layers.py 20.9 KB
Newer Older
Y
Yu Yang 已提交
1
from paddle.v2.framework.layer_helper import LayerHelper, unique_name
Y
Yu Yang 已提交
2
import paddle.v2.framework.core as core
Y
Yu Yang 已提交
3
from paddle.v2.framework.framework import OpProtoHolder, Variable, Program
Y
Yu Yang 已提交
4 5
import re

Q
QI JUN 已提交
6
__all__ = [
Y
Yu Yang 已提交
7
    'fc', 'data', 'cross_entropy', 'conv2d', 'pool2d', 'embedding', 'concat',
F
fengjiayi 已提交
8
    'StaticRNN', 'cast', 'sequence_conv', 'sequence_pool', 'accuracy'
Q
QI JUN 已提交
9
]
Y
Yu Yang 已提交
10 11


F
fengjiayi 已提交
12 13 14 15 16 17 18
def fc(input,
       size,
       param_attr=None,
       bias_attr=True,
       name=None,
       act=None,
       num_flatten_dims=1,
Q
QI JUN 已提交
19 20
       program=None,
       init_program=None):
Y
Yu Yang 已提交
21 22 23 24 25 26 27 28 29
    # create helper
    helper = LayerHelper('fc', **locals())

    dtype = helper.input_dtype()

    # mul
    mul_results = []
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
30 31 32
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
33

Y
Yu Yang 已提交
34 35 36 37 38 39 40 41 42 43
        w = helper.create_parameter(
            attr=param_attr, shape=param_shape, dtype=dtype)
        tmp = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="mul",
            inputs={
                "X": input_var,
                "Y": w,
            },
            outputs={"Out": tmp},
Y
Yu Yang 已提交
44 45
            attrs={'x_num_col_dims': num_flatten_dims,
                   'y_num_col_dims': 1})
Y
Yu Yang 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
        mul_results.append(tmp)

    # sum
    if len(mul_results) == 1:
        pre_bias = mul_results[0]
    else:
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
    pre_activation = helper.append_bias_op(pre_bias)
    # add activation
    return helper.append_activation(pre_activation)


Q
QI JUN 已提交
61 62 63
def embedding(input,
              size,
              data_type='float32',
64
              is_sparse=False,
Q
QI JUN 已提交
65 66 67 68 69 70 71 72 73 74 75
              param_attr=None,
              program=None,
              init_program=None):
    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=data_type)
    tmp = helper.create_tmp_variable(data_type)
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
76 77
        outputs={'Out': tmp},
        attrs={'is_sparse': is_sparse})
Q
QI JUN 已提交
78 79 80
    return tmp


F
fengjiayi 已提交
81 82 83 84
def data(name,
         shape,
         data_type='float32',
         type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
85
         append_batch_size=True,
Q
QI JUN 已提交
86 87
         program=None,
         init_program=None):
Y
Yu Yang 已提交
88
    helper = LayerHelper('data', **locals())
Y
Yu Yang 已提交
89 90
    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1
Y
Yu Yang 已提交
91 92 93 94 95 96 97 98 99 100 101
    return helper.create_global_variable(
        name=name, shape=shape, dtype=data_type, type=type)


def _convert_(name):
    s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
    return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()


def _create_op_func_(op_type):
    op_proto = OpProtoHolder.instance().get_op_proto(op_type)
102 103 104 105 106 107
    not_intermediate_outputs = \
        filter(lambda output: not output.intermediate, op_proto.outputs)
    intermediate_outputs = \
        filter(lambda output: output.intermediate, op_proto.outputs)

    if len(not_intermediate_outputs) != 1:
Y
Yu Yang 已提交
108
        raise ValueError(
109 110
            "Only one not intermediate output operator can be automatically generated"
        )
Y
Yu Yang 已提交
111

112
    if not_intermediate_outputs[0].duplicable:
Y
Yu Yang 已提交
113 114 115
        raise ValueError(
            "Only not duplicable op can be automatically generated")

116 117 118 119 120 121 122 123
    for output in intermediate_outputs:
        if output.duplicable:
            raise ValueError(
                "Only when all intermediate ops are not duplicable, "
                "this op can be automatically generated")

    o_name = not_intermediate_outputs[0].name
    intermediate_output_names = [output.name for output in intermediate_outputs]
Y
Yu Yang 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

    def func(**kwargs):
        helper = LayerHelper(op_type, **kwargs)
        inputs = dict()
        dtype = None
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
            for each in val:
                if not isinstance(each, Variable):
                    raise ValueError("input of {0} must be variable".format(
                        op_type))

                if dtype is None:
                    dtype = each.data_type
                elif dtype != each.data_type:
                    raise ValueError(
                        "operator {0} must input same dtype".format(op_type))
            inputs[ipt.name] = val

146
        outputs = dict()
Y
Yu Yang 已提交
147
        out = helper.create_tmp_variable(dtype=dtype)
148 149 150
        outputs[o_name] = [out]
        for name in intermediate_output_names:
            outputs[name] = [helper.create_tmp_variable(dtype=dtype)]
Y
Yu Yang 已提交
151
        helper.append_op(
152
            type=op_type, inputs=inputs, outputs=outputs, attrs=kwargs)
Q
Qiao Longfei 已提交
153
        return helper.append_activation(out)
Y
Yu Yang 已提交
154 155 156 157 158 159 160 161

    func.__name__ = op_type
    globals()[op_type] = func
    global __all__
    __all__.append(op_type)


_create_op_func_('mean')
Y
Yu Yang 已提交
162
_create_op_func_('mul')
Q
Qiao Longfei 已提交
163
_create_op_func_('elementwise_add')
164
_create_op_func_('dropout')
Q
Qiao Longfei 已提交
165
_create_op_func_('reshape')
Y
Yu Yang 已提交
166 167


D
dzhwinter 已提交
168 169 170 171 172 173 174 175 176 177 178 179
def cast(x, data_type, program=None):
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=data_type)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_data_type': x.data_type,
               'out_data_type': out.data_type})
    return out


Y
Yu Yang 已提交
180 181 182 183 184 185 186 187 188 189 190 191
def cast(x, data_type, program=None):
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=data_type)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_data_type': x.data_type,
               'out_data_type': out.data_type})
    return out


Q
QI JUN 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204
def concat(input, axis, program=None, init_program=None):
    helper = LayerHelper('concat', **locals())
    if not isinstance(input, list) and not isinstance(input, tuple):
        input = [input]
    out = helper.create_tmp_variable(dtype=input[0].data_type)
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


Y
Yu Yang 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
def cross_entropy(input, label, **kwargs):
    helper = LayerHelper('cross_entropy', **kwargs)
    out = helper.create_tmp_variable(dtype=input.data_type)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs=kwargs)
    return out


def square_error_cost(input, label, **kwargs):
    helper = LayerHelper('square_error_cost', **kwargs)
    minus_out = helper.create_tmp_variable(dtype=input.data_type)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.data_type)
    helper.append_op(
Q
QI JUN 已提交
228
        type='square', inputs={'X': [minus_out]}, outputs={'Y': [square_out]})
Y
Yu Yang 已提交
229
    return square_out
230 231


F
fengjiayi 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245
def accuracy(input, label, k=1, **kwargs):
    helper = LayerHelper("accuracy", **kwargs)
    topk_out = helper.create_tmp_variable(dtype=input.data_type)
    topk_indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [topk_out],
                 "Indices": [topk_indices]},
        attrs={"k": k})
    acc_out_dtype = kwargs.get("out_dtype", "float32")
    acc_out = helper.create_tmp_variable(dtype=acc_out_dtype)
    helper.append_op(
        type="accuracy",
武毅 已提交
246 247 248 249 250
        inputs={
            "Out": [topk_out],
            "Indices": [topk_indices],
            "Label": [label]
        },
F
fengjiayi 已提交
251 252 253 254
        outputs={"Accuracy": [acc_out]})
    return acc_out


D
dzhwinter 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
def sequence_conv(input,
                  num_filters,
                  name=None,
                  filter_size=3,
                  act=None,
                  stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
                  program=None,
                  init_program=None):
    # FIXME(dzh) : want to unify the argument of python layer
    # function. So we ignore some unecessary attributes.
    # such as, padding_trainable, context_start.

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()

    filter_shape = [num_filters, filter_size]
    filter = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': filter,
        },
        outputs={"Out": pre_bias},
        attrs={
            'context_stride': stride,
            'context_start': 0,
            'context_length': filter_size
        })

    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


F
fengjiayi 已提交
295 296 297 298 299 300 301 302 303 304
def conv2d(input,
           num_filters,
           name=None,
           filter_size=[1, 1],
           act=None,
           groups=None,
           stride=[1, 1],
           padding=None,
           bias_attr=None,
           param_attr=None,
Q
QI JUN 已提交
305 306
           program=None,
           init_program=None):
307 308 309 310 311 312 313 314 315 316 317
    helper = LayerHelper('conv2d', **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups is not 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

F
fengjiayi 已提交
318 319 320 321 322 323 324
    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size
    filter = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='conv2d',
        inputs={
            'Input': input,
            'Filter': filter,
        },
        outputs={"Output": pre_bias},
        attrs={'strides': stride,
               'paddings': padding,
               'groups': groups})

    pre_act = helper.append_bias_op(pre_bias)

    return helper.append_activation(pre_act)
F
fengjiayi 已提交
345 346


D
dzhwinter 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
def sequence_pool(input,
                  pool_size,
                  pool_type,
                  pool_stride=1,
                  pool_padding=0,
                  global_pooling=False,
                  program=None,
                  init_program=None):
    # FIXME(dzh) : want to unify the argument of python layer
    # function. So we ignore some unecessary attributes

    ENUM_POOL_TYPE = set(["max", "avg", "sqrt", "last", "first"])
    if pool_type not in ENUM_POOL_TYPE:
        raise ValueError("Unknown pool_type: '%s'. It can only be %s.",
                         str(pool_type), " ".join(ENUM_POOL_TYPE))

    helper = LayerHelper('sequence_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": [input]},
        outputs={"Out": pool_out},
        attrs={"strategy": pool_type})

    return pool_out


F
fengjiayi 已提交
376 377 378 379 380 381
def pool2d(input,
           pool_size,
           pool_type,
           pool_stride=[1, 1],
           pool_padding=[0, 0],
           global_pooling=False,
Q
QI JUN 已提交
382 383
           program=None,
           init_program=None):
F
fengjiayi 已提交
384 385 386 387 388 389 390 391 392 393 394
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
    if isinstance(pool_size, int):
        pool_size = [pool_size, pool_size]
    if isinstance(pool_stride, int):
        pool_stride = [pool_stride, pool_stride]
    if isinstance(pool_padding, int):
        pool_padding = [pool_padding, pool_padding]

D
dzhwinter 已提交
395
    helper = LayerHelper('pool2d', **locals())
F
fengjiayi 已提交
396 397 398 399 400 401 402 403
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="pool2d",
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
C
chengduoZH 已提交
404
            "poolingType": pool_type,
F
fengjiayi 已提交
405
            "ksize": pool_size,
C
chengduoZH 已提交
406
            "globalPooling": global_pooling,
F
fengjiayi 已提交
407 408 409 410 411
            "strides": pool_stride,
            "paddings": pool_padding
        })

    return pool_out
Y
Yu Yang 已提交
412 413


Q
Qiao Longfei 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e05,
               param_attr=None,
               bias_attr=None,
               data_layout='NCHW',
               program=None,
               init_program=None):
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    def get_init_attr(value):
        if not isinstance(value, float):
            raise ValueError("attr value should be a float")
        return {'type': 'fill_constant', 'value': value}

    def prepend_init_op(var, init_attr):
        assert isinstance(var, Variable)
        op_type = init_attr['type']
        init_attr['shape'] = var.shape
        init_attr['data_type'] = int(var.data_type)
        op = var.block.prepend_op(
            type=op_type, inputs=None, outputs={'Out': [var]}, attrs=init_attr)
        return op

    def create_persistable_var(dtype, shape, init_attr=None):
        name = unique_name(".".join([helper.name, "xxxx"]))
        var = init_program.global_block().create_var(
            dtype=dtype, shape=shape, name=name, persistable=True)
        if 'init_attr' is not None:
            prepend_init_op(var, init_attr)
        return program.global_block().create_var(
            name=name, dtype=dtype, shape=shape, persistable=True)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr, shape=param_shape, dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.param_attr, shape=param_shape, dtype=dtype)

    # create input
    mean = create_persistable_var(dtype, param_shape, get_init_attr(0.0))
    variance = create_persistable_var(dtype, param_shape, get_init_attr(1.0))

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
    saved_mean = helper.create_tmp_variable(dtype)
    saved_variance = helper.create_tmp_variable(dtype)

    batch_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"momentum": momentum,
               "epsilon": epsilon,
               "is_test": is_test})

    return helper.append_activation(batch_norm_out)


Y
Yu Yang 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
class BlockGuard(object):
    """
    BlockGuard used to create sub-block in program by using Python `with` 
    keyword.
    """

    def __init__(self, program):
        if not isinstance(program, Program):
            raise TypeError("BlockGuard takes a program")
        self.program = program

    def __enter__(self):
        self.program.create_block()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.program.rollback()
        if exc_type is not None:
            return False  # re-raise exception
        return True


class StaticRNNGuard(BlockGuard):
    def __init__(self, rnn):
        if not isinstance(rnn, StaticRNN):
            raise TypeError("StaticRNNGuard takes an StaticRNN")
        super(StaticRNNGuard, self).__init__(rnn.helper.program)
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
        return super(StaticRNNGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
        self.rnn.complete_rnn_op()
        return super(StaticRNNGuard, self).__exit__(exc_type, exc_val, exc_tb)


class StaticRNNMemoryLink(object):
    """
    :param init: the initial variable for Memory
    :type init: Variable
    :param pre_mem: the memory variable in previous time step
    :type pre_mem: Variable
    :param mem: the memory variable in current time step
    :type mem: Variable
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

    def __init__(self, name=None, program=None):
        self.helper = LayerHelper("static_rnn", name=name, program=program)
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
        return StaticRNNGuard(self)

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

    def memory(self, init=None, shape=None, dtype=None, init_value=0):
        self._assert_in_rnn_block_('memory')
        if init is None:
            if shape is None or dtype is None:
                raise ValueError(
                    "if init is None, memory at least need shape and dtype")
            parent_block = self.parent_block()
            var_name = unique_name("@".join([self.helper.name, "memory_boot"]))
            boot_var = parent_block.create_var(
                name=var_name, shape=shape, dtype=dtype, persistable=False)

            parent_block.append_op(
                type="fill_constant",
                inputs={},
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
                    'shape': boot_var.shape,
                    'data_type': boot_var.data_type
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
                name=unique_name("@".join([self.helper.name, "mem"])),
                dtype=init.data_type,
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
            self.seq_len = x.shape[1]
        elif self.seq_len != x.shape[1]:
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
            name=x.name,
            dtype=x.data_type,
            shape=[-1] + list(x.shape[2:]),
            type=x.type)
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

        out_var = self.parent_block().create_var(
            name=o.name,
            shape=[-1, self.seq_len] + list(o.shape[1:]),
            dtype=o.data_type)

        self.outputs.append(out_var)

    def output(self, *outputs):
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

    def parent_block(self):
        prog = self.helper.program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

    def complete_rnn_op(self):
        # TODO(yuyang18): Create RNN Op here.
        # Implement this method after RNN op complete.
        pass