': [minus_out]}, outputs={'Y': [square_out]})
Y
Yu Yang 已提交
504
    return square_out
505 506


F
fengjiayi 已提交
507
def accuracy(input, label, k=1, **kwargs):
508 509 510 511
    """
    This function computes the accuracy using the input and label.
    The output is the top_k inputs and their indices.
    """
F
fengjiayi 已提交
512 513 514 515 516 517 518 519 520 521 522 523 524
    helper = LayerHelper("accuracy", **kwargs)
    topk_out = helper.create_tmp_variable(dtype=input.data_type)
    topk_indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [topk_out],
                 "Indices": [topk_indices]},
        attrs={"k": k})
    acc_out_dtype = kwargs.get("out_dtype", "float32")
    acc_out = helper.create_tmp_variable(dtype=acc_out_dtype)
    helper.append_op(
        type="accuracy",
武毅 已提交
525 526 527 528 529
        inputs={
            "Out": [topk_out],
            "Indices": [topk_indices],
            "Label": [label]
        },
F
fengjiayi 已提交
530 531 532 533
        outputs={"Accuracy": [acc_out]})
    return acc_out


D
dzhwinter 已提交
534 535 536
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
537
                  filter_stride=1,
538
                  act=None,
D
dzhwinter 已提交
539 540 541
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
542 543
                  main_program=None,
                  startup_program=None):
544 545 546 547 548
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
    """
D
dzhwinter 已提交
549 550 551 552 553 554 555
    # FIXME(dzh) : want to unify the argument of python layer
    # function. So we ignore some unecessary attributes.
    # such as, padding_trainable, context_start.

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()

D
dzhwinter 已提交
556
    filter_shape = [filter_size * input.shape[1], num_filters]
D
dzhwinter 已提交
557 558 559 560 561 562 563 564
    filter = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
D
dzhwinter 已提交
565
            'Filter': [filter],
D
dzhwinter 已提交
566 567 568
        },
        outputs={"Out": pre_bias},
        attrs={
569
            'contextStride': filter_stride,
570
            'contextStart': -int(filter_size / 2),
571
            'contextLength': filter_size
D
dzhwinter 已提交
572 573 574 575 576
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


F
fengjiayi 已提交
577 578 579 580 581 582 583 584 585 586
def conv2d(input,
           num_filters,
           name=None,
           filter_size=[1, 1],
           act=None,
           groups=None,
           stride=[1, 1],
           padding=None,
           bias_attr=None,
           param_attr=None,
587 588
           main_program=None,
           startup_program=None):
589 590 591 592 593 594 595
    """
    This function creates the op for a 2-dimensional Convolution.
    This is performed using the parameters of filters(size, dimensionality etc)
    , stride and other configurations for a Convolution operation.
    This funciton can also append an activation on top of the
    conv-2d output, if mentioned in the input parameters.
    """
596 597 598 599 600 601 602 603 604 605 606
    helper = LayerHelper('conv2d', **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups is not 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

F
fengjiayi 已提交
607 608 609 610 611 612 613
    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]

614 615
    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size
616 617

    std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
618
    filter = helper.create_parameter(
619 620 621 622
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        initializer=NormalInitializer(0.0, std, 0))
623 624 625 626 627 628 629 630 631 632 633 634 635
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='conv2d',
        inputs={
            'Input': input,
            'Filter': filter,
        },
        outputs={"Output": pre_bias},
        attrs={'strides': stride,
               'paddings': padding,
               'groups': groups})

Y
Yu Yang 已提交
636
    pre_act = helper.append_bias_op(pre_bias, 1)
637 638

    return helper.append_activation(pre_act)
F
fengjiayi 已提交
639 640


D
dzhwinter 已提交
641
def sequence_pool(input, pool_type, **kwargs):
642 643 644 645 646
    """
    This function add the operator for sequence pooling.
    This is applied on top of the input using pool_type mentioned
    in the parameters.
    """
647
    helper = LayerHelper('sequence_pool', input=input, **kwargs)
D
dzhwinter 已提交
648 649
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
D
dangqingqing 已提交
650
    max_index = helper.create_tmp_variable(dtype)
D
dzhwinter 已提交
651 652 653

    helper.append_op(
        type="sequence_pool",
D
dangqingqing 已提交
654 655 656
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
D
dzhwinter 已提交
657
        attrs={"pooltype": pool_type.upper()})
D
dzhwinter 已提交
658 659 660 661

    return pool_out


F
fengjiayi 已提交
662 663 664 665 666 667
def pool2d(input,
           pool_size,
           pool_type,
           pool_stride=[1, 1],
           pool_padding=[0, 0],
           global_pooling=False,
668 669
           main_program=None,
           startup_program=None):
670 671 672 673
    """
    This function adds the operator for pooling in 2 dimensions, using the
    pooling configurations mentioned in input parameters.
    """
F
fengjiayi 已提交
674 675 676 677 678 679 680 681 682 683 684
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
    if isinstance(pool_size, int):
        pool_size = [pool_size, pool_size]
    if isinstance(pool_stride, int):
        pool_stride = [pool_stride, pool_stride]
    if isinstance(pool_padding, int):
        pool_padding = [pool_padding, pool_padding]

