layers.py 27.0 KB
Newer Older
Y
Yu Yang 已提交
1
import paddle.v2.framework.core as core
Y
Yu Yang 已提交
2 3 4 5
from paddle.v2.framework.framework import OpProtoHolder, Variable, Program, \
    Operator
from paddle.v2.framework.initializer import ConstantInitializer, \
    NormalInitializer
6
from paddle.v2.framework.layer_helper import LayerHelper, unique_name
Y
Yu Yang 已提交
7 8
import re

Q
QI JUN 已提交
9
__all__ = [
Y
Yu Yang 已提交
10
    'fc', 'data', 'cross_entropy', 'conv2d', 'pool2d', 'embedding', 'concat',
D
dzhwinter 已提交
11 12
    'StaticRNN', 'cast', 'sequence_conv', 'sequence_pool', 'sums', 'cos_sim',
    'batch_norm', 'accuracy'
Q
QI JUN 已提交
13
]
Y
Yu Yang 已提交
14 15


F
fengjiayi 已提交
16 17 18 19 20 21 22
def fc(input,
       size,
       param_attr=None,
       bias_attr=True,
       name=None,
       act=None,
       num_flatten_dims=1,
23 24
       main_program=None,
       startup_program=None):
Y
Yu Yang 已提交
25 26 27 28 29 30 31 32 33
    # create helper
    helper = LayerHelper('fc', **locals())

    dtype = helper.input_dtype()

    # mul
    mul_results = []
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
34 35 36
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
Yu Yang 已提交
37 38 39 40 41 42 43 44 45 46
        w = helper.create_parameter(
            attr=param_attr, shape=param_shape, dtype=dtype)
        tmp = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="mul",
            inputs={
                "X": input_var,
                "Y": w,
            },
            outputs={"Out": tmp},
Y
Yu Yang 已提交
47 48
            attrs={'x_num_col_dims': num_flatten_dims,
                   'y_num_col_dims': 1})
Y
Yu Yang 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
        mul_results.append(tmp)

    # sum
    if len(mul_results) == 1:
        pre_bias = mul_results[0]
    else:
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
    pre_activation = helper.append_bias_op(pre_bias)
    # add activation
    return helper.append_activation(pre_activation)


Q
QI JUN 已提交
64 65 66
def embedding(input,
              size,
              data_type='float32',
67
              is_sparse=False,
Q
QI JUN 已提交
68
              param_attr=None,
69 70
              main_program=None,
              startup_program=None):
Q
QI JUN 已提交
71 72 73 74 75 76 77 78
    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=data_type)
    tmp = helper.create_tmp_variable(data_type)
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
79 80
        outputs={'Out': tmp},
        attrs={'is_sparse': is_sparse})
Q
QI JUN 已提交
81 82 83
    return tmp


F
fengjiayi 已提交
84 85 86 87
def data(name,
         shape,
         data_type='float32',
         type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
88
         append_batch_size=True,
89 90
         main_program=None,
         startup_program=None):
Y
Yu Yang 已提交
91
    helper = LayerHelper('data', **locals())
Y
Yu Yang 已提交
92 93 94 95 96 97 98 99
    shape = list(shape)
    for i in xrange(len(shape)):
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

Y
Yu Yang 已提交
100 101
    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1
Y
Yu Yang 已提交
102

Y
Yu Yang 已提交
103
    return helper.create_global_variable(
Y
Yu Yang 已提交
104
        name=name, shape=shape, dtype=data_type, type=type, stop_gradient=True)
Y
Yu Yang 已提交
105 106 107 108 109 110 111 112 113


def _convert_(name):
    s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
    return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()


def _create_op_func_(op_type):
    op_proto = OpProtoHolder.instance().get_op_proto(op_type)
114 115 116 117 118 119
    not_intermediate_outputs = \
        filter(lambda output: not output.intermediate, op_proto.outputs)
    intermediate_outputs = \
        filter(lambda output: output.intermediate, op_proto.outputs)

    if len(not_intermediate_outputs) != 1:
Y
Yu Yang 已提交
120
        raise ValueError(
121 122
            "Only one not intermediate output operator can be automatically generated"
        )
Y
Yu Yang 已提交
123

124
    if not_intermediate_outputs[0].duplicable:
Y
Yu Yang 已提交
125 126 127
        raise ValueError(
            "Only not duplicable op can be automatically generated")

128 129 130 131 132 133 134 135
    for output in intermediate_outputs:
        if output.duplicable:
            raise ValueError(
                "Only when all intermediate ops are not duplicable, "
                "this op can be automatically generated")

    o_name = not_intermediate_outputs[0].name
    intermediate_output_names = [output.name for output in intermediate_outputs]
Y
Yu Yang 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

    def func(**kwargs):
        helper = LayerHelper(op_type, **kwargs)
        inputs = dict()
        dtype = None
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
            for each in val:
                if not isinstance(each, Variable):
                    raise ValueError("input of {0} must be variable".format(
                        op_type))

                if dtype is None:
                    dtype = each.data_type
                elif dtype != each.data_type:
                    raise ValueError(
                        "operator {0} must input same dtype".format(op_type))
            inputs[ipt.name] = val

158
        outputs = dict()
Y
Yu Yang 已提交
159
        out = helper.create_tmp_variable(dtype=dtype)
160 161 162
        outputs[o_name] = [out]
        for name in intermediate_output_names:
            outputs[name] = [helper.create_tmp_variable(dtype=dtype)]
Y
Yu Yang 已提交
163
        helper.append_op(
164
            type=op_type, inputs=inputs, outputs=outputs, attrs=kwargs)
Q
Qiao Longfei 已提交
165
        return helper.append_activation(out)
Y
Yu Yang 已提交
166 167 168 169 170 171 172 173

    func.__name__ = op_type
    globals()[op_type] = func
    global __all__
    __all__.append(op_type)


_create_op_func_('mean')
Y
Yu Yang 已提交
174
_create_op_func_('mul')
Q
Qiao Longfei 已提交
175
_create_op_func_('elementwise_add')
176
_create_op_func_('dropout')
Q
Qiao Longfei 已提交
177
_create_op_func_('reshape')
Y
Yu Yang 已提交
178 179 180
_create_op_func_('elementwise_add')
_create_op_func_('sigmoid')
_create_op_func_('scale')
Y
Yu Yang 已提交
181 182


183
def cast(x, data_type, main_program=None):
Y
Yu Yang 已提交
184 185 186 187 188 189 190 191 192 193 194
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=data_type)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_data_type': x.data_type,
               'out_data_type': out.data_type})
    return out


195
def concat(input, axis, main_program=None, startup_program=None):
Q
QI JUN 已提交
196
    helper = LayerHelper('concat', **locals())
D
dzhwinter 已提交
197
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Q
QI JUN 已提交
198 199 200 201 202 203 204 205
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


206
def sums(input, main_program=None, startup_program=None):
D
dzhwinter 已提交
207 208
    helper = LayerHelper('sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Y
Yu Yang 已提交
209
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
D
dzhwinter 已提交
210 211 212
    return out


213 214 215 216 217
def cos_sim(X, Y, **kwargs):
    helper = LayerHelper('cos_sim', **kwargs)
    out = helper.create_tmp_variable(dtype=X.data_type)
    xnorm = helper.create_tmp_variable(dtype=X.data_type)
    ynorm = helper.create_tmp_variable(dtype=X.data_type)
D
dzhwinter 已提交
218 219 220 221 222 223 224
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
225
    return out
D
dzhwinter 已提交
226 227


Y
Yu Yang 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
def cross_entropy(input, label, **kwargs):
    helper = LayerHelper('cross_entropy', **kwargs)
    out = helper.create_tmp_variable(dtype=input.data_type)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs=kwargs)
    return out


def square_error_cost(input, label, **kwargs):
    helper = LayerHelper('square_error_cost', **kwargs)
    minus_out = helper.create_tmp_variable(dtype=input.data_type)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.data_type)
    helper.append_op(
Q
QI JUN 已提交
251
        type='square', inputs={'X': [minus_out]}, outputs={'Y': [square_out]})
Y
Yu Yang 已提交
252
    return square_out
253 254


F
fengjiayi 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268
def accuracy(input, label, k=1, **kwargs):
    helper = LayerHelper("accuracy", **kwargs)
    topk_out = helper.create_tmp_variable(dtype=input.data_type)
    topk_indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [topk_out],
                 "Indices": [topk_indices]},
        attrs={"k": k})
    acc_out_dtype = kwargs.get("out_dtype", "float32")
    acc_out = helper.create_tmp_variable(dtype=acc_out_dtype)
    helper.append_op(
        type="accuracy",
武毅 已提交
269 270 271 272 273
        inputs={
            "Out": [topk_out],
            "Indices": [topk_indices],
            "Label": [label]
        },
F
fengjiayi 已提交
274 275 276 277
        outputs={"Accuracy": [acc_out]})
    return acc_out


D
dzhwinter 已提交
278 279 280
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
281
                  filter_stride=1,
282
                  act=None,
D
dzhwinter 已提交
283 284 285
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
286 287
                  main_program=None,
                  startup_program=None):
D
dzhwinter 已提交
288 289 290 291 292 293 294
    # FIXME(dzh) : want to unify the argument of python layer
    # function. So we ignore some unecessary attributes.
    # such as, padding_trainable, context_start.

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()

D
dzhwinter 已提交
295
    filter_shape = [filter_size * input.shape[1], num_filters]
D
dzhwinter 已提交
296 297 298 299 300 301 302 303
    filter = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
D
dzhwinter 已提交
304
            'Filter': [filter],
D
dzhwinter 已提交
305 306 307
        },
        outputs={"Out": pre_bias},
        attrs={
308
            'contextStride': filter_stride,
309
            'contextStart': -int(filter_size / 2),
310
            'contextLength': filter_size
D
dzhwinter 已提交
311 312 313 314 315
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


F
fengjiayi 已提交
316 317 318 319 320 321 322 323 324 325
def conv2d(input,
           num_filters,
           name=None,
           filter_size=[1, 1],
           act=None,
           groups=None,
           stride=[1, 1],
           padding=None,
           bias_attr=None,
           param_attr=None,
326 327
           main_program=None,
           startup_program=None):
328 329 330 331 332 333 334 335 336 337 338
    helper = LayerHelper('conv2d', **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups is not 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

F
fengjiayi 已提交
339 340 341 342 343 344 345
    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]

346 347
    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size
348 349

    std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
350
    filter = helper.create_parameter(
351 352 353 354
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        initializer=NormalInitializer(0.0, std, 0))
355 356 357 358 359 360 361 362 363 364 365 366 367
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='conv2d',
        inputs={
            'Input': input,
            'Filter': filter,
        },
        outputs={"Output": pre_bias},
        attrs={'strides': stride,
               'paddings': padding,
               'groups': groups})

Y
Yu Yang 已提交
368
    pre_act = helper.append_bias_op(pre_bias, 1)
369 370

    return helper.append_activation(pre_act)
F
fengjiayi 已提交
371 372


D
dzhwinter 已提交
373
def sequence_pool(input, pool_type, **kwargs):
374
    helper = LayerHelper('sequence_pool', input=input, **kwargs)
D
dzhwinter 已提交
375 376
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
D
dangqingqing 已提交
377
    max_index = helper.create_tmp_variable(dtype)
D
dzhwinter 已提交
378 379 380

    helper.append_op(
        type="sequence_pool",
D
dangqingqing 已提交
381 382 383
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
D
dzhwinter 已提交
384
        attrs={"pooltype": pool_type.upper()})
D
dzhwinter 已提交
385 386 387 388

    return pool_out


F
fengjiayi 已提交
389 390 391 392 393 394
def pool2d(input,
           pool_size,
           pool_type,
           pool_stride=[1, 1],
           pool_padding=[0, 0],
           global_pooling=False,
395 396
           main_program=None,
           startup_program=None):
F
fengjiayi 已提交
397 398 399 400 401 402 403 404 405 406 407
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
    if isinstance(pool_size, int):
        pool_size = [pool_size, pool_size]
    if isinstance(pool_stride, int):
        pool_stride = [pool_stride, pool_stride]
    if isinstance(pool_padding, int):
        pool_padding = [pool_padding, pool_padding]

D
dzhwinter 已提交
408
    helper = LayerHelper('pool2d', **locals())
F
fengjiayi 已提交
409 410 411 412 413 414 415 416
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="pool2d",
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
C
chengduoZH 已提交
417
            "poolingType": pool_type,
F
fengjiayi 已提交
418
            "ksize": pool_size,
C
chengduoZH 已提交
419
            "globalPooling": global_pooling,
F
fengjiayi 已提交
420 421 422 423 424
            "strides": pool_stride,
            "paddings": pool_padding
        })

    return pool_out
Y
Yu Yang 已提交
425 426


Q
Qiao Longfei 已提交
427 428 429 430
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
431
               epsilon=1e-05,
Q
Qiao Longfei 已提交
432 433 434
               param_attr=None,
               bias_attr=None,
               data_layout='NCHW',
435 436
               main_program=None,
               startup_program=None):
Q
Qiao Longfei 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
453 454 455 456
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        initializer=ConstantInitializer(1.0))
Q
Qiao Longfei 已提交
457
    bias = helper.create_parameter(
458 459 460 461 462 463 464 465 466 467 468 469 470 471
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        initializer=ConstantInitializer(0.0))

    mean = helper.create_global_variable(
        dtype=input.data_type, shape=param_shape, persistable=True)
    helper.set_variable_initializer(
        var=mean, initializer=ConstantInitializer(0.0))

    variance = helper.create_global_variable(
        dtype=input.data_type, shape=param_shape, persistable=True)
    helper.set_variable_initializer(
        var=variance, initializer=ConstantInitializer(1.0))
Q
Qiao Longfei 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
    saved_mean = helper.create_tmp_variable(dtype)
    saved_variance = helper.create_tmp_variable(dtype)

    batch_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"momentum": momentum,
               "epsilon": epsilon,
               "is_test": is_test})

    return helper.append_activation(batch_norm_out)


Y
Yu Yang 已提交
506 507 508 509 510 511
class BlockGuard(object):
    """
    BlockGuard used to create sub-block in program by using Python `with` 
    keyword.
    """

512 513
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
514
            raise TypeError("BlockGuard takes a program")
515
        self.main_program = main_program
Y
Yu Yang 已提交
516 517

    def __enter__(self):
518
        self.main_program.create_block()
Y
Yu Yang 已提交
519 520

    def __exit__(self, exc_type, exc_val, exc_tb):
521
        self.main_program.rollback()
Y
Yu Yang 已提交
522 523 524 525 526 527 528 529 530
        if exc_type is not None:
            return False  # re-raise exception
        return True


class StaticRNNGuard(BlockGuard):
    def __init__(self, rnn):
        if not isinstance(rnn, StaticRNN):
            raise TypeError("StaticRNNGuard takes an StaticRNN")
531
        super(StaticRNNGuard, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
532 533 534 535 536 537 538
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
        return super(StaticRNNGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
539 540
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
        self.rnn.complete_rnn_op()
        return super(StaticRNNGuard, self).__exit__(exc_type, exc_val, exc_tb)


class StaticRNNMemoryLink(object):
    """
    :param init: the initial variable for Memory
    :type init: Variable
    :param pre_mem: the memory variable in previous time step
    :type pre_mem: Variable
    :param mem: the memory variable in current time step
    :type mem: Variable
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

567 568 569
    def __init__(self, name=None, main_program=None):
        self.helper = LayerHelper(
            "static_rnn", name=name, main_program=main_program)
Y
Yu Yang 已提交
570 571 572 573 574 575 576 577 578 579 580 581 582 583
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
        return StaticRNNGuard(self)

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
        '''
        :param init: boot memory, if not set, a shape, batch_ref must be provided
        :param shape: shape of the boot memory
        :param batch_ref: batch size reference variable
        :param init_value: the init value of boot memory
        :param init_batch_dim_idx: the index of batch size in init's dimension
        :param ref_batch_dim_idx: the index of batch size in batch_ref's dimension
        :return: boot memory
        '''
Y
Yu Yang 已提交
600 601
        self._assert_in_rnn_block_('memory')
        if init is None:
602
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
603
                raise ValueError(
604
                    "if init is None, memory at least need shape and batch_ref")
Y
Yu Yang 已提交
605 606 607
            parent_block = self.parent_block()
            var_name = unique_name("@".join([self.helper.name, "memory_boot"]))
            boot_var = parent_block.create_var(
608 609 610 611
                name=var_name,
                shape=shape,
                dtype=batch_ref.data_type,
                persistable=False)
Y
Yu Yang 已提交
612 613

            parent_block.append_op(
614 615
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
616 617 618
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
619 620 621 622
                    'shape': boot_var.shape,
                    'data_type': boot_var.data_type,
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
                name=unique_name("@".join([self.helper.name, "mem"])),
                dtype=init.data_type,
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
640 641
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
642 643 644 645 646
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
            name=x.name,
            dtype=x.data_type,
Y
Yu Yang 已提交
647
            shape=list(x.shape[1:]),
Y
Yu Yang 已提交
648 649 650 651 652 653 654 655 656
            type=x.type)
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

Y
Yu Yang 已提交
657 658 659 660 661 662 663
        tmp_o = self.helper.create_tmp_variable(dtype=o.data_type)
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
            attrs={'data_type': o.data_type})

Y
Yu Yang 已提交
664
        out_var = self.parent_block().create_var(
Y
Yu Yang 已提交
665 666 667
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
            dtype=tmp_o.data_type)
Y
Yu Yang 已提交
668 669 670 671 672 673 674 675 676 677 678 679 680

        self.outputs.append(out_var)

    def output(self, *outputs):
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

    def parent_block(self):
681
        prog = self.helper.main_program
Y
Yu Yang 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

    def complete_rnn_op(self):
698 699
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
Y
Yu Yang 已提交
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
        parent_block = self.parent_block()

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

        boot_memories = []
        pre_memories = []
        memories = []
        for _, mem in self.memories.iteritems():
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
            new_mem = self.helper.create_tmp_variable(dtype=mem_var.data_type)

            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
                attrs={'data_type': mem_var.data_type})

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
                'ex_states': pre_memories,
                'states': memories,
                'step_block': rnn_block
            })
Y
Yu Yang 已提交
763 764


765
def lod_rank_table(x, level=0, main_program=None):
Y
Yu Yang 已提交
766 767 768 769 770 771 772 773 774 775
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
        name=unique_name("lod_rank_table"))
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
776 777


778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
def lod_tensor_to_array(x, table, main_program=None):
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
        name=unique_name("lod_tensor_to_array"),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY)
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


def array_to_lod_tensor(x, table, main_program=None):
    helper = LayerHelper("array_to_lod_tensor", **locals())
    tmp = helper.create_tmp_variable(dtype=x.data_type)
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


Y
Yu Yang 已提交
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
def fill_constant(shape, dtype, value, main_program=None):
    helper = LayerHelper("ones", **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'data_type': out.data_type,
            'value': float(value)
        })
    out.stop_gradient = True
    return out


def ones(shape, dtype, main_program=None):
    return fill_constant(value=1.0, **locals())


def zeros(shape, dtype, main_program=None):
    return fill_constant(value=0.0, **locals())


def increment(x, value=1.0, main_program=None):
    helper = LayerHelper("increment", **locals())
828
    tmp = helper.create_tmp_variable(dtype=x.data_type)
Y
Yu Yang 已提交
829 830 831
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
832
        outputs={'Out': [tmp]},
Y
Yu Yang 已提交
833
        attrs={'step': value})
834
    return tmp
Y
Yu Yang 已提交
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864


def array_write(x, i, array=None, main_program=None):
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.data_type)
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


def array_read(array, i, main_program=None):
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
    out = helper.create_tmp_variable(dtype=array.data_type)
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out