multiary.h 31.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/phi/common/int_array.h"
18 19 20
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/meta_tensor.h"
namespace phi {
21

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
// Common InferMeta Functions for multiary operators, The format like:
//
//   1. The number of input MetaTensor is more than 3:
//      void [FunctionDesc|OpName]InferMeta(const MetaTensor& x,
//                                          const MetaTensor& y,
//                                          const MetaTensor& z,
//                                          const MetaTensor& w,
//                                          ...,
//                                          MetaTensor* out) {}
//
//   2. There are `const vector<MetaTensor*>&` in params:
//      void [FunctionDesc|OpName]InferMeta(const vector<MetaTensor*>& x,
//                                          ...,
//                                          MetaTensor* out) {}
//
// NOTE: The InferMeta Functions in this file are arranged in alphabetic order.

39 40
std::vector<DDim> GetMetaTensorsDim(
    const std::vector<const MetaTensor*>& tensors);
41

F
From00 已提交
42 43 44 45
void AdadeltaInferMeta(const MetaTensor& param,
                       const MetaTensor& grad,
                       const MetaTensor& avg_squared_grad,
                       const MetaTensor& avg_squared_update,
46
                       const MetaTensor& learning_rate,
47
                       const MetaTensor& master_param,
F
From00 已提交
48 49
                       float rho,
                       float epsilon,
50
                       bool multi_precision,
F
From00 已提交
51 52
                       MetaTensor* param_out,
                       MetaTensor* avg_squared_grad_out,
53 54
                       MetaTensor* avg_squared_update_out,
                       MetaTensor* master_param_outs);
F
From00 已提交
55

H
hong 已提交
56 57 58 59
void AdagradInferMeta(const MetaTensor& param,
                      const MetaTensor& grad,
                      const MetaTensor& moment,
                      const MetaTensor& learning_rate,
60
                      const MetaTensor& master_param,
H
hong 已提交
61
                      float epsilon,
62
                      bool multi_precision,
H
hong 已提交
63
                      MetaTensor* param_out,
64 65
                      MetaTensor* moment_out,
                      MetaTensor* master_param_out);
H
hong 已提交
66

F
From00 已提交
67 68 69 70 71 72
void AdamaxInferMeta(const MetaTensor& param,
                     const MetaTensor& grad,
                     const MetaTensor& learning_rate,
                     const MetaTensor& moment,
                     const MetaTensor& inf_norm,
                     const MetaTensor& beta1_pow,
73
                     const MetaTensor& master_param,
F
From00 已提交
74 75 76
                     float beta1,
                     float beta2,
                     float epsilon,
77
                     bool multi_precision,
F
From00 已提交
78 79
                     MetaTensor* param_out,
                     MetaTensor* moment_out,
80 81
                     MetaTensor* inf_norm_out,
                     MetaTensor* master_param_outs);
F
From00 已提交
82

83 84 85 86 87 88 89
void AdamInferMeta(const MetaTensor& param,
                   const MetaTensor& grad,
                   const MetaTensor& learning_rate,
                   const MetaTensor& moment1,
                   const MetaTensor& moment2,
                   const MetaTensor& beta1_pow,
                   const MetaTensor& beta2_pow,
90 91
                   const MetaTensor& master_param,
                   const MetaTensor& skip_update,
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
                   const Scalar& beta1,
                   const Scalar& beta2,
                   const Scalar& epsilon,
                   bool lazy_mode,
                   int64_t min_row_size_to_use_multithread,
                   bool multi_precision,
                   bool use_global_beta_pow,
                   MetaTensor* param_out,
                   MetaTensor* moment1_out,
                   MetaTensor* moment2_out,
                   MetaTensor* beta1_pow_out,
                   MetaTensor* beta2_pow_out,
                   MetaTensor* master_param_outs);