D
dzhwinter 已提交
685
    helper = LayerHelper('pool2d', **locals())
F
fengjiayi 已提交
686 687 688 689 690 691 692 693
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="pool2d",
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
C
chengduoZH 已提交
694
            "pooling_type": pool_type,
F
fengjiayi 已提交
695
            "ksize": pool_size,
C
chengduoZH 已提交
696
            "global_pooling": global_pooling,
F
fengjiayi 已提交
697 698 699 700 701
            "strides": pool_stride,
            "paddings": pool_padding
        })

    return pool_out
Y
Yu Yang 已提交
702 703


Q
Qiao Longfei 已提交
704 705 706 707
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
708
               epsilon=1e-05,
Q
Qiao Longfei 已提交
709 710 711
               param_attr=None,
               bias_attr=None,
               data_layout='NCHW',
712 713
               main_program=None,
               startup_program=None):
714 715 716 717
    """
    This function helps create an operator to implement
    the BatchNorm layer using the configurations from the input parameters.
    """
Q
Qiao Longfei 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
734 735 736 737
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        initializer=ConstantInitializer(1.0))
Q
Qiao Longfei 已提交
738
    bias = helper.create_parameter(
739 740 741 742 743 744 745 746 747 748 749 750 751 752
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        initializer=ConstantInitializer(0.0))

    mean = helper.create_global_variable(
        dtype=input.data_type, shape=param_shape, persistable=True)
    helper.set_variable_initializer(
        var=mean, initializer=ConstantInitializer(0.0))

    variance = helper.create_global_variable(
        dtype=input.data_type, shape=param_shape, persistable=True)
    helper.set_variable_initializer(
        var=variance, initializer=ConstantInitializer(1.0))
Q
Qiao Longfei 已提交
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
    saved_mean = helper.create_tmp_variable(dtype)
    saved_variance = helper.create_tmp_variable(dtype)

    batch_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"momentum": momentum,
               "epsilon": epsilon,
               "is_test": is_test})

    return helper.append_activation(batch_norm_out)


Y
Yu Yang 已提交
787 788
class BlockGuard(object):
    """
789 790 791 792
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
793 794
    """

795 796
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
797
            raise TypeError("BlockGuard takes a program")
798
        self.main_program = main_program
Y
Yu Yang 已提交
799 800

    def __enter__(self):
801
        self.main_program.create_block()
Y
Yu Yang 已提交
802 803

    def __exit__(self, exc_type, exc_val, exc_tb):
804
        self.main_program.rollback()
Y
Yu Yang 已提交
805 806 807 808 809 810
        if exc_type is not None:
            return False  # re-raise exception
        return True


class StaticRNNGuard(BlockGuard):
811 812 813 814 815 816
    """
    StaticRNNGuard class.

    StaticRNNGuard class is used to create a StaticRNN block in a program.
    """

Y
Yu Yang 已提交
817 818
    def __init__(self, rnn):
        if not isinstance(rnn, StaticRNN):
Y
Yang Yang(Tony) 已提交
819
            raise TypeError("StaticRNNGuard takes a StaticRNN")
820
        super(StaticRNNGuard, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
821 822 823 824 825 826 827
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
        return super(StaticRNNGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
828 829
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
830 831 832 833 834 835 836
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
        self.rnn.complete_rnn_op()
        return super(StaticRNNGuard, self).__exit__(exc_type, exc_val, exc_tb)


class StaticRNNMemoryLink(object):
    """
837 838 839 840 841 842 843 844 845 846 847 848
    StaticRNNMemoryLink class.

    Args:
        init: the initial variable for Memory
        init: Variable
        pre_mem: the memory variable in previous time step
        pre_mem: Variable
        mem: the memory variable in current time step
        mem: Variable

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
Yu Yang 已提交
849 850 851 852 853 854 855 856 857
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
858 859 860 861 862 863
    """
    StaticRNN class.

