layers.py 42.0 KB
Newer Older
Y
Yu Yang 已提交
1
import paddle.v2.framework.core as core
Y
Yu Yang 已提交
2 3 4 5
from paddle.v2.framework.framework import OpProtoHolder, Variable, Program, \
    Operator
from paddle.v2.framework.initializer import ConstantInitializer, \
    NormalInitializer
6
from paddle.v2.framework.layer_helper import LayerHelper, unique_name
Y
Yu Yang 已提交
7 8
import re

Q
QI JUN 已提交
9
__all__ = [
Y
Yu Yang 已提交
10
    'fc', 'data', 'cross_entropy', 'conv2d', 'pool2d', 'embedding', 'concat',
D
dzhwinter 已提交
11 12
    'StaticRNN', 'cast', 'sequence_conv', 'sequence_pool', 'sums', 'cos_sim',
    'batch_norm', 'accuracy'
Q
QI JUN 已提交
13
]
Y
Yu Yang 已提交
14 15


F
fengjiayi 已提交
16 17 18
def fc(input,
       size,
       param_attr=None,
Q
QI JUN 已提交
19
       bias_attr=None,
F
fengjiayi 已提交
20 21 22
       name=None,
       act=None,
       num_flatten_dims=1,
23 24
       main_program=None,
       startup_program=None):
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
    """
    Fully Connected Layer.

    Args:
       input: The input tensor to the function
       size: The size of the layer
       param_attr: The parameters/weights to the FC Layer
       bias_attr: The bias parameter for the FC layer
       name: Name/alias of the function
       act: Activation to be applied to the output of FC layer
       num_flatten_dims: Number of columns in input
       main_program: Name of the main program that calls this
       startup_program: Name of the startup program

    This function can take in multiple inputs and performs the Fully Connected
    function (linear transformation) on top of each of them.
    So for input x, the output will be : Wx + b. Where W is the parameter,
    b the bias and x is the input.

    The function also applies an activation (non-linearity) on top of the
    output, if activation is passed in the input.

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

    """
Y
Yu Yang 已提交
51 52 53 54 55 56 57
    helper = LayerHelper('fc', **locals())

    dtype = helper.input_dtype()

    mul_results = []
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
58 59 60
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
Yu Yang 已提交
61 62 63 64 65 66 67 68 69 70
        w = helper.create_parameter(
            attr=param_attr, shape=param_shape, dtype=dtype)
        tmp = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="mul",
            inputs={
                "X": input_var,
                "Y": w,
            },
            outputs={"Out": tmp},
Y
Yu Yang 已提交
71 72
            attrs={'x_num_col_dims': num_flatten_dims,
                   'y_num_col_dims': 1})
Y
Yu Yang 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
        mul_results.append(tmp)

    # sum
    if len(mul_results) == 1:
        pre_bias = mul_results[0]
    else:
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
    pre_activation = helper.append_bias_op(pre_bias)
    # add activation
    return helper.append_activation(pre_activation)


Q
QI JUN 已提交
88 89 90
def embedding(input,
              size,
              data_type='float32',
91
              is_sparse=False,
Q
QI JUN 已提交
92
              param_attr=None,
93 94
              main_program=None,
              startup_program=None):
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    """
    Embedding Layer.

    Args:
       input: The input to the function
       size: The size of the layer
       data_type: The type of data : float32, float_16, int etc
       is_sparse: A flag that decleares whether the input is sparse
       param_attr: Parameters for this layer
       main_program: Name of the main program that calls this
       startup_program: Name of the startup program

    This function can take in the input (which is a vector of IDs) and
    performs a lookup in the lookup_table using these IDs, to result into
    the embedding of each ID in the input.