void AdamwInferMeta(const MetaTensor& param,
                    const MetaTensor& grad,
                    const MetaTensor& learning_rate,
                    const MetaTensor& moment1,
                    const MetaTensor& moment2,
                    const MetaTensor& beta1_pow,
                    const MetaTensor& beta2_pow,
113 114
                    const MetaTensor& master_param,
                    const MetaTensor& skip_update,
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
                    const Scalar& beta1,
                    const Scalar& beta2,
                    const Scalar& epsilon,
                    float lr_ratio,
                    float coeff,
                    bool with_decay,
                    bool lazy_mode,
                    int64_t min_row_size_to_use_multithread,
                    bool multi_precision,
                    bool use_global_beta_pow,
                    MetaTensor* param_out,
                    MetaTensor* moment1_out,
                    MetaTensor* moment2_out,
                    MetaTensor* beta1_pow_out,
                    MetaTensor* beta2_pow_out,
                    MetaTensor* master_param_outs);

132
void AddNInferMeta(const std::vector<const MetaTensor*>& x,
133 134 135
                   MetaTensor* out,
                   MetaConfig config = MetaConfig());

Y
YuanRisheng 已提交
136 137 138 139
void AddNTensorArrayInferMeta(const std::vector<const MetaTensor*>& x,
                              MetaTensor* out,
                              MetaConfig config);

140 141 142 143
void AucInferMeta(const MetaTensor& input,
                  const MetaTensor& label,
                  const MetaTensor& stat_pos,
                  const MetaTensor& stat_neg,
144
                  const MetaTensor& ins_tag_weight,
145 146 147 148 149 150 151 152
                  const std::string& curve,
                  int num_thresholds,
                  int slide_steps,
                  MetaTensor* auc,
                  MetaTensor* stat_pos_out,
                  MetaTensor* stat_neg_out,
                  MetaConfig config = MetaConfig());

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
void AverageAccumulatesInferMeta(const MetaTensor& param,
                                 const MetaTensor& in_sum_1,
                                 const MetaTensor& in_sum_2,
                                 const MetaTensor& in_sum_3,
                                 const MetaTensor& in_num_accumulates,
                                 const MetaTensor& in_old_num_accumulates,
                                 const MetaTensor& in_num_updates,
                                 float average_window,
                                 int64_t max_average_window,
                                 int64_t min_average_window,
                                 MetaTensor* out_sum_1,
                                 MetaTensor* out_sum_2,
                                 MetaTensor* out_sum_3,
                                 MetaTensor* out_num_accumulates,
                                 MetaTensor* out_old_num_accumulates,
                                 MetaTensor* out_num_updates);

H
hong 已提交
170 171 172
void BatchNormInferMeta(const MetaTensor& x,
                        const MetaTensor& mean,
                        const MetaTensor& variance,
173 174 175
                        const MetaTensor& scale,
                        const MetaTensor& bias,
                        bool is_test,
H
hong 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188
                        float momentum,
                        float epsilon,
                        const std::string& data_layout,
                        bool use_global_stats,
                        bool trainable_statistics,
                        MetaTensor* y,
                        MetaTensor* mean_out,
                        MetaTensor* variance_out,
                        MetaTensor* saved_mean,
                        MetaTensor* saved_variance,
                        MetaTensor* reserve_space,
                        MetaConfig config = MetaConfig());

189 190 191
void BatchNormInferInferMeta(const MetaTensor& x,
                             const MetaTensor& mean,
                             const MetaTensor& variance,
192 193
                             const MetaTensor& scale,
                             const MetaTensor& bias,
194 195 196 197 198 199 200 201
                             float momentum,
                             float epsilon,
                             const std::string& data_layout,
                             MetaTensor* y,
                             MetaTensor* mean_out,
                             MetaTensor* variance_out,
                             MetaConfig config = MetaConfig());

202 203 204 205 206 207
void BilinearInferMeta(const MetaTensor& x,
                       const MetaTensor& y,
                       const MetaTensor& weight,
                       const MetaTensor& bias,
                       MetaTensor* out,
                       MetaConfig config = MetaConfig());
208

209
void BroadcastTensorsInferMeta(const std::vector<const MetaTensor*>& x,
210 211
                               std::vector<MetaTensor*> out);

212 213 214 215 216
void CheckFiniteAndUnscaleInferMeta(const std::vector<const MetaTensor*>& xs,
                                    const MetaTensor& scale,
                                    std::vector<MetaTensor*> outs,
                                    MetaTensor* found_infinite);

