test_transpose_op.py 19.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
xzl 已提交
15 16
import unittest
import numpy as np
17
from paddle.fluid.tests.unittests.op_test import OpTest, convert_float_to_uint16
18
import paddle
19 20
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
21
import paddle.fluid.core as core
22 23 24
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
X
xzl 已提交
25

26
paddle.enable_static()
X
xzl 已提交
27

S
seemingwang 已提交
28

29
class TestTransposeOp(OpTest):
X
xzl 已提交
30
    def setUp(self):
31
        self.init_op_type()
32
        self.initTestCase()
H
hong 已提交
33
        self.python_api = paddle.transpose
34
        self.inputs = {'X': np.random.random(self.shape).astype("float64")}
35 36 37 38
        self.attrs = {
            'axis': list(self.axis),
            'use_mkldnn': self.use_mkldnn,
        }
39
        self.outputs = {
40
            'XShape': np.random.random(self.shape).astype("float64"),
41
            'Out': self.inputs['X'].transpose(self.axis),
42
        }
43

44 45 46 47
    def init_op_type(self):
        self.op_type = "transpose2"
        self.use_mkldnn = False

48
    def test_check_output(self):
H
hong 已提交
49
        self.check_output(no_check_set=['XShape'], check_eager=True)
50 51

    def test_check_grad(self):
H
hong 已提交
52
        self.check_grad(['X'], 'Out', check_eager=True)
53 54

    def initTestCase(self):
Z
zhupengyang 已提交
55
        self.shape = (3, 40)
56 57 58
        self.axis = (1, 0)


59 60
class TestCase0(TestTransposeOp):
    def initTestCase(self):
61 62
        self.shape = (100,)
        self.axis = (0,)
63 64


65 66
class TestCase1(TestTransposeOp):
    def initTestCase(self):
Z
zhupengyang 已提交
67
        self.shape = (3, 4, 10)
68 69 70 71 72 73 74 75
        self.axis = (0, 2, 1)


class TestCase2(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5)
        self.axis = (0, 2, 3, 1)

X
xzl 已提交
76

77 78 79 80
class TestCase3(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.axis = (4, 2, 3, 1, 0)
X
xzl 已提交
81 82


83 84 85 86
class TestCase4(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6, 1)
        self.axis = (4, 2, 3, 1, 0, 5)
X
xzl 已提交
87 88


89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
class TestCase5(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 16, 96)
        self.axis = (0, 2, 1)


class TestCase6(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 10, 12, 16)
        self.axis = (3, 1, 2, 0)


class TestCase7(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 10, 2, 16)
        self.axis = (0, 1, 3, 2)


107 108 109 110 111 112 113 114 115 116
class TestCase8(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 3, 2, 3, 2, 4, 3, 3)
        self.axis = (0, 1, 3, 2, 4, 5, 6, 7)


class TestCase9(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 3, 2, 3, 2, 4, 3, 3)
        self.axis = (6, 1, 3, 5, 0, 2, 4, 7)
117 118


119 120 121 122 123 124
class TestCase_ZeroDim(TestTransposeOp):
    def initTestCase(self):
        self.shape = ()
        self.axis = ()


125 126 127 128 129 130 131 132 133 134 135 136
class TestAutoTuneTransposeOp(OpTest):
    def setUp(self):
        self.init_op_type()
        self.initTestCase()
        self.python_api = paddle.transpose
        self.inputs = {'X': np.random.random(self.shape).astype("float64")}
        self.attrs = {
            'axis': list(self.axis),
            'use_mkldnn': self.use_mkldnn,
        }
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("float64"),
137
            'Out': self.inputs['X'].transpose(self.axis),
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
        }

    def initTestCase(self):
        fluid.core.set_autotune_range(0, 3)
        fluid.core.update_autotune_status()
        fluid.core.enable_autotune()
        self.shape = (1, 12, 256, 1)
        self.axis = (0, 3, 2, 1)

    def init_op_type(self):
        self.op_type = "transpose2"
        self.use_mkldnn = False

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'], check_eager=True)
        fluid.core.disable_autotune()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out', check_eager=True)
157 158


159 160 161 162 163 164 165 166 167 168 169 170 171
class TestTransposeBF16Op(OpTest):
    def setUp(self):
        self.init_op_type()
        self.initTestCase()
        self.dtype = np.uint16
        x = np.random.random(self.shape).astype("float32")

        self.inputs = {'X': convert_float_to_uint16(x)}
        self.attrs = {
            'axis': list(self.axis),
            'use_mkldnn': self.use_mkldnn,
        }
        self.outputs = {
172 173 174 175
            'XShape': convert_float_to_uint16(
                np.random.random(self.shape).astype("float32")
            ),
            'Out': self.inputs['X'].transpose(self.axis),
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
        }

    def init_op_type(self):
        self.op_type = "transpose2"
        self.use_mkldnn = False