    StaticRNN class is used to create a StaticRNN. The RNN will have its
    own parameters like inputs, outputs, memories, status and length.
    """
Y
Yu Yang 已提交
864 865 866 867
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

868 869 870
    def __init__(self, name=None, main_program=None):
        self.helper = LayerHelper(
            "static_rnn", name=name, main_program=main_program)
Y
Yu Yang 已提交
871 872 873 874 875 876 877 878 879 880 881 882 883 884
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
        return StaticRNNGuard(self)

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

885 886 887 888 889 890 891
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
892 893 894 895 896 897 898 899 900
        """
        Args:
            init: boot memory, if not set, a shape, batch_ref must be provided
            shape: shape of the boot memory
            batch_ref: batch size reference variable
            init_value: the init value of boot memory
            init_batch_dim_idx: the index of batch size in init's dimension
            ref_batch_dim_idx: the index of batch size in batch_ref's dimension
        """
Y
Yu Yang 已提交
901 902
        self._assert_in_rnn_block_('memory')
        if init is None:
903
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
904
                raise ValueError(
905
                    "if init is None, memory at least need shape and batch_ref")
Y
Yu Yang 已提交
906 907 908
            parent_block = self.parent_block()
            var_name = unique_name("@".join([self.helper.name, "memory_boot"]))
            boot_var = parent_block.create_var(
909 910 911 912
                name=var_name,
                shape=shape,
                dtype=batch_ref.data_type,
                persistable=False)
Y
Yu Yang 已提交
913 914

            parent_block.append_op(
915 916
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
917 918 919
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
920 921 922 923
                    'shape': boot_var.shape,
                    'data_type': boot_var.data_type,
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
                name=unique_name("@".join([self.helper.name, "mem"])),
                dtype=init.data_type,
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
941 942
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
943 944 945 946 947
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
            name=x.name,
            dtype=x.data_type,
Y
Yu Yang 已提交
948
            shape=list(x.shape[1:]),
Y
Yu Yang 已提交
949 950 951 952 953 954 955 956 957
            type=x.type)
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

Y
Yu Yang 已提交
958 959 960 961 962 963 964
        tmp_o = self.helper.create_tmp_variable(dtype=o.data_type)
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
            attrs={'data_type': o.data_type})

Y
Yu Yang 已提交
965
        out_var = self.parent_block().create_var(
Y
Yu Yang 已提交
966 967 968
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
            dtype=tmp_o.data_type)
Y
Yu Yang 已提交
969 970 971 972 973 974 975 976 977 978 979 980 981

        self.outputs.append(out_var)

    def output(self, *outputs):
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

    def parent_block(self):
982
        prog = self.helper.main_program
Y
Yu Yang 已提交
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

    def complete_rnn_op(self):
999 1000
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
Y
Yu Yang 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
        parent_block = self.parent_block()

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

        boot_memories = []
        pre_memories = []
        memories = []
        for _, mem in self.memories.iteritems():
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
            new_mem = self.helper.create_tmp_variable(dtype=mem_var.data_type)

            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
                attrs={'data_type': mem_var.data_type})

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
                'ex_states': pre_memories,
                'states': memories,
                'step_block': rnn_block
            })
Y
Yu Yang 已提交
1064 1065


Y
Yang Yang(Tony) 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
        self.while_op.complete()
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

    def __init__(self, cond, name=None, main_program=None):
        self.helper = LayerHelper("while", name=name, main_program=main_program)
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
        if cond.data_type != core.DataType.BOOL:
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond

    def block(self):
        return WhileGuard(self)

    def complete(self):
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
            if inner_out_name in parent_block.vars:
                out_vars.append(parent_block.var(inner_out_name))

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
                'X': [parent_block.var(x_name) for x_name in x_name_list],
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
            attrs={'step_block': while_block})


Y
Yang Yang(Tony) 已提交
1142 1143 1144 1145 1146 1147
def lstm(x,
         c_pre_init,
         hidden_dim,
         forget_bias=None,
         main_program=None,
         startup_program=None):
1148 1149 1150 1151
    """
    This function helps create an operator for the LSTM (Long Short Term
    Memory) cell that can be used inside an RNN.
    """
Y
Yang Yang(Tony) 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
    helper = LayerHelper('lstm_unit', **locals())
    rnn = StaticRNN()
    with rnn.step():
        c_pre = rnn.memory(init=c_pre_init)
        x_t = rnn.step_input(x)

        before_fc = concat(
            input=[x_t, c_pre],
            axis=1,
            main_program=main_program,
            startup_program=startup_program)
        after_fc = fc(input=before_fc,
                      size=hidden_dim * 4,
                      main_program=main_program,
                      startup_program=startup_program)

        data_type = x.data_type
        c = helper.create_tmp_variable(data_type)
        h = helper.create_tmp_variable(data_type)

        helper.append_op(
            type='lstm_unit',
            inputs={"X": after_fc,
                    "C_prev": c_pre},
            outputs={"C": c,
                     "H": h},
            attrs={"forget_bias": forget_bias})

        rnn.update_memory(c_pre, c)
        rnn.output(h)

    return rnn()


