提交 efd009a0 编写于 作者: F fengjiayi 提交者: GitHub

implementation of simple conv2d layer (#4868)

* Implement FC layer with helper

* Update LayerHelper

* Add debug string for Python ProtoBuf

and Rename `Sync` to `Flush`

* Add check of ProtoBuf initialization

* Layer wrapper for FC

* Fix unittest

* Fix CI

* Add code generator

* AttributeChecker Better error log and speicalize bool

Since lots of types can be cast to bool

* Complete mlp, fit_a_line

* Implementation of simple conv_2d layer

* Fix bugs

* Remove debug code
上级 40f3e0c1
5 合并请求!11636[IMPORTANT] MKLDNN layout: Support for sum operator,!8482Release/0.11.0,!8190Release/0.11.0,!8189Release/0.11.0,!6633给线性回归的get-started代码加上了预测的示例~~
......@@ -232,7 +232,7 @@ class Operator(object):
if attrs is not None:
for attr in proto.attrs:
attr_name = attr.name
if not attr_name in attrs:
if (not attr_name in attrs) or (attrs[attr_name] is None):
continue
if not isinstance(attrs[attr_name], Block):
self.desc.set_attr(attr_name, attrs[attr_name])
......
......@@ -66,15 +66,15 @@ class LayerHelper(object):
actual = self.kwargs.get('param_attr', None)
return actual if actual is not None else default
def bias_attr(self, size, dtype):
bias_attr = self.kwargs.get('bias_attr', False)
if bias_attr is None or bias_attr:
def bias_attr(self, shape, dtype):
bias_attr = self.kwargs.get('bias_attr', None)
if bias_attr is True:
bias_attr = {
'name': None,
'init_attr': {
'type': 'fill_constant',
'value': 0.0,
'shape': [size],
'shape': shape,
'dataType': dtype
}
}
......@@ -127,15 +127,13 @@ class LayerHelper(object):
return self.program.global_block().create_var(*args, **kwargs)
def append_bias_op(self, input_var):
bias_attr = self.bias_attr(
self.kwargs['size'], dtype=input_var.data_type)
size = list(input_var.shape[1:])
bias_attr = self.bias_attr(size, dtype=input_var.data_type)
if not bias_attr:
return input_var
b = self.create_parameter(
attr=bias_attr,
shape=[self.kwargs['size']],
dtype=input_var.data_type,
suffix='b')
attr=bias_attr, shape=size, dtype=input_var.data_type, suffix='b')
tmp = self.create_tmp_variable(dtype=input_var.data_type)
self.append_op(
type='elementwise_add',
......
......@@ -3,7 +3,7 @@ import paddle.v2.framework.core as core
from paddle.v2.framework.framework import OpProtoHolder, Variable
import re
__all__ = ['fc_layer', 'data_layer', 'cross_entropy']
__all__ = ['fc_layer', 'data_layer', 'cross_entropy', 'conv2d_layer']
def fc_layer(input,
......@@ -24,6 +24,7 @@ def fc_layer(input,
for input_var, param_attr in helper.iter_inputs_and_params():
input_shape = input_var.shape
param_shape = list(input_shape[num_flatten_dims:]) + [size]
w = helper.create_parameter(
attr=param_attr, shape=param_shape, dtype=dtype)
tmp = helper.create_tmp_variable(dtype)
......@@ -111,6 +112,7 @@ def _create_op_func_(op_type):
_create_op_func_('mean')
_create_op_func_('pool2d')
def cross_entropy(input, label, **kwargs):
......@@ -141,3 +143,47 @@ def square_error_cost(input, label, **kwargs):
outputs={'Y': [square_out]},
attrs={'factor': 2.0})
return square_out
def conv2d_layer(input,
num_filters,
name=None,
filter_size=[1, 1],
act=None,
groups=None,
stride=[1, 1],
padding=None,
bias_attr=None,
param_attr=None,
program=None):
helper = LayerHelper('conv2d', **locals())
dtype = helper.input_dtype()
num_channels = input.shape[1]
if groups is None:
num_filter_channels = num_channels
else:
if num_channels % groups is not 0:
raise ValueError("num_channels must be divisible by groups.")
num_filter_channels = num_channels / groups
input_shape = input.shape
filter_shape = [num_filters, num_filter_channels] + filter_size
filter = helper.create_parameter(
attr=helper.param_attr, shape=filter_shape, dtype=dtype)
pre_bias = helper.create_tmp_variable(dtype)
helper.append_op(
type='conv2d',
inputs={
'Input': input,
'Filter': filter,
},
outputs={"Output": pre_bias},
attrs={'strides': stride,
'paddings': padding,
'groups': groups})
pre_act = helper.append_bias_op(pre_bias)
return helper.append_activation(pre_act)
from paddle.v2.framework.layers import fc_layer, data_layer, cross_entropy, mean, square_error_cost
from paddle.v2.framework.layers import fc_layer, data_layer, cross_entropy, mean, square_error_cost, conv2d_layer
from paddle.v2.framework.framework import Program, g_program
import paddle.v2.framework.core as core
import unittest
......@@ -38,6 +38,16 @@ class TestBook(unittest.TestCase):
self.assertIsNotNone(avg_cost)
print str(program)
def test_simple_conv2d(self):
pd = core.ProgramDesc.__create_program_desc__()
program = Program(desc=pd)
images = data_layer(
name='pixel', shape=[3, 48, 48], data_type='int32', program=program)
conv2d_layer(
input=images, num_filters=3, filter_size=[4, 4], program=program)
print str(program)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册
新手
引导
客服 返回
顶部