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

    """
Q
QI JUN 已提交
115 116 117 118 119 120 121 122
    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=data_type)
    tmp = helper.create_tmp_variable(data_type)
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
123 124
        outputs={'Out': tmp},
        attrs={'is_sparse': is_sparse})
Q
QI JUN 已提交
125 126 127
    return tmp


Q
QI JUN 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
# TODO(qijun): expose H0 and C0
def dynamic_lstm(input,
                 size,
                 data_type='float32',
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 main_program=None,
                 startup_program=None):
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=data_type)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=data_type, suffix='b')

    hidden = helper.create_tmp_variable(data_type)
    cell = helper.create_tmp_variable(data_type)
    batch_gate = helper.create_tmp_variable(data_type)
    batch_cell_pre_act = helper.create_tmp_variable(data_type)

    helper.append_op(
        type='lstm',
        inputs={'Input': input,
                'Weight': weight,
                'Bias': bias},
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


F
fengjiayi 已提交
177 178 179 180
def data(name,
         shape,
         data_type='float32',
         type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
181
         append_batch_size=True,
182
         main_program=None,
183 184
         startup_program=None,
         stop_gradient=True):
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
    """
    Data Layer.

    Args:
       name: The name/alias of the function
       shape: Tuple declaring the shape.
       data_type: The type of data : float32, float_16, int etc
       type: The output type. By default it is LOD_TENSOR.
       append_batch_size: Whether or not to append the data as a batch.
       main_program: Name of the main program that calls this
       startup_program: Name of the startup program
       stop_gradient: A boolean that mentions whether gradient should flow.

    This function takes in input and based on whether data has
    to be returned back as a minibatch, it creates the global variable using
    the helper functions. The global variables can be accessed by all the
    following operations and layers in the graph.

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

    """
Y
Yu Yang 已提交
207
    helper = LayerHelper('data', **locals())
Y
Yu Yang 已提交
208 209 210 211 212 213 214 215
    shape = list(shape)
    for i in xrange(len(shape)):
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

Y
Yu Yang 已提交
216 217
    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1
Y
Yu Yang 已提交
218

Y
Yu Yang 已提交
219
    return helper.create_global_variable(
220 221 222 223 224
        name=name,
        shape=shape,
        dtype=data_type,
        type=type,
        stop_gradient=stop_gradient)
Y
Yu Yang 已提交
225 226 227


def _convert_(name):
228 229 230 231 232 233 234 235 236 237 238
    """
    Formatting.

    Args:
       name: The name/alias

    This function takes in a name and converts it to a standard format of
    group1_group2. Where as per the regular expression, group1 can have
    alphabets and numbers and group2 has capital alphabets.

    """
Y
Yu Yang 已提交
239 240 241 242 243
    s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
    return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()


def _create_op_func_(op_type):
244 245 246 247 248 249 250 251 252 253
    """
    Create an Operator for a Function.

    Args:
       op_type: The name of the operator to be created

    This function takes in the operator type (sigmoid, mean , average etc) and
    creates the operator functionality.

    """
Y
Yu Yang 已提交
254
    op_proto = OpProtoHolder.instance().get_op_proto(op_type)
255 256 257 258 259 260
    not_intermediate_outputs = \
        filter(lambda output: not output.intermediate, op_proto.outputs)
    intermediate_outputs = \
        filter(lambda output: output.intermediate, op_proto.outputs)

    if len(not_intermediate_outputs) != 1:
261 262
        raise ValueError("Only one non intermediate output operator can be",
                         "automatically generated")
Y
Yu Yang 已提交
263

264
    if not_intermediate_outputs[0].duplicable:
Y
Yu Yang 已提交
265
        raise ValueError(
266
            "Only non duplicable op can be automatically generated")
Y
Yu Yang 已提交
267

268 269
    for output in intermediate_outputs:
        if output.duplicable:
270 271
            raise ValueError("The op can be automatically generated only when ",
                             "all intermediate ops are not duplicable")
272 273 274

    o_name = not_intermediate_outputs[0].name
    intermediate_output_names = [output.name for output in intermediate_outputs]
Y
Yu Yang 已提交
275