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
void CoalesceTensorInferMeta(const std::vector<const MetaTensor*>& input,
                             DataType dtype,
                             bool copy_data,
                             bool set_constant,
                             bool persist_output,
                             float constant,
                             bool use_align,
                             int align_size,
                             int size_of_dtype,
                             const std::vector<int64_t>& concated_shapes,
                             const std::vector<int64_t>& concated_ranks,
                             std::vector<MetaTensor*> output,
                             MetaTensor* fused_output,
                             MetaConfig config = MetaConfig());

232 233 234 235 236
void CheckMemoryContinueInferMeta(const std::vector<const MetaTensor*>& input,
                                  MetaTensor* output,
                                  std::vector<MetaTensor*> xout,
                                  MetaConfig config = MetaConfig());

237
void ConcatInferMeta(const std::vector<const MetaTensor*>& x,
238 239 240
                     const Scalar& axis_scalar,
                     MetaTensor* out,
                     MetaConfig config = MetaConfig());
241

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
void CudnnLSTMInferMeta(
    const MetaTensor& x,
    const MetaTensor& init_h,
    const MetaTensor& init_c,
    const MetaTensor& w,
    const paddle::optional<std::vector<const MetaTensor*>>& weight_list,
    const MetaTensor& sequence_length,
    float dropout_prob,
    bool is_bidirec,
    int hidden_size,
    int num_layers,
    bool is_test,
    int seed,
    MetaTensor* out,
    MetaTensor* last_h,
    MetaTensor* last_c,
    MetaTensor* reserve,
    MetaTensor* state_out);

261 262 263
void DeformableConvInferMeta(const MetaTensor& x,
                             const MetaTensor& offset,
                             const MetaTensor& filter,
264
                             const MetaTensor& mask,
265 266 267 268 269 270 271 272 273
                             const std::vector<int>& strides,
                             const std::vector<int>& paddings,
                             const std::vector<int>& dilations,
                             int deformable_groups,
                             int groups,
                             int im2col_step,
                             MetaTensor* out,
                             MetaConfig config = MetaConfig());

Z
zhiboniu 已提交
274 275 276 277 278 279 280 281
void EditDistanceInferMeta(const MetaTensor& hyps,
                           const MetaTensor& refs,
                           const MetaTensor& hypslength,
                           const MetaTensor& refslength,
                           bool normalized,
                           MetaTensor* sequencenum,
                           MetaTensor* out);

282 283 284 285 286 287 288 289 290 291 292 293 294
void FusedBiasActInferMeta(const MetaTensor& x,
                           const MetaTensor& bias,
                           const MetaTensor& dequant_scales,
                           const MetaTensor& shift,
                           const MetaTensor& smooth,
                           const std::string& act_method,
                           const std::string& compute_dtype,
                           float quant_scale,
                           int quant_round_type,
                           float quant_max_bound,
                           float quant_min_bound,
                           MetaTensor* out);

295 296 297 298 299
void FusedLinearParamGradAddInferMeta(const MetaTensor& x,
                                      const MetaTensor& dout,
                                      const MetaTensor& dweight,
                                      const MetaTensor& dbias,
                                      bool multi_precision,
Y
Yuang Liu 已提交
300
                                      bool has_bias,
301 302 303
                                      MetaTensor* dweight_out,
                                      MetaTensor* dbias_out);

304 305 306 307 308 309 310
void FusionGroupInferMeta(const std::vector<const MetaTensor*>& ins,
                          const std::vector<int>& outs_dtype,
                          const std::vector<int>& inputs_dtype,
                          const std::string& func_name,
                          int type,
                          std::vector<MetaTensor*> outs);

Z
zhiboniu 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
void GenerateProposalsV2InferMeta(const MetaTensor& scores,
                                  const MetaTensor& bbox_deltas,
                                  const MetaTensor& im_shape,
                                  const MetaTensor& anchors,
                                  const MetaTensor& variances,
                                  int pre_nms_top_n,
                                  int post_nms_top_n,
                                  float nms_thresh,
                                  float min_size,
                                  float eta,
                                  bool pixel_offset,
                                  MetaTensor* rpn_rois,
                                  MetaTensor* rpn_roi_probs,
                                  MetaTensor* rpn_rois_num);

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
void GraphReindexInferMeta(const MetaTensor& x,
                           const MetaTensor& neighbors,
                           const MetaTensor& count,
                           const MetaTensor& hashtable_value,
                           const MetaTensor& hashtable_index,
                           MetaTensor* reindex_src,
                           MetaTensor* reindex_dst,
                           MetaTensor* out_nodes);

void GraphSampleNeighborsInferMeta(const MetaTensor& row,
                                   const MetaTensor& col_ptr,
                                   const MetaTensor& x,
                                   const MetaTensor& eids,
                                   const MetaTensor& perm_buffer,
                                   int sample_size,
                                   bool return_eids,
                                   bool flag_perm_buffer,
                                   MetaTensor* out,
                                   MetaTensor* out_count,
                                   MetaTensor* out_eids);

347 348
void HSigmoidLossInferMeta(const MetaTensor& x,
                           const MetaTensor& label,
349 350
                           const MetaTensor& w,
                           const MetaTensor& bias,
351 352 353 354 355 356 357
                           const MetaTensor& path,
                           const MetaTensor& code,
                           int num_classes,
                           bool is_sparse,
                           MetaTensor* out,
                           MetaTensor* pre_out,
                           MetaTensor* w_out);
358

359 360
void InterpolateInferMeta(
    const MetaTensor& x,
361 362 363
    const MetaTensor& out_size,
    const paddle::optional<std::vector<const MetaTensor*>>& size_tensor,
    const MetaTensor& scale_tensor,
364 365 366 367 368 369 370 371 372 373 374
    const std::string& data_layout,
    int out_d,
    int out_h,
    int out_w,
    const std::vector<float>& scale,
    const std::string& interp_method,
    bool align_corners,
    int align_mode,
    MetaTensor* output,
    MetaConfig config = MetaConfig());

傅剑寒 已提交
375 376 377 378 379 380
void IndexPutInferMeta(const MetaTensor& x,
                       const std::vector<const MetaTensor*>& indices,
                       const MetaTensor& value,
                       bool accumulate,
                       MetaTensor* out);

T
Thomas Young 已提交
381 382 383 384 385 386 387 388 389 390 391 392 393
void LambInferMeta(const MetaTensor& param,
                   const MetaTensor& grad,
                   const MetaTensor& learning_rate,
                   const MetaTensor& moment1,
                   const MetaTensor& moment2,
                   const MetaTensor& beta1_pow,
                   const MetaTensor& beta2_pow,
                   const MetaTensor& master_param,
                   const MetaTensor& skip_update,
                   float weight_decay,
                   float beta1,
                   float beta2,
                   float epsilon,
394
                   bool always_adapt,
T
Thomas Young 已提交
395 396 397 398 399 400 401 402
                   bool multi_precision,
                   MetaTensor* param_out,
                   MetaTensor* moment1_out,
                   MetaTensor* moment2_out,
                   MetaTensor* beta1_pow_out,
                   MetaTensor* beta2_pow_out,
                   MetaTensor* master_param_outs);

403 404 405 406
void LogspaceInferMeta(const MetaTensor& start,
                       const MetaTensor& stop,
                       const MetaTensor& number,
                       const MetaTensor& base,
C
Chen Weihang 已提交
407
                       DataType dtype,
408 409
                       MetaTensor* out);

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
void MergedAdamInferMeta(
    const std::vector<const MetaTensor*>& param,
    const std::vector<const MetaTensor*>& grad,
    const std::vector<const MetaTensor*>& learning_rate,
    const std::vector<const MetaTensor*>& moment1,
    const std::vector<const MetaTensor*>& moment2,
    const std::vector<const MetaTensor*>& beta1_pow,
    const std::vector<const MetaTensor*>& beta2_pow,
    const paddle::optional<std::vector<const MetaTensor*>>& master_param,
    const Scalar& beta1,
    