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        pass

    def initTestCase(self):
        self.shape = (3, 2)
        self.axis = (1, 0)


193 194 195 196 197 198 199
class TestTransposeOpBool(TestTransposeOp):
    def test_check_grad(self):
        pass


class TestTransposeOpBool1D(TestTransposeOpBool):
    def initTestCase(self):
200 201
        self.shape = (100,)
        self.axis = (0,)
202 203 204
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
205
            'Out': self.inputs['X'].transpose(self.axis),
206 207 208 209 210 211 212 213 214 215
        }


class TestTransposeOpBool2D(TestTransposeOpBool):
    def initTestCase(self):
        self.shape = (3, 40)
        self.axis = (1, 0)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
216
            'Out': self.inputs['X'].transpose(self.axis),
217 218 219 220 221 222 223 224 225 226
        }


class TestTransposeOpBool3D(TestTransposeOpBool):
    def initTestCase(self):
        self.shape = (3, 4, 10)
        self.axis = (0, 2, 1)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
227
            'Out': self.inputs['X'].transpose(self.axis),
228 229 230 231 232 233 234 235 236 237
        }


class TestTransposeOpBool4D(TestTransposeOpBool):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5)
        self.axis = (0, 2, 3, 1)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
238
            'Out': self.inputs['X'].transpose(self.axis),
239 240 241 242 243 244 245 246 247 248
        }


class TestTransposeOpBool5D(TestTransposeOpBool):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.axis = (4, 2, 3, 1, 0)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
249
            'Out': self.inputs['X'].transpose(self.axis),
250 251 252 253 254 255 256 257 258 259
        }


class TestTransposeOpBool6D(TestTransposeOpBool):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6, 1)
        self.axis = (4, 2, 3, 1, 0, 5)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
260
            'Out': self.inputs['X'].transpose(self.axis),
261 262 263 264 265 266 267 268 269 270
        }


class TestTransposeOpBool7D(TestTransposeOpBool):
    def initTestCase(self):
        self.shape = (2, 3, 2, 3, 2, 4, 3)
        self.axis = (0, 1, 3, 2, 4, 5, 6)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
271
            'Out': self.inputs['X'].transpose(self.axis),
272 273 274 275 276 277 278 279 280 281
        }


class TestTransposeOpBool8D(TestTransposeOpBool):
    def initTestCase(self):
        self.shape = (2, 3, 2, 3, 2, 4, 3, 3)
        self.axis = (6, 1, 3, 5, 0, 2, 4, 7)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
282
            'Out': self.inputs['X'].transpose(self.axis),
283 284 285
        }


286
class TestTransposeOpError(unittest.TestCase):
287
    def test_errors(self):
288
        paddle.enable_static()
289
        with program_guard(Program(), Program()):
290
            x = fluid.layers.data(name='x', shape=[10, 5, 3], dtype='float64')
291 292 293 294 295 296 297 298

            def test_x_Variable_check():
                # the Input(x)'s type must be Variable
                fluid.layers.transpose("not_variable", perm=[1, 0, 2])

            self.assertRaises(TypeError, test_x_Variable_check)

            def test_x_dtype_check():
299
                # the Input(x)'s dtype must be one of [bool, float16, float32, float64, int32, int64]
300 301 302
                x1 = fluid.layers.data(
                    name='x1', shape=[10, 5, 3], dtype='int8'
                )
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
                fluid.layers.transpose(x1, perm=[1, 0, 2])

            self.assertRaises(TypeError, test_x_dtype_check)

            def test_perm_list_check():
                # Input(perm)'s type must be list
                fluid.layers.transpose(x, perm="[1, 0, 2]")

            self.assertRaises(TypeError, test_perm_list_check)

            def test_perm_length_and_x_dim_check():
                # Input(perm) is the permutation of dimensions of Input(input)
                # its length should be equal to dimensions of Input(input)
                fluid.layers.transpose(x, perm=[1, 0, 2, 3, 4])

            self.assertRaises(ValueError, test_perm_length_and_x_dim_check)

            def test_each_elem_value_check():
                # Each element in Input(perm) should be less than Input(x)'s dimension
                fluid.layers.transpose(x, perm=[3, 5, 7])

            self.assertRaises(ValueError, test_each_elem_value_check)

S
seemingwang 已提交
326

327 328 329 330 331 332 333 334 335 336
class TestTransposeApi(unittest.TestCase):
    def test_static_out(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data(name='x', shape=[2, 3, 4], dtype='float32')
            x_trans1 = paddle.transpose(x, perm=[1, 0, 2])
            x_trans2 = paddle.transpose(x, perm=(2, 1, 0))
            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)
            x_np = np.random.random([2, 3, 4]).astype("float32")
337 338 339
            result1, result2 = exe.run(
                feed={"x": x_np}, fetch_list=[x_trans1, x_trans2]
            )
340 341
            expected_result1 = np.transpose(x_np, [1, 0, 2])
            expected_result2 = np.transpose(x_np, (2, 1, 0))
S
seemingwang 已提交
342

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
            np.testing.assert_array_equal(result1, expected_result1)
            np.testing.assert_array_equal(result2, expected_result2)

    def test_dygraph_out(self):
        # This is an old test before 2.0 API so we need to disable static
        # to trigger dygraph
        paddle.disable_static()
        x = paddle.randn([2, 3, 4])
        x_trans1 = paddle.transpose(x, perm=[1, 0, 2])
        x_trans2 = paddle.transpose(x, perm=(2, 1, 0))
        x_np = x.numpy()
        expected_result1 = np.transpose(x_np, [1, 0, 2])
        expected_result2 = np.transpose(x_np, (2, 1, 0))

        np.testing.assert_array_equal(x_trans1.numpy(), expected_result1)
        np.testing.assert_array_equal(x_trans2.numpy(), expected_result2)
        # This is an old test before 2.0 API so we enable static again after
        # dygraph test
        paddle.enable_static()
362

S
seemingwang 已提交
363

364 365 366 367 368 369 370 371
class TestTAPI(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program()):
            data = fluid.data(shape=[10], dtype="float64", name="data")
            data_t = paddle.t(data)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            data_np = np.random.random([10]).astype("float64")
372
            (result,) = exe.run(feed={"data": data_np}, fetch_list=[data_t])
373 374 375 376 377 378 379 380 381
            expected_result = np.transpose(data_np)
        self.assertEqual((result == expected_result).all(), True)

        with fluid.program_guard(fluid.Program()):
            data = fluid.data(shape=[10, 5], dtype="float64", name="data")
            data_t = paddle.t(data)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            data_np = np.random.random([10, 5]).astype("float64")
382
            (result,) = exe.run(feed={"data": data_np}, fetch_list=[data_t])
383 384 385 386 387 388 389 390 391
            expected_result = np.transpose(data_np)
        self.assertEqual((result == expected_result).all(), True)

        with fluid.program_guard(fluid.Program()):
            data = fluid.data(shape=[1, 5], dtype="float64", name="data")
            data_t = paddle.t(data)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            data_np = np.random.random([1, 5]).astype("float64")
392
            (result,) = exe.run(feed={"data": data_np}, fetch_list=[data_t])
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
            expected_result = np.transpose(data_np)
        self.assertEqual((result == expected_result).all(), True)

        with fluid.dygraph.guard():
            np_x = np.random.random([10]).astype("float64")
            data = fluid.dygraph.to_variable(np_x)
            z = paddle.t(data)
            np_z = z.numpy()
            z_expected = np.array(np.transpose(np_x))
        self.assertEqual((np_z == z_expected).all(), True)

        with fluid.dygraph.guard():
            np_x = np.random.random([10, 5]).astype("float64")
            data = fluid.dygraph.to_variable(np_x)
            z = paddle.t(data)
            np_z = z.numpy()
            z_expected = np.array(np.transpose(np_x))
        self.assertEqual((np_z == z_expected).all(), True)

        with fluid.dygraph.guard():
            np_x = np.random.random([1, 5]).astype("float64")
            data = fluid.dygraph.to_variable(np_x)
            z = paddle.t(data)
            np_z = z.numpy()
            z_expected = np.array(np.transpose(np_x))
        self.assertEqual((np_z == z_expected).all(), True)

    def test_errors(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name='x', shape=[10, 5, 3], dtype='float64')

            def test_x_dimension_check():
                paddle.t(x)

            self.assertRaises(ValueError, test_x_dimension_check)


430 431 432 433 434 435 436 437 438 439 440 441
class TestMoveAxis(unittest.TestCase):
    def test_moveaxis1(self):
        x_np = np.random.randn(2, 3, 4, 5, 7)
        expected = np.moveaxis(x_np, [0, 4, 3, 2], [1, 3, 2, 0])
        paddle.enable_static()
        with paddle.static.program_guard(fluid.Program()):
            x = paddle.static.data("x", shape=[2, 3, 4, 5, 7], dtype='float64')
            out = paddle.moveaxis(x, [0, 4, 3, 2], [1, 3, 2, 0])

            exe = paddle.static.Executor()
            out_np = exe.run(feed={"x": x_np}, fetch_list=[out])[0]

442
        np.testing.assert_array_equal(out_np, expected)
443 444 445 446 447

        paddle.disable_static()
        x = paddle.to_tensor(x_np)
        out = paddle.moveaxis(x, [0, 4, 3, 2], [1, 3, 2, 0])
        self.assertEqual(out.shape, [4, 2, 5, 7, 3])
448
        np.testing.assert_array_equal(out.numpy(), expected)
449 450 451 452 453 454 455 456 457 458 459 460 461
        paddle.enable_static()

    def test_moveaxis2(self):
        x_np = np.random.randn(2, 3, 5)
        expected = np.moveaxis(x_np, -2, -1)
        paddle.enable_static()
        with paddle.static.program_guard(fluid.Program()):
            x = paddle.static.data("x", shape=[2, 3, 5], dtype='float64')
            out = x.moveaxis(-2, -1)

            exe = paddle.static.Executor()
            out_np = exe.run(feed={"x": x_np}, fetch_list=[out])[0]

462
        np.testing.assert_array_equal(out_np, expected)
463 464 465 466 467

        paddle.disable_static()
        x = paddle.to_tensor(x_np)
        out = x.moveaxis(-2, -1)
        self.assertEqual(out.shape, [2, 5, 3])
468
        np.testing.assert_array_equal(out.numpy(), expected)
469 470
        paddle.enable_static()

471 472
    def test_moveaxis3(self):
        paddle.disable_static()
473 474 475
        x = paddle.to_tensor(
            [[1 + 1j, -1 - 1j], [1 + 1j, -1 - 1j], [1 + 1j, -1 - 1j]]
        )
476 477 478 479
        out = x.moveaxis(0, 1)
        self.assertEqual(out.shape, [2, 3])
        paddle.enable_static()

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
    def test_error(self):
        x = paddle.randn([2, 3, 4, 5])
        # src must have the same number with dst
        with self.assertRaises(AssertionError):
            paddle.moveaxis(x, [1, 0], [2])

        # each element of src must be unique
        with self.assertRaises(ValueError):
            paddle.moveaxis(x, [1, 1], [0, 2])

        # each element of dst must be unique
        with self.assertRaises(ValueError):
            paddle.moveaxis(x, [0, 1], [2, 2])

        # each element of src must be integer
        with self.assertRaises(AssertionError):
            paddle.moveaxis(x, [0.5], [1])

        # each element of dst must be integer
        with self.assertRaises(AssertionError):
            paddle.moveaxis(x, [0], [1.5])

        # each element of src must be in the range of [-4, 3)
        with self.assertRaises(AssertionError):
            paddle.moveaxis(x, [-10, 1], [2, 3])

        # each element of dst must be in the range of [-4, 3)
        with self.assertRaises(AssertionError):
            paddle.moveaxis(x, [2, 1], [10, 3])


511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
class TestTransposeDoubleGradCheck(unittest.TestCase):
    def transpose_wrapper(self, x):
        return paddle.transpose(x[0], [1, 0, 2])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [2, 3, 4], False, dtype)
        data.persistable = True
        out = paddle.transpose(data, [1, 0, 2])
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

526 527 528
        gradient_checker.double_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
529
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
530 531 532
        gradient_checker.double_grad_check_for_dygraph(
            self.transpose_wrapper, [data], out, x_init=[data_arr], place=place
        )
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestTransposeTripleGradCheck(unittest.TestCase):
    def transpose_wrapper(self, x):
        return paddle.transpose(x[0], [1, 0, 2])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [2, 3, 4], False, dtype)
        data.persistable = True
        out = paddle.transpose(data, [1, 0, 2])
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

558 559 560
        gradient_checker.triple_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
561
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
562 563 564
        gradient_checker.triple_grad_check_for_dygraph(
            self.transpose_wrapper, [data], out, x_init=[data_arr], place=place
        )
565 566 567 568 569 570 571 572 573 574

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
class TestTransposeAPI_ZeroDim(unittest.TestCase):
    def test_dygraph(self):
        paddle.disable_static()
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})

        x = paddle.rand([])
        x.stop_gradient = False
        out = paddle.transpose(x, [])
        out.backward()

        self.assertEqual(out.shape, [])
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(out.grad.shape, [])

        paddle.enable_static()


X
xzl 已提交
592
if __name__ == '__main__':
H
hong 已提交
593
    paddle.enable_static()
X
xzl 已提交
594
    unittest.main()