Y
Yang Yang(Tony) 已提交
276
    def infer_and_check_data_type(op_proto, **kwargs):
277 278 279 280
        """
        This function performs the sanity check for data_type and
        instance type.
        """
Y
Yu Yang 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
        dtype = None
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
            for each in val:
                if not isinstance(each, Variable):
                    raise ValueError("input of {0} must be variable".format(
                        op_type))

                if dtype is None:
                    dtype = each.data_type
                elif dtype != each.data_type:
                    raise ValueError(
                        "operator {0} must input same dtype".format(op_type))
Y
Yang Yang(Tony) 已提交
297 298 299 300

        return dtype

    def func(**kwargs):
301 302 303 304 305
        """
        This function implements the function for the operator. This process
        involves doing the sanity check (using the function above), reading
        inputs from protobuf and applying the activations on top.
        """
Y
Yang Yang(Tony) 已提交
306 307 308 309 310 311 312 313 314 315
        helper = LayerHelper(op_type, **kwargs)

        dtype = infer_and_check_data_type(op_proto, **kwargs)

        inputs = dict()
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
Y
Yu Yang 已提交
316 317
            inputs[ipt.name] = val

318
        outputs = dict()
Y
Yu Yang 已提交
319
        out = helper.create_tmp_variable(dtype=dtype)
320 321 322
        outputs[o_name] = [out]
        for name in intermediate_output_names:
            outputs[name] = [helper.create_tmp_variable(dtype=dtype)]
Y
Yu Yang 已提交
323
        helper.append_op(
324
            type=op_type, inputs=inputs, outputs=outputs, attrs=kwargs)
Q
Qiao Longfei 已提交
325
        return helper.append_activation(out)
Y
Yu Yang 已提交
326 327 328 329 330 331 332 333

    func.__name__ = op_type
    globals()[op_type] = func
    global __all__
    __all__.append(op_type)


_create_op_func_('mean')
Y
Yu Yang 已提交
334
_create_op_func_('mul')
Q
Qiao Longfei 已提交
335
_create_op_func_('elementwise_add')
336
_create_op_func_('dropout')
Q
Qiao Longfei 已提交
337
_create_op_func_('reshape')
Y
Yu Yang 已提交
338 339 340
_create_op_func_('elementwise_add')
_create_op_func_('sigmoid')
_create_op_func_('scale')
Y
Yang Yang(Tony) 已提交
341 342 343 344 345
_create_op_func_('reshape')
_create_op_func_('transpose')


def fill_constant(data_type, shape, value=None, program=None):
346 347 348 349 350
    """
    This function creates a tensor , with shape as mentioned in the input and
    specified data_type and fills this up with a constant value that
    comes in the input.
    """
Y
Yang Yang(Tony) 已提交
351 352 353 354 355 356 357 358 359
    helper = LayerHelper('fill_constant', **locals())
    out = helper.create_tmp_variable(dtype=data_type)
    helper.append_op(
        type='fill_constant',
        outputs={'Out': [out]},
        attrs={'data_type': data_type,
               'shape': shape,
               'value': value})
    return out
Y
Yu Yang 已提交
360 361


362
def cast(x, data_type, main_program=None):
363 364 365 366
    """
    This function takes in the input with input_data_type
    and casts it to the output_data_type as the output.
    """
Y
Yu Yang 已提交
367 368 369 370 371 372 373 374 375 376 377
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=data_type)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_data_type': x.data_type,
               'out_data_type': out.data_type})
    return out


378
def concat(input, axis, main_program=None, startup_program=None):
379 380 381 382
    """
    This function concats the input along the axis mentioned
    and returns that as the output.
    """
Q
QI JUN 已提交
383
    helper = LayerHelper('concat', **locals())
D
dzhwinter 已提交
384
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Q
QI JUN 已提交
385 386 387 388 389 390 391 392
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


393
def sums(input, main_program=None, startup_program=None):
394 395 396 397
    """
    This function takes in the input and performs the sum operation on it
    and returns that as the output.
    """
D
dzhwinter 已提交
398 399
    helper = LayerHelper('sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Y
Yu Yang 已提交
400
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
D
dzhwinter 已提交
401 402 403
    return out