1186
def lod_rank_table(x, level=0, main_program=None):
1187 1188 1189 1190
    """
    This function creates an operator for creating a LOD_RANK_TABLE
    using the input x.
    """
Y
Yu Yang 已提交
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
        name=unique_name("lod_rank_table"))
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
1201 1202


1203
def lod_tensor_to_array(x, table, main_program=None):
1204 1205 1206 1207
    """
    This function creates an operator to convert an LOD_Tensor to
    an array.
    """
1208 1209 1210
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
        name=unique_name("lod_tensor_to_array"),
1211 1212
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=x.data_type)
1213 1214 1215 1216 1217 1218 1219 1220 1221
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


def array_to_lod_tensor(x, table, main_program=None):
1222 1223 1224 1225
    """
    This function creates an operator to convert an array to a
    LOD_Tensor.
    """
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
    helper = LayerHelper("array_to_lod_tensor", **locals())
    tmp = helper.create_tmp_variable(dtype=x.data_type)
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


Y
Yu Yang 已提交
1236
def fill_constant(shape, dtype, value, main_program=None):
1237 1238 1239 1240 1241
    """
    This function creates a tensor , with shape as mentioned in the input and
    specified data_type and fills this up with a constant value that
    comes in the input. It also sets the stop_gradient to be True.
    """
Y
Yang Yu 已提交
1242
    helper = LayerHelper("fill_constant", **locals())
Y
Yu Yang 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'data_type': out.data_type,
            'value': float(value)
        })
    out.stop_gradient = True
    return out


def ones(shape, dtype, main_program=None):
1258 1259 1260 1261
    """
    This function performs the same function as fill_constant() declared above
    with the constant value being 1.0.
    """
Y
Yu Yang 已提交
1262 1263 1264 1265
    return fill_constant(value=1.0, **locals())


def zeros(shape, dtype, main_program=None):
1266 1267 1268 1269
    """
    This function performs the same function as fill_constant() declared above
    with the constant value being 0.0.
    """
Y
Yu Yang 已提交
1270 1271 1272
    return fill_constant(value=0.0, **locals())


1273
def increment(x, value=1.0, in_place=True, main_program=None):
1274 1275 1276 1277 1278
    """
    This function creates an operator to increment each value in the input
    `x` by an amount: `value` as mentioned in the input parameter. This
    operation is performed in-place by default.
    """
Y
Yu Yang 已提交
1279
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
1280
    if not in_place:
1281
        out = helper.create_tmp_variable(dtype=x.data_type)
Y
Yang Yang(Tony) 已提交
1282 1283
    else:
        out = x
Y
Yu Yang 已提交
1284 1285 1286
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
1287
        outputs={'Out': [out]},
Y
Yu Yang 已提交
1288
        attrs={'step': value})
Y
Yang Yu 已提交
1289
    return out
Y
Yu Yang 已提交
1290 1291 1292


def array_write(x, i, array=None, main_program=None):
1293 1294 1295 1296
    """
    This function creates an operator to write the data out as a
    LOD_TENSOR_ARRAY.
    """
Y
Yu Yang 已提交
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.data_type)
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


Y
Yang Yang(Tony) 已提交
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
def create_array(dtype, main_program=None):
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


def less_than(x, y, cond=None, main_program=None):
    helper = LayerHelper("less_than", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='less_than', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [cond]})
    return cond


Y
Yu Yang 已提交
1331
def array_read(array, i, main_program=None):
1332 1333 1334 1335
    """
    This function creates an operator to read the data in as a
    LOD_TENSOR_ARRAY.
    """
Y
Yu Yang 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
    out = helper.create_tmp_variable(dtype=array.data_type)
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1348 1349 1350


def shrink_memory(x, i, table, main_program=None):
1351 1352 1353 1354
    """
    This function creates an operator to shrink_rnn_memory using the RankTable
    as mentioned in the input parameter.
    """
Y
Yang Yu 已提交
1355 1356 1357
    helper = LayerHelper('shrink_memory', **locals())
    out = helper.create_tmp_variable(dtype=x.data_type)
    helper.append_op(
Y
Yang Yu 已提交
1358
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1359 1360 1361 1362 1363 1364
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1365 1366 1367


def array_length(array, main_program=None):
1368 1369 1370 1371
    """
    This function creates an operator to find the length of the
    LOD_TENSOR_ARRAY.
    """
Y
Yang Yu 已提交
1372 1373 1374 1375 1376 1377
    helper = LayerHelper('array_length', **locals())
    tmp = helper.create_tmp_variable(dtype='int64')
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp