Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
26492210
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
26492210
编写于
10月 31, 2017
作者:
D
dzhwinter
提交者:
GitHub
10月 31, 2017
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix/sequence op (#5264)
* "replace enum with string" * "fix layers"
上级
bcdedecb
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
68 addition
and
113 deletion
+68
-113
paddle/operators/sequence_pool_op.cc
paddle/operators/sequence_pool_op.cc
+6
-7
paddle/operators/sequence_pool_op.h
paddle/operators/sequence_pool_op.h
+45
-69
python/paddle/v2/framework/layers.py
python/paddle/v2/framework/layers.py
+5
-16
python/paddle/v2/framework/tests/test_seq_pool.py
python/paddle/v2/framework/tests/test_seq_pool.py
+12
-21
未找到文件。
paddle/operators/sequence_pool_op.cc
浏览文件 @
26492210
...
...
@@ -39,15 +39,14 @@ class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"Out"
,
"(Tensor), output of SequencePoolOp, which does not contain LoD "
"infomation."
);
AddAttr
<
int
>
(
"strategy"
,
"(int, default AVERAGE) the pooling strategy of SequencePoolOp."
)
.
SetDefault
(
AVERAGE
)
.
InEnum
({
AVERAGE
,
SUM
,
SQRT
,
MAX
,
LAST
,
FIRST
});
AddAttr
<
std
::
string
>
(
"pooltype"
,
"(int, default AVERAGE) the pooling pooltype of SequencePoolOp."
)
.
SetDefault
(
"AVERAGE"
);
AddComment
(
R"DOC(
SequencePoolOp pools features of all time-steps of each instance.
It supports six pooling
strategy
:
It supports six pooling
pooltype
:
- AVERAGE: Out[i] = average_{for each instance in i-th sequence}{X[i]}
- SUM: Out[i] = sum_{for each instance in i-th sequence}{X[i]}
- SQRT: Out[i] = sum_{for each instance in i-th sequence}{X[i]}
...
...
@@ -63,7 +62,7 @@ class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker {
and the value of X = [[1, 3], [2, 4, 6], [5, 1]].
Thus, Out is a [3,1,1] Tensor without LoD infomation.
And for different
strategy
, the value of Out is as follows:
And for different
pooltype
, the value of Out is as follows:
- AVERAGE: [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
- SUM: [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
...
...
paddle/operators/sequence_pool_op.h
浏览文件 @
26492210
...
...
@@ -29,22 +29,13 @@ template <typename T, int MajorType = Eigen::RowMajor,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
enum
SeqPoolType
{
AVERAGE
=
0
,
SUM
=
1
,
SQRT
=
2
,
// square_root_n
MAX
=
3
,
LAST
=
4
,
FIRST
=
5
};
template
<
typename
Place
,
typename
T
>
class
SequencePoolKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
int
strategy
=
context
.
Attr
<
int
>
(
"strategy
"
);
std
::
string
pooltype
=
context
.
Attr
<
std
::
string
>
(
"pooltype
"
);
auto
dims
=
in
->
dims
();
auto
lod
=
in
->
lod
();
...
...
@@ -71,28 +62,21 @@ class SequencePoolKernel : public framework::OpKernel<T> {
auto
in_e
=
EigenMatrix
<
T
>::
From
(
in_t
,
framework
::
make_ddim
({
h
,
w
}));
auto
out_e
=
EigenVector
<
T
>::
Flatten
(
out_t
);
switch
(
strategy
)
{
case
AVERAGE
:
out_e
.
device
(
place
)
=
in_e
.
mean
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
break
;
case
SUM
:
out_e
.
device
(
place
)
=
in_e
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
break
;
case
SQRT
:
out_e
.
device
(
place
)
=
in_e
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}))
/
std
::
sqrt
(
static_cast
<
T
>
(
h
));
break
;
case
MAX
:
out_e
.
device
(
place
)
=
in_e
.
maximum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
break
;
case
LAST
:
out_e
.
device
(
place
)
=
in_e
.
chip
(
h
-
1
,
0
);
break
;
case
FIRST
:
out_e
.
device
(
place
)
=
in_e
.
chip
(
0
,
0
);
break
;
default:
PADDLE_THROW
(
"unsupported pooling strategy"
);
if
(
pooltype
==
"AVERAGE"
)
{
out_e
.
device
(
place
)
=
in_e
.
mean
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
}
else
if
(
pooltype
==
"SUM"
)
{
out_e
.
device
(
place
)
=
in_e
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
}
else
if
(
pooltype
==
"SQRT"
)
{
out_e
.
device
(
place
)
=
in_e
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}))
/
std
::
sqrt
(
static_cast
<
T
>
(
h
));
}
else
if
(
pooltype
==
"MAX"
)
{
out_e
.
device
(
place
)
=
in_e
.
maximum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
}
else
if
(
pooltype
==
"LAST"
)
{
out_e
.
device
(
place
)
=
in_e
.
chip
(
h
-
1
,
0
);
}
else
if
(
pooltype
==
"FIRST"
)
{
out_e
.
device
(
place
)
=
in_e
.
chip
(
0
,
0
);
}
else
{
PADDLE_THROW
(
"unsupported pooling pooltype"
);
}
}
}
...
...
@@ -105,15 +89,15 @@ class SequencePoolGradKernel : public framework::OpKernel<T> {
auto
*
in
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
in_g
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
out_g
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
int
strategy
=
context
.
Attr
<
int
>
(
"strategy
"
);
std
::
string
pooltype
=
context
.
Attr
<
std
::
string
>
(
"pooltype
"
);
auto
dims
=
in
->
dims
();
auto
lod
=
in
->
lod
()[
0
];
int64_t
w
=
in
->
numel
()
/
dims
[
0
];
in_g
->
mutable_data
<
T
>
(
context
.
GetPlace
());
if
(
strategy
==
LAST
||
strategy
==
FIRST
)
{
// set X@Grad be zero at first when
strategy
is LAST/FIRST
if
(
pooltype
==
"LAST"
||
pooltype
==
"FIRST"
)
{
// set X@Grad be zero at first when
pooltype
is LAST/FIRST
math
::
SetConstant
<
Place
,
T
>
functor
;
functor
(
context
.
device_context
(),
in_g
,
0
);
}
...
...
@@ -127,41 +111,33 @@ class SequencePoolGradKernel : public framework::OpKernel<T> {
auto
out_g_e
=
EigenMatrix
<
T
>::
From
(
out_g_t
,
{
1
,
w
});
Eigen
::
DSizes
<
int
,
2
>
bcast
(
h
,
1
);
switch
(
strategy
)
{
case
AVERAGE
:
in_g_e
.
device
(
place
)
=
(
out_g_e
/
static_cast
<
T
>
(
h
)).
broadcast
(
bcast
);
break
;
case
SUM
:
in_g_e
.
device
(
place
)
=
(
out_g_e
).
broadcast
(
bcast
);
break
;
case
SQRT
:
in_g_e
.
device
(
place
)
=
(
out_g_e
/
std
::
sqrt
(
static_cast
<
T
>
(
h
))).
broadcast
(
bcast
);
break
;
case
MAX
:
{
auto
in_t
=
in
->
Slice
(
static_cast
<
int
>
(
lod
[
i
]),
static_cast
<
int
>
(
lod
[
i
+
1
]));
Eigen
::
Map
<
const
Eigen
::
Matrix
<
T
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
>>
in_t_map
(
in_t
.
data
<
T
>
(),
h
,
w
);
int
row_id
;
Eigen
::
array
<
int
,
2
>
extents
{{
1
,
1
}};
for
(
int
col_id
=
0
;
col_id
<
w
;
col_id
++
)
{
in_t_map
.
col
(
col_id
).
maxCoeff
(
&
row_id
);
Eigen
::
array
<
int
,
2
>
in_offsets
{{
row_id
,
col_id
}};
Eigen
::
array
<
int
,
2
>
out_offsets
{{
0
,
col_id
}};
in_g_e
.
slice
(
in_offsets
,
extents
).
device
(
place
)
=
out_g_e
.
slice
(
out_offsets
,
extents
);
}
break
;
if
(
pooltype
==
"AVERAGE"
)
{
in_g_e
.
device
(
place
)
=
(
out_g_e
/
static_cast
<
T
>
(
h
)).
broadcast
(
bcast
);
}
else
if
(
pooltype
==
"SUM"
)
{
in_g_e
.
device
(
place
)
=
(
out_g_e
).
broadcast
(
bcast
);
}
else
if
(
pooltype
==
"SQRT"
)
{
in_g_e
.
device
(
place
)
=
(
out_g_e
/
std
::
sqrt
(
static_cast
<
T
>
(
h
))).
broadcast
(
bcast
);
}
else
if
(
pooltype
==
"MAX"
)
{
auto
in_t
=
in
->
Slice
(
static_cast
<
int
>
(
lod
[
i
]),
static_cast
<
int
>
(
lod
[
i
+
1
]));
Eigen
::
Map
<
const
Eigen
::
Matrix
<
T
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
>>
in_t_map
(
in_t
.
data
<
T
>
(),
h
,
w
);
int
row_id
;
Eigen
::
array
<
int
,
2
>
extents
{{
1
,
1
}};
for
(
int
col_id
=
0
;
col_id
<
w
;
col_id
++
)
{
in_t_map
.
col
(
col_id
).
maxCoeff
(
&
row_id
);
Eigen
::
array
<
int
,
2
>
in_offsets
{{
row_id
,
col_id
}};
Eigen
::
array
<
int
,
2
>
out_offsets
{{
0
,
col_id
}};
in_g_e
.
slice
(
in_offsets
,
extents
).
device
(
place
)
=
out_g_e
.
slice
(
out_offsets
,
extents
);
}
case
LAST
:
in_g_e
.
chip
(
h
-
1
,
0
).
device
(
place
)
=
out_g_e
;
break
;
case
FIRST
:
in_g_e
.
chip
(
0
,
0
).
device
(
place
)
=
out_g_e
;
break
;
default:
PADDLE_THROW
(
"unsupported pooling strategy"
);
}
else
if
(
pooltype
==
"LAST"
)
{
in_g_e
.
chip
(
h
-
1
,
0
).
device
(
place
)
=
out_g_e
;
}
else
if
(
pooltype
==
"FIRST"
)
{
in_g_e
.
chip
(
0
,
0
).
device
(
place
)
=
out_g_e
;
}
else
{
PADDLE_THROW
(
"unsupported pooling pooltype"
);
}
}
}
...
...
python/paddle/v2/framework/layers.py
浏览文件 @
26492210
...
...
@@ -351,32 +351,21 @@ def conv2d(input,
return
helper
.
append_activation
(
pre_act
)
def
sequence_pool
(
input
,
pool_type
,
program
=
None
,
init_program
=
None
):
# FIXME(dzh) : want to unify the argument of python layer
# function. So we ignore some unecessary attributes
ENUM_POOL_TYPE
=
dict
({
"AVERAGE"
:
0
,
"SUM"
:
1
,
"SQRT"
:
2
,
"MAX"
:
3
,
"LAST"
:
4
,
"FIRST"
:
5
})
def
sequence_pool
(
input
,
pool_type
,
**
kwargs
):
ENUM_POOL_TYPE
=
set
([
"MAX"
,
"AVG"
,
"SQRT"
,
"LAST"
,
"FIRST"
])
if
pool_type
.
upper
()
not
in
ENUM_POOL_TYPE
:
raise
ValueError
(
"Unknown pool_type: '%s'. It can only be %s."
,
str
(
pool_type
),
" "
.
join
(
ENUM_POOL_TYPE
.
keys
()
))
str
(
pool_type
),
" "
.
join
(
ENUM_POOL_TYPE
))
helper
=
LayerHelper
(
'sequence_pool'
,
**
locals
()
)
helper
=
LayerHelper
(
'sequence_pool'
,
**
kwargs
)
dtype
=
helper
.
input_dtype
()
pool_out
=
helper
.
create_tmp_variable
(
dtype
)
# FIXME(dzh): strategy
helper
.
append_op
(
type
=
"sequence_pool"
,
inputs
=
{
"X"
:
[
input
]},
outputs
=
{
"Out"
:
[
pool_out
]},
attrs
=
{
"
strategy"
:
ENUM_POOL_TYPE
[
pool_type
.
upper
()]
})
attrs
=
{
"
pooltype"
:
pool_type
.
upper
()
})
return
pool_out
...
...
python/paddle/v2/framework/tests/test_seq_pool.py
浏览文件 @
26492210
...
...
@@ -3,15 +3,6 @@ import numpy as np
from
op_test
import
OpTest
class
SeqPoolType
(
OpTest
):
AVERAGE
=
0
SUM
=
1
SQRT
=
2
MAX
=
3
LAST
=
4
FIRST
=
5
class
TestSeqAvgPool
(
OpTest
):
def
set_data
(
self
):
self
.
op_type
=
'sequence_pool'
...
...
@@ -25,7 +16,7 @@ class TestSeqAvgPool(OpTest):
return
x
,
lod
,
out
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'
strategy'
:
SeqPoolType
.
AVERAGE
}
self
.
attrs
=
{
'
pooltype'
:
"AVERAGE"
}
for
i
in
range
(
4
):
sub_x
=
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:]
out
[
i
]
=
sub_x
.
mean
(
axis
=
0
)
...
...
@@ -54,7 +45,7 @@ class TestSeqAvgPool2D(TestSeqAvgPool):
return
x
,
lod
,
out
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'
strategy'
:
SeqPoolType
.
AVERAGE
}
self
.
attrs
=
{
'
pooltype'
:
"AVERAGE"
}
for
i
in
range
(
4
):
sub_x
=
np
.
reshape
(
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:],
(
-
1
,
3
*
17
))
out
[
i
]
=
np
.
reshape
(
sub_x
.
mean
(
axis
=
0
),
(
3
,
17
))
...
...
@@ -62,7 +53,7 @@ class TestSeqAvgPool2D(TestSeqAvgPool):
class
TestSeqSumPool
(
TestSeqAvgPool
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'
strategy'
:
SeqPoolType
.
SUM
}
self
.
attrs
=
{
'
pooltype'
:
"SUM"
}
for
i
in
range
(
4
):
sub_x
=
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:]
out
[
i
]
=
sub_x
.
sum
(
axis
=
0
)
...
...
@@ -70,7 +61,7 @@ class TestSeqSumPool(TestSeqAvgPool):
class
TestSeqSumPool2D
(
TestSeqAvgPool2D
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'
strategy'
:
SeqPoolType
.
SUM
}
self
.
attrs
=
{
'
pooltype'
:
"SUM"
}
for
i
in
range
(
4
):
sub_x
=
np
.
reshape
(
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:],
(
-
1
,
3
*
17
))
out
[
i
]
=
np
.
reshape
(
sub_x
.
sum
(
axis
=
0
),
(
3
,
17
))
...
...
@@ -78,7 +69,7 @@ class TestSeqSumPool2D(TestSeqAvgPool2D):
class
TestSeqSqrtPool
(
TestSeqAvgPool
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'
strategy'
:
SeqPoolType
.
SQRT
}
self
.
attrs
=
{
'
pooltype'
:
"SQRT"
}
for
i
in
range
(
4
):
sub_x
=
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:]
len
=
lod
[
0
][
i
+
1
]
-
lod
[
0
][
i
]
...
...
@@ -87,7 +78,7 @@ class TestSeqSqrtPool(TestSeqAvgPool):
class
TestSeqSqrtPool2D
(
TestSeqAvgPool2D
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'
strategy'
:
SeqPoolType
.
SQRT
}
self
.
attrs
=
{
'
pooltype'
:
"SQRT"
}
for
i
in
range
(
4
):
sub_x
=
np
.
reshape
(
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:],
(
-
1
,
3
*
17
))
len
=
lod
[
0
][
i
+
1
]
-
lod
[
0
][
i
]
...
...
@@ -99,7 +90,7 @@ class TestSeqSqrtPool2D(TestSeqAvgPool2D):
class
TestSeqMaxPool
(
TestSeqAvgPool
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'
strategy'
:
SeqPoolType
.
MAX
}
self
.
attrs
=
{
'
pooltype'
:
"MAX"
}
for
i
in
range
(
4
):
sub_x
=
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:]
out
[
i
]
=
np
.
amax
(
sub_x
,
axis
=
0
)
...
...
@@ -111,7 +102,7 @@ class TestSeqMaxPool(TestSeqAvgPool):
class
TestSeqMaxPool2D
(
TestSeqAvgPool2D
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'
strategy'
:
SeqPoolType
.
MAX
}
self
.
attrs
=
{
'
pooltype'
:
"MAX"
}
for
i
in
range
(
4
):
sub_x
=
np
.
reshape
(
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:],
(
-
1
,
3
*
17
))
out
[
i
]
=
np
.
reshape
(
np
.
amax
(
sub_x
,
axis
=
0
),
(
3
,
17
))
...
...
@@ -123,7 +114,7 @@ class TestSeqMaxPool2D(TestSeqAvgPool2D):
class
TestSeqLastPool
(
TestSeqAvgPool
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'
strategy'
:
SeqPoolType
.
LAST
}
self
.
attrs
=
{
'
pooltype'
:
"LAST"
}
for
i
in
range
(
4
):
sub_x
=
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:]
out
[
i
]
=
sub_x
[
-
1
,
:]
...
...
@@ -131,7 +122,7 @@ class TestSeqLastPool(TestSeqAvgPool):
class
TestSeqLastPool2D
(
TestSeqAvgPool2D
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'
strategy'
:
SeqPoolType
.
LAST
}
self
.
attrs
=
{
'
pooltype'
:
"LAST"
}
for
i
in
range
(
4
):
sub_x
=
np
.
reshape
(
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:],
(
-
1
,
3
*
17
))
out
[
i
]
=
np
.
reshape
(
sub_x
[
-
1
,
:],
(
3
,
17
))
...
...
@@ -139,7 +130,7 @@ class TestSeqLastPool2D(TestSeqAvgPool2D):
class
TestSeqFirstPool
(
TestSeqAvgPool
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'
strategy'
:
SeqPoolType
.
FIRST
}
self
.
attrs
=
{
'
pooltype'
:
"FIRST"
}
for
i
in
range
(
4
):
sub_x
=
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:]
out
[
i
]
=
sub_x
[
0
,
:]
...
...
@@ -147,7 +138,7 @@ class TestSeqFirstPool(TestSeqAvgPool):
class
TestSeqFirstPool2D
(
TestSeqAvgPool2D
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'
strategy'
:
SeqPoolType
.
FIRST
}
self
.
attrs
=
{
'
pooltype'
:
"FIRST"
}
for
i
in
range
(
4
):
sub_x
=
np
.
reshape
(
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:],
(
-
1
,
3
*
17
))
out
[
i
]
=
np
.
reshape
(
sub_x
[
0
,
:],
(
3
,
17
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录