404
def cos_sim(X, Y, **kwargs):
405 406 407 408
    """
    This function performs the cosine similarity between two tensors
    X and Y and returns that as the output.
    """
409 410 411 412
    helper = LayerHelper('cos_sim', **kwargs)
    out = helper.create_tmp_variable(dtype=X.data_type)
    xnorm = helper.create_tmp_variable(dtype=X.data_type)
    ynorm = helper.create_tmp_variable(dtype=X.data_type)
D
dzhwinter 已提交
413 414 415 416 417 418 419
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
420
    return out
D
dzhwinter 已提交
421 422


Y
Yu Yang 已提交
423
def cross_entropy(input, label, **kwargs):
424 425 426
    """
    This function computes cross_entropy using the input and label.
    """
Y
Yu Yang 已提交
427 428 429 430 431 432 433 434 435 436 437 438
    helper = LayerHelper('cross_entropy', **kwargs)
    out = helper.create_tmp_variable(dtype=input.data_type)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs=kwargs)
    return out


def square_error_cost(input, label, **kwargs):
439 440 441 442
    """
    This functions returns the squared error cost using the input and label.
    The output is appending the op to do the above.
    """
Y
Yu Yang 已提交
443 444 445 446 447 448 449 450 451 452
    helper = LayerHelper('square_error_cost', **kwargs)
    minus_out = helper.create_tmp_variable(dtype=input.data_type)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.data_type)
    helper.append_op(
Q
QI JUN 已提交
453
        type='square', inputs={'X': [minus_out]}, outputs={'Y': [square_out]})
Y
Yu Yang 已提交
454
    return square_out
455 456


F
fengjiayi 已提交
457
def accuracy(input, label, k=1, **kwargs):
458 459 460 461
    """
    This function computes the accuracy using the input and label.
    The output is the top_k inputs and their indices.
    """
F
fengjiayi 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474
    helper = LayerHelper("accuracy", **kwargs)
    topk_out = helper.create_tmp_variable(dtype=input.data_type)
    topk_indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [topk_out],
                 "Indices": [topk_indices]},
        attrs={"k": k})
    acc_out_dtype = kwargs.get("out_dtype", "float32")
    acc_out = helper.create_tmp_variable(dtype=acc_out_dtype)
    helper.append_op(
        type="accuracy",
武毅 已提交
475 476 477 478 479
        inputs={
            "Out": [topk_out],
            "Indices": [topk_indices],
            "Label": [label]
        },
F
fengjiayi 已提交
480 481 482 483
        outputs={"Accuracy": [acc_out]})
    return acc_out


D
dzhwinter 已提交
484 485 486
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
487
                  filter_stride=1,
488
                  act=None,
D
dzhwinter 已提交
489 490 491
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
492 493
                  main_program=None,
                  startup_program=None):
494 495 496 497 498
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
    """
D
dzhwinter 已提交
499 500 501 502 503 504 505
    # FIXME(dzh) : want to unify the argument of python layer
    # function. So we ignore some unecessary attributes.
    # such as, padding_trainable, context_start.

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()

D
dzhwinter 已提交
506
    filter_shape = [filter_size * input.shape[1], num_filters]
D
dzhwinter 已提交
507 508 509 510 511 512 513 514
    filter = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
D
dzhwinter 已提交
515
            'Filter': [filter],
D
dzhwinter 已提交
516 517 518
        },
        outputs={"Out": pre_bias},
        attrs={
519
            'contextStride': filter_stride,
520
            'contextStart': -int(filter_size / 2),
521
            'contextLength': filter_size
D
dzhwinter 已提交
522 523 524 525 526
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


F
fengjiayi 已提交
527 528 529 530 531 532 533 534 535 536
def conv2d(input,
           num_filters,
           name=None,
           filter_size=[1, 1],
           act=None,
           groups=None,
           stride=[1, 1],
           padding=None,
           bias_attr=None,
           param_attr=None,
537 538
           main_program=None,
           startup_program=None):
539 540 541 542 543 544 545
    """
    This function creates the op for a 2-dimensional Convolution.
    This is performed using the parameters of filters(size, dimensionality etc)
    , stride and other configurations for a Convolution operation.
    This funciton can also append an activation on top of the
    conv-2d output, if mentioned in the input parameters.
    """
546 547 548 549 550 551 552 553 554 555 556
    helper = LayerHelper('conv2d', **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups is not 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

F
fengjiayi 已提交
557 558 559 560 561 562 563
    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]

564 565
    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size
566 567

    std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
568
    filter = helper.create_parameter(
569 570 571 572
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        initializer=NormalInitializer(0.0, std, 0))
573 574 575 576 577 578 579 580 581 582 583 584 585
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='conv2d',
        inputs={
            'Input': input,
            'Filter': filter,
        },
        outputs={"Output": pre_bias},
        attrs={'strides': stride,
               'paddings': padding,
               'groups': groups})

Y
Yu Yang 已提交
586
    pre_act = helper.append_bias_op(pre_bias, 1)
587 588

    return helper.append_activation(pre_act)
F
fengjiayi 已提交
589 590


D
dzhwinter 已提交
591
def sequence_pool(input, pool_type, **kwargs):
592 593 594 595 596
    """
    This function add the operator for sequence pooling.
    This is applied on top of the input using pool_type mentioned
    in the parameters.
    """
597
    helper = LayerHelper('sequence_pool', input=input, **kwargs)
D
dzhwinter 已提交
598 599
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
D
dangqingqing 已提交
600
    max_index = helper.create_tmp_variable(dtype)
D
dzhwinter 已提交
601 602 603

    helper.append_op(
        type="sequence_pool",
D
dangqingqing 已提交
604 605 606
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
D
dzhwinter 已提交
607
        attrs={"pooltype": pool_type.upper()})
D
dzhwinter 已提交
608 609 610 611

    return pool_out


F
fengjiayi 已提交
612 613 614 615 616 617
def pool2d(input,
           pool_size,
           pool_type,
           pool_stride=[1, 1],
           pool_padding=[0, 0],
           global_pooling=False,
618 619
           main_program=None,
           startup_program=None):
620 621 622 623
    """
    This function adds the operator for pooling in 2 dimensions, using the
    pooling configurations mentioned in input parameters.
    """
F
fengjiayi 已提交
624 625 626 627 628 629 630 631 632 633 634
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
    if isinstance(pool_size, int):
        pool_size = [pool_size, pool_size]
    if isinstance(pool_stride, int):
        pool_stride = [pool_stride, pool_stride]
    if isinstance(pool_padding, int):
        pool_padding = [pool_padding, pool_padding]

D
dzhwinter 已提交
635
    helper = LayerHelper('pool2d', **locals())
F
fengjiayi 已提交
636 637 638 639 640 641 642 643
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="pool2d",
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
C
chengduoZH 已提交
644
            "pooling_type": pool_type,
F
fengjiayi 已提交
645
            "ksize": pool_size,
C
chengduoZH 已提交
646
            "global_pooling": global_pooling,
F
fengjiayi 已提交
647 648 649 650 651
            "strides": pool_stride,
            "paddings": pool_padding
        })

    return pool_out
Y
Yu Yang 已提交
652 653


Q
Qiao Longfei 已提交
654 655 656 657
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
658
               epsilon=1e-05,
Q
Qiao Longfei 已提交
659 660 661
               param_attr=None,
               bias_attr=None,
               data_layout='NCHW',
662 663
               main_program=None,
               startup_program=None):
664 665 666 667
    """
    This function helps create an operator to implement
    the BatchNorm layer using the configurations from the input parameters.
    """
Q
Qiao Longfei 已提交
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
684 685 686 687
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        initializer=ConstantInitializer(1.0))
Q
Qiao Longfei 已提交
688
    bias = helper.create_parameter(
689 690 691 692 693 694 695 696 697 698 699 700 701 702
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        initializer=ConstantInitializer(0.0))

    mean = helper.create_global_variable(
        dtype=input.data_type, shape=param_shape, persistable=True)
    helper.set_variable_initializer(
        var=mean, initializer=ConstantInitializer(0.0))

    variance = helper.create_global_variable(
        dtype=input.data_type, shape=param_shape, persistable=True)
    helper.set_variable_initializer(
        var=variance, initializer=ConstantInitializer(1.0))
Q
Qiao Longfei 已提交
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
    saved_mean = helper.create_tmp_variable(dtype)
    saved_variance = helper.create_tmp_variable(dtype)

    batch_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"momentum": momentum,
               "epsilon": epsilon,
               "is_test": is_test})

    return helper.append_activation(batch_norm_out)


Y
Yu Yang 已提交
737 738
class BlockGuard(object):
    """
739 740 741 742
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
743 744
    """

745 746
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
747
            raise TypeError("BlockGuard takes a program")
748
        self.main_program = main_program
Y
Yu Yang 已提交
749 750

    def __enter__(self):
751
        self.main_program.create_block()
Y
Yu Yang 已提交
752 753

    def __exit__(self, exc_type, exc_val, exc_tb):
754
        self.main_program.rollback()
Y
Yu Yang 已提交
755 756 757 758 759 760
        if exc_type is not None:
            return False  # re-raise exception
        return True


class StaticRNNGuard(BlockGuard):
761 762 763 764 765 766
    """
    StaticRNNGuard class.

    StaticRNNGuard class is used to create a StaticRNN block in a program.
    """

Y
Yu Yang 已提交
767 768
    def __init__(self, rnn):
        if not isinstance(rnn, StaticRNN):
Y
Yang Yang(Tony) 已提交
769
            raise TypeError("StaticRNNGuard takes a StaticRNN")
770
        super(StaticRNNGuard, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
771 772 773 774 775 776 777
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
        return super(StaticRNNGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
778 779
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
780 781 782 783 784 785 786
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
        self.rnn.complete_rnn_op()
        return super(StaticRNNGuard, self).__exit__(exc_type, exc_val, exc_tb)


class StaticRNNMemoryLink(object):
    """
787 788 789 790 791 792 793 794 795 796 797 798
    StaticRNNMemoryLink class.

    Args:
        init: the initial variable for Memory
        init: Variable
        pre_mem: the memory variable in previous time step
        pre_mem: Variable
        mem: the memory variable in current time step
        mem: Variable

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
Yu Yang 已提交
799 800 801 802 803 804 805 806 807
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
808 809 810 811 812 813
    """
    StaticRNN class.

    StaticRNN class is used to create a StaticRNN. The RNN will have its
    own parameters like inputs, outputs, memories, status and length.
    """
Y
Yu Yang 已提交
814 815 816 817
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

818 819 820
    def __init__(self, name=None, main_program=None):
        self.helper = LayerHelper(
            "static_rnn", name=name, main_program=main_program)
Y
Yu Yang 已提交
821 822 823 824 825 826 827 828 829 830 831 832 833 834
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
        return StaticRNNGuard(self)

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

835 836 837 838 839 840 841
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
842 843 844 845 846 847 848 849 850
        """
        Args:
            init: boot memory, if not set, a shape, batch_ref must be provided
            shape: shape of the boot memory
            batch_ref: batch size reference variable
            init_value: the init value of boot memory
            init_batch_dim_idx: the index of batch size in init's dimension
            ref_batch_dim_idx: the index of batch size in batch_ref's dimension
        """
Y
Yu Yang 已提交
851 852
        self._assert_in_rnn_block_('memory')
        if init is None:
853
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
854
                raise ValueError(
855
                    "if init is None, memory at least need shape and batch_ref")
Y
Yu Yang 已提交
856 857 858
            parent_block = self.parent_block()
            var_name = unique_name("@".join([self.helper.name, "memory_boot"]))
            boot_var = parent_block.create_var(
859 860 861 862
                name=var_name,
                shape=shape,
                dtype=batch_ref.data_type,
                persistable=False)
Y
Yu Yang 已提交
863 864

            parent_block.append_op(
865 866
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
867 868 869
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
870 871 872 873
                    'shape': boot_var.shape,
                    'data_type': boot_var.data_type,
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
                name=unique_name("@".join([self.helper.name, "mem"])),
                dtype=init.data_type,
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
891 892
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
893 894 895 896 897
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
            name=x.name,
            dtype=x.data_type,
Y
Yu Yang 已提交
898
            shape=list(x.shape[1:]),
Y
Yu Yang 已提交
899 900 901 902 903 904 905 906 907
            type=x.type)
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

Y
Yu Yang 已提交
908 909 910 911 912 913 914
        tmp_o = self.helper.create_tmp_variable(dtype=o.data_type)
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
            attrs={'data_type': o.data_type})

Y
Yu Yang 已提交
915
        out_var = self.parent_block().create_var(
Y
Yu Yang 已提交
916 917 918
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
            dtype=tmp_o.data_type)
Y
Yu Yang 已提交
919 920 921 922 923 924 925 926 927 928 929 930 931

        self.outputs.append(out_var)

    def output(self, *outputs):
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

    def parent_block(self):
932
        prog = self.helper.main_program
Y
Yu Yang 已提交
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

    def complete_rnn_op(self):
949 950
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
Y
Yu Yang 已提交
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
        parent_block = self.parent_block()

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

        boot_memories = []
        pre_memories = []
        memories = []
        for _, mem in self.memories.iteritems():
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
            new_mem = self.helper.create_tmp_variable(dtype=mem_var.data_type)

            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
                attrs={'data_type': mem_var.data_type})

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
                'ex_states': pre_memories,
                'states': memories,
                'step_block': rnn_block
            })
Y
Yu Yang 已提交
1014 1015


Y
Yang Yang(Tony) 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
        self.while_op.complete()
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

    def __init__(self, cond, name=None, main_program=None):
        self.helper = LayerHelper("while", name=name, main_program=main_program)
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
        if cond.data_type != core.DataType.BOOL:
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond

    def block(self):
        return WhileGuard(self)

    def complete(self):
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
            if inner_out_name in parent_block.vars:
                out_vars.append(parent_block.var(inner_out_name))

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
                'X': [parent_block.var(x_name) for x_name in x_name_list],
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
            attrs={'step_block': while_block})


Y
Yang Yang(Tony) 已提交
1092 1093 1094 1095 1096 1097
def lstm(x,
         c_pre_init,
         hidden_dim,
         forget_bias=None,
         main_program=None,
         startup_program=None):
1098 1099 1100 1101
    """
    This function helps create an operator for the LSTM (Long Short Term
    Memory) cell that can be used inside an RNN.
    """
Y
Yang Yang(Tony) 已提交
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
    helper = LayerHelper('lstm_unit', **locals())
    rnn = StaticRNN()
    with rnn.step():
        c_pre = rnn.memory(init=c_pre_init)
        x_t = rnn.step_input(x)

        before_fc = concat(
            input=[x_t, c_pre],
            axis=1,
            main_program=main_program,
            startup_program=startup_program)
        after_fc = fc(input=before_fc,
                      size=hidden_dim * 4,
                      main_program=main_program,
                      startup_program=startup_program)

        data_type = x.data_type
        c = helper.create_tmp_variable(data_type)
        h = helper.create_tmp_variable(data_type)

        helper.append_op(
            type='lstm_unit',
            inputs={"X": after_fc,
                    "C_prev": c_pre},
            outputs={"C": c,
                     "H": h},
            attrs={"forget_bias": forget_bias})

        rnn.update_memory(c_pre, c)
        rnn.output(h)

    return rnn()


1136
def lod_rank_table(x, level=0, main_program=None):
1137 1138 1139 1140
    """
    This function creates an operator for creating a LOD_RANK_TABLE
    using the input x.
    """
Y
Yu Yang 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
        name=unique_name("lod_rank_table"))
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
1151 1152


1153
def lod_tensor_to_array(x, table, main_program=None):
1154 1155 1156 1157
    """
    This function creates an operator to convert an LOD_Tensor to
    an array.
    """
1158 1159 1160
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
        name=unique_name("lod_tensor_to_array"),
1161 1162
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=x.data_type)
1163 1164 1165 1166 1167 1168 1169 1170 1171
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


def array_to_lod_tensor(x, table, main_program=None):
1172 1173 1174 1175
    """
    This function creates an operator to convert an array to a
    LOD_Tensor.
    """
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
    helper = LayerHelper("array_to_lod_tensor", **locals())
    tmp = helper.create_tmp_variable(dtype=x.data_type)
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


Y
Yu Yang 已提交
1186
def fill_constant(shape, dtype, value, main_program=None):
1187 1188 1189 1190 1191
    """
    This function creates a tensor , with shape as mentioned in the input and
    specified data_type and fills this up with a constant value that
    comes in the input. It also sets the stop_gradient to be True.
    """
Y
Yang Yu 已提交
1192
    helper = LayerHelper("fill_constant", **locals())
Y
Yu Yang 已提交
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'data_type': out.data_type,
            'value': float(value)
        })
    out.stop_gradient = True
    return out


def ones(shape, dtype, main_program=None):
1208 1209 1210 1211
    """
    This function performs the same function as fill_constant() declared above
    with the constant value being 1.0.
    """
Y
Yu Yang 已提交
1212 1213 1214 1215
    return fill_constant(value=1.0, **locals())


def zeros(shape, dtype, main_program=None):
1216 1217 1218 1219
    """
    This function performs the same function as fill_constant() declared above
    with the constant value being 0.0.
    """
Y
Yu Yang 已提交
1220 1221 1222
    return fill_constant(value=0.0, **locals())


1223
def increment(x, value=1.0, in_place=True, main_program=None):
1224 1225 1226 1227 1228
    """
    This function creates an operator to increment each value in the input
    `x` by an amount: `value` as mentioned in the input parameter. This
    operation is performed in-place by default.
    """
Y
Yu Yang 已提交
1229
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
1230
    if not in_place:
1231
        out = helper.create_tmp_variable(dtype=x.data_type)
Y
Yang Yang(Tony) 已提交
1232 1233
    else:
        out = x
Y
Yu Yang 已提交
1234 1235 1236
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
1237
        outputs={'Out': [out]},
Y
Yu Yang 已提交
1238
        attrs={'step': value})
Y
Yang Yu 已提交
1239
    return out
Y
Yu Yang 已提交
1240 1241 1242


def array_write(x, i, array=None, main_program=None):
1243 1244 1245 1246
    """
    This function creates an operator to write the data out as a
    LOD_TENSOR_ARRAY.
    """
Y
Yu Yang 已提交
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.data_type)
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


Y
Yang Yang(Tony) 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
def create_array(dtype, main_program=None):
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


def less_than(x, y, cond=None, main_program=None):
    helper = LayerHelper("less_than", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='less_than', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [cond]})
    return cond


Y
Yu Yang 已提交
1281
def array_read(array, i, main_program=None):
1282 1283 1284 1285
    """
    This function creates an operator to read the data in as a
    LOD_TENSOR_ARRAY.
    """
Y
Yu Yang 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
    out = helper.create_tmp_variable(dtype=array.data_type)
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1298 1299 1300


def shrink_memory(x, i, table, main_program=None):
1301 1302 1303 1304
    """
    This function creates an operator to shrink_rnn_memory using the RankTable
    as mentioned in the input parameter.
    """
Y
Yang Yu 已提交
1305 1306 1307
    helper = LayerHelper('shrink_memory', **locals())
    out = helper.create_tmp_variable(dtype=x.data_type)
    helper.append_op(
Y
Yang Yu 已提交
1308
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1309 1310 1311 1312 1313 1314
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1315 1316 1317


def array_length(array, main_program=None):
1318 1319 1320 1321
    """
    This function creates an operator to find the length of the
    LOD_TENSOR_ARRAY.
    """
Y
Yang Yu 已提交
1322 1323 1324 1325 1326 1327
    helper = LayerHelper('array_length', **locals())
    tmp = helper.create_tmp_variable(dtype='int64')
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp