layers.py 23.2 KB
Newer Older
Y
Yu Yang 已提交
1
from paddle.v2.framework.layer_helper import LayerHelper, unique_name
Y
Yu Yang 已提交
2
import paddle.v2.framework.core as core
Y
Yu Yang 已提交
3 4
from paddle.v2.framework.framework import OpProtoHolder, Variable, Program, \
    Operator
5
from paddle.v2.framework.initializer import ConstantInitializer
Y
Yu Yang 已提交
6 7
import re

Q
QI JUN 已提交
8
__all__ = [
Y
Yu Yang 已提交
9
    'fc', 'data', 'cross_entropy', 'conv2d', 'pool2d', 'embedding', 'concat',
D
dzhwinter 已提交
10 11
    'StaticRNN', 'cast', 'sequence_conv', 'sequence_pool', 'sums', 'cos_sim',
    'batch_norm', 'accuracy'
Q
QI JUN 已提交
12
]
Y
Yu Yang 已提交
13 14


F
fengjiayi 已提交
15 16 17 18 19 20 21
def fc(input,
       size,
       param_attr=None,
       bias_attr=True,
       name=None,
       act=None,
       num_flatten_dims=1,
Q
QI JUN 已提交
22 23
       program=None,
       init_program=None):
Y
Yu Yang 已提交
24 25 26 27 28 29 30 31 32
    # create helper
    helper = LayerHelper('fc', **locals())

    dtype = helper.input_dtype()

    # mul
    mul_results = []
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
33 34 35
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
Yu Yang 已提交
36 37 38 39 40 41 42 43 44 45
        w = helper.create_parameter(
            attr=param_attr, shape=param_shape, dtype=dtype)
        tmp = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="mul",
            inputs={
                "X": input_var,
                "Y": w,
            },
            outputs={"Out": tmp},
Y
Yu Yang 已提交
46 47
            attrs={'x_num_col_dims': num_flatten_dims,
                   'y_num_col_dims': 1})
Y
Yu Yang 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
        mul_results.append(tmp)

    # sum
    if len(mul_results) == 1:
        pre_bias = mul_results[0]
    else:
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
    pre_activation = helper.append_bias_op(pre_bias)
    # add activation
    return helper.append_activation(pre_activation)


Q
QI JUN 已提交
63 64 65
def embedding(input,
              size,
              data_type='float32',
66
              is_sparse=False,
Q
QI JUN 已提交
67 68 69 70 71 72 73 74 75 76 77
              param_attr=None,
              program=None,
              init_program=None):
    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=data_type)
    tmp = helper.create_tmp_variable(data_type)
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
78 79
        outputs={'Out': tmp},
        attrs={'is_sparse': is_sparse})
Q
QI JUN 已提交
80 81 82
    return tmp


F
fengjiayi 已提交
83 84 85 86
def data(name,
         shape,
         data_type='float32',
         type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
87
         append_batch_size=True,
Q
QI JUN 已提交
88 89
         program=None,
         init_program=None):
Y
Yu Yang 已提交
90
    helper = LayerHelper('data', **locals())
Y
Yu Yang 已提交
91 92 93 94 95 96 97 98
    shape = list(shape)
    for i in xrange(len(shape)):
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

Y
Yu Yang 已提交
99 100
    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1
Y
Yu Yang 已提交
101

Y
Yu Yang 已提交
102 103 104 105 106 107 108 109 110 111 112
    return helper.create_global_variable(
        name=name, shape=shape, dtype=data_type, type=type)


def _convert_(name):
    s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
    return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()


def _create_op_func_(op_type):
    op_proto = OpProtoHolder.instance().get_op_proto(op_type)
113 114 115 116 117 118
    not_intermediate_outputs = \
        filter(lambda output: not output.intermediate, op_proto.outputs)
    intermediate_outputs = \
        filter(lambda output: output.intermediate, op_proto.outputs)

    if len(not_intermediate_outputs) != 1:
Y
Yu Yang 已提交
119
        raise ValueError(
120 121
            "Only one not intermediate output operator can be automatically generated"
        )
Y
Yu Yang 已提交
122

123
    if not_intermediate_outputs[0].duplicable:
Y
Yu Yang 已提交
124 125 126
        raise ValueError(
            "Only not duplicable op can be automatically generated")

127 128 129 130 131 132 133 134
    for output in intermediate_outputs:
        if output.duplicable:
            raise ValueError(
                "Only when all intermediate ops are not duplicable, "
                "this op can be automatically generated")

    o_name = not_intermediate_outputs[0].name
    intermediate_output_names = [output.name for output in intermediate_outputs]
Y
Yu Yang 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

    def func(**kwargs):
        helper = LayerHelper(op_type, **kwargs)
        inputs = dict()
        dtype = None
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
            for each in val:
                if not isinstance(each, Variable):
                    raise ValueError("input of {0} must be variable".format(
                        op_type))

                if dtype is None:
                    dtype = each.data_type
                elif dtype != each.data_type:
                    raise ValueError(
                        "operator {0} must input same dtype".format(op_type))
            inputs[ipt.name] = val

157
        outputs = dict()
Y
Yu Yang 已提交
158
        out = helper.create_tmp_variable(dtype=dtype)
159 160 161
        outputs[o_name] = [out]
        for name in intermediate_output_names:
            outputs[name] = [helper.create_tmp_variable(dtype=dtype)]
Y
Yu Yang 已提交
162
        helper.append_op(
163
            type=op_type, inputs=inputs, outputs=outputs, attrs=kwargs)
Q
Qiao Longfei 已提交
164
        return helper.append_activation(out)
Y
Yu Yang 已提交
165 166 167 168 169 170 171 172

    func.__name__ = op_type
    globals()[op_type] = func
    global __all__
    __all__.append(op_type)


_create_op_func_('mean')
Y
Yu Yang 已提交
173
_create_op_func_('mul')
Q
Qiao Longfei 已提交
174
_create_op_func_('elementwise_add')
175
_create_op_func_('dropout')
Q
Qiao Longfei 已提交
176
_create_op_func_('reshape')
Y
Yu Yang 已提交
177 178 179
_create_op_func_('elementwise_add')
_create_op_func_('sigmoid')
_create_op_func_('scale')
Y
Yu Yang 已提交
180 181


Y
Yu Yang 已提交
182 183 184 185 186 187 188 189 190 191 192 193
def cast(x, data_type, program=None):
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=data_type)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_data_type': x.data_type,
               'out_data_type': out.data_type})
    return out


Q
QI JUN 已提交
194 195
def concat(input, axis, program=None, init_program=None):
    helper = LayerHelper('concat', **locals())
D
dzhwinter 已提交
196
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Q
QI JUN 已提交
197 198 199 200 201 202 203 204
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


D
dzhwinter 已提交
205 206 207
def sums(input, program=None, init_program=None):
    helper = LayerHelper('sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Y
Yu Yang 已提交
208
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
D
dzhwinter 已提交
209 210 211
    return out


212 213 214 215 216
def cos_sim(X, Y, **kwargs):
    helper = LayerHelper('cos_sim', **kwargs)
    out = helper.create_tmp_variable(dtype=X.data_type)
    xnorm = helper.create_tmp_variable(dtype=X.data_type)
    ynorm = helper.create_tmp_variable(dtype=X.data_type)
D
dzhwinter 已提交
217 218 219 220 221 222 223
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
224
    return out
D
dzhwinter 已提交
225 226


Y
Yu Yang 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
def cross_entropy(input, label, **kwargs):
    helper = LayerHelper('cross_entropy', **kwargs)
    out = helper.create_tmp_variable(dtype=input.data_type)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs=kwargs)
    return out


def square_error_cost(input, label, **kwargs):
    helper = LayerHelper('square_error_cost', **kwargs)
    minus_out = helper.create_tmp_variable(dtype=input.data_type)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.data_type)
    helper.append_op(
Q
QI JUN 已提交
250
        type='square', inputs={'X': [minus_out]}, outputs={'Y': [square_out]})
Y
Yu Yang 已提交
251
    return square_out
252 253


F
fengjiayi 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267
def accuracy(input, label, k=1, **kwargs):
    helper = LayerHelper("accuracy", **kwargs)
    topk_out = helper.create_tmp_variable(dtype=input.data_type)
    topk_indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [topk_out],
                 "Indices": [topk_indices]},
        attrs={"k": k})
    acc_out_dtype = kwargs.get("out_dtype", "float32")
    acc_out = helper.create_tmp_variable(dtype=acc_out_dtype)
    helper.append_op(
        type="accuracy",
武毅 已提交
268 269 270 271 272
        inputs={
            "Out": [topk_out],
            "Indices": [topk_indices],
            "Label": [label]
        },
F
fengjiayi 已提交
273 274 275 276
        outputs={"Accuracy": [acc_out]})
    return acc_out


D
dzhwinter 已提交
277 278 279
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
280
                  filter_stride=1,
D
dzhwinter 已提交
281 282 283 284 285 286 287 288 289 290 291 292
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
                  program=None,
                  init_program=None):
    # FIXME(dzh) : want to unify the argument of python layer
    # function. So we ignore some unecessary attributes.
    # such as, padding_trainable, context_start.

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()

D
dzhwinter 已提交
293
    filter_shape = [filter_size * input.shape[1], num_filters]
D
dzhwinter 已提交
294 295 296 297 298 299 300 301
    filter = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
D
dzhwinter 已提交
302
            'Filter': [filter],
D
dzhwinter 已提交
303 304 305
        },
        outputs={"Out": pre_bias},
        attrs={
306 307 308
            'contextStride': filter_stride,
            'contextStart': 0,
            'contextLength': filter_size
D
dzhwinter 已提交
309 310 311 312 313
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


F
fengjiayi 已提交
314 315 316 317 318 319 320 321 322 323
def conv2d(input,
           num_filters,
           name=None,
           filter_size=[1, 1],
           act=None,
           groups=None,
           stride=[1, 1],
           padding=None,
           bias_attr=None,
           param_attr=None,
Q
QI JUN 已提交
324 325
           program=None,
           init_program=None):
326 327 328 329 330 331 332 333 334 335 336
    helper = LayerHelper('conv2d', **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups is not 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

F
fengjiayi 已提交
337 338 339 340 341 342 343
    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size
    filter = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='conv2d',
        inputs={
            'Input': input,
            'Filter': filter,
        },
        outputs={"Output": pre_bias},
        attrs={'strides': stride,
               'paddings': padding,
               'groups': groups})

Y
Yu Yang 已提交
361
    pre_act = helper.append_bias_op(pre_bias, 1)
362 363

    return helper.append_activation(pre_act)
F
fengjiayi 已提交
364 365


D
dzhwinter 已提交
366 367
def sequence_pool(input, pool_type, **kwargs):
    ENUM_POOL_TYPE = set(["MAX", "AVG", "SQRT", "LAST", "FIRST"])
D
dzhwinter 已提交
368
    if pool_type.upper() not in ENUM_POOL_TYPE:
D
dzhwinter 已提交
369
        raise ValueError("Unknown pool_type: '%s'. It can only be %s.",
D
dzhwinter 已提交
370
                         str(pool_type), " ".join(ENUM_POOL_TYPE))
D
dzhwinter 已提交
371

372
    helper = LayerHelper('sequence_pool', input=input, **kwargs)
D
dzhwinter 已提交
373 374 375 376 377 378
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": [input]},
D
dzhwinter 已提交
379
        outputs={"Out": [pool_out]},
D
dzhwinter 已提交
380
        attrs={"pooltype": pool_type.upper()})
D
dzhwinter 已提交
381 382 383 384

    return pool_out


F
fengjiayi 已提交
385 386 387 388 389 390
def pool2d(input,
           pool_size,
           pool_type,
           pool_stride=[1, 1],
           pool_padding=[0, 0],
           global_pooling=False,
Q
QI JUN 已提交
391 392
           program=None,
           init_program=None):
F
fengjiayi 已提交
393 394 395 396 397 398 399 400 401 402 403
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
    if isinstance(pool_size, int):
        pool_size = [pool_size, pool_size]
    if isinstance(pool_stride, int):
        pool_stride = [pool_stride, pool_stride]
    if isinstance(pool_padding, int):
        pool_padding = [pool_padding, pool_padding]

D
dzhwinter 已提交
404
    helper = LayerHelper('pool2d', **locals())
F
fengjiayi 已提交
405 406 407 408 409 410 411 412
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="pool2d",
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
C
chengduoZH 已提交
413
            "poolingType": pool_type,
F
fengjiayi 已提交
414
            "ksize": pool_size,
C
chengduoZH 已提交
415
            "globalPooling": global_pooling,
F
fengjiayi 已提交
416 417 418 419 420
            "strides": pool_stride,
            "paddings": pool_padding
        })

    return pool_out
Y
Yu Yang 已提交
421 422


Q
Qiao Longfei 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e05,
               param_attr=None,
               bias_attr=None,
               data_layout='NCHW',
               program=None,
               init_program=None):
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

445
    def create_persistable_var(dtype, shape, initializer=None):
Q
Qiao Longfei 已提交
446 447 448
        name = unique_name(".".join([helper.name, "xxxx"]))
        var = init_program.global_block().create_var(
            dtype=dtype, shape=shape, name=name, persistable=True)
449 450
        if initializer is not None:
            initializer(var, var.block)
Q
Qiao Longfei 已提交
451 452 453 454 455 456 457 458 459 460 461 462
        return program.global_block().create_var(
            name=name, dtype=dtype, shape=shape, persistable=True)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr, shape=param_shape, dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.param_attr, shape=param_shape, dtype=dtype)

    # create input
463 464 465
    mean = create_persistable_var(dtype, param_shape, ConstantInitializer(0.0))
    variance = create_persistable_var(dtype, param_shape,
                                      ConstantInitializer(1.0))
Q
Qiao Longfei 已提交
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
    saved_mean = helper.create_tmp_variable(dtype)
    saved_variance = helper.create_tmp_variable(dtype)

    batch_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"momentum": momentum,
               "epsilon": epsilon,
               "is_test": is_test})

    return helper.append_activation(batch_norm_out)


Y
Yu Yang 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
class BlockGuard(object):
    """
    BlockGuard used to create sub-block in program by using Python `with` 
    keyword.
    """

    def __init__(self, program):
        if not isinstance(program, Program):
            raise TypeError("BlockGuard takes a program")
        self.program = program

    def __enter__(self):
        self.program.create_block()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.program.rollback()
        if exc_type is not None:
            return False  # re-raise exception
        return True


class StaticRNNGuard(BlockGuard):
    def __init__(self, rnn):
        if not isinstance(rnn, StaticRNN):
            raise TypeError("StaticRNNGuard takes an StaticRNN")
        super(StaticRNNGuard, self).__init__(rnn.helper.program)
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
        return super(StaticRNNGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
533 534
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
        self.rnn.complete_rnn_op()
        return super(StaticRNNGuard, self).__exit__(exc_type, exc_val, exc_tb)


class StaticRNNMemoryLink(object):
    """
    :param init: the initial variable for Memory
    :type init: Variable
    :param pre_mem: the memory variable in previous time step
    :type pre_mem: Variable
    :param mem: the memory variable in current time step
    :type mem: Variable
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

    def __init__(self, name=None, program=None):
        self.helper = LayerHelper("static_rnn", name=name, program=program)
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
        return StaticRNNGuard(self)

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

    def memory(self, init=None, shape=None, dtype=None, init_value=0):
        self._assert_in_rnn_block_('memory')
        if init is None:
            if shape is None or dtype is None:
                raise ValueError(
                    "if init is None, memory at least need shape and dtype")
            parent_block = self.parent_block()
            var_name = unique_name("@".join([self.helper.name, "memory_boot"]))
            boot_var = parent_block.create_var(
                name=var_name, shape=shape, dtype=dtype, persistable=False)

            parent_block.append_op(
                type="fill_constant",
                inputs={},
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
Y
Yu Yang 已提交
594
                    'shape': [40] + list(boot_var.shape[1:]),
Y
Yu Yang 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
                    'data_type': boot_var.data_type
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
                name=unique_name("@".join([self.helper.name, "mem"])),
                dtype=init.data_type,
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
613 614
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
615 616 617 618 619
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
            name=x.name,
            dtype=x.data_type,
Y
Yu Yang 已提交
620
            shape=list(x.shape[1:]),
Y
Yu Yang 已提交
621 622 623 624 625 626 627 628 629
            type=x.type)
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

Y
Yu Yang 已提交
630 631 632 633 634 635 636
        tmp_o = self.helper.create_tmp_variable(dtype=o.data_type)
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
            attrs={'data_type': o.data_type})

Y
Yu Yang 已提交
637
        out_var = self.parent_block().create_var(
Y
Yu Yang 已提交
638 639 640
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
            dtype=tmp_o.data_type)
Y
Yu Yang 已提交
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670

        self.outputs.append(out_var)

    def output(self, *outputs):
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

    def parent_block(self):
        prog = self.helper.program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

    def complete_rnn_op(self):
Y
Yu Yang 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
        program = self.helper.program
        rnn_block = program.current_block()
        parent_block = self.parent_block()

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

        boot_memories = []
        pre_memories = []
        memories = []
        for _, mem in self.memories.iteritems():
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
            new_mem = self.helper.create_tmp_variable(dtype=mem_var.data_type)

            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
                attrs={'data_type': mem_var.data_type})

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
                'ex_states': pre_memories,
                'states': memories,
                'step_block': rnn_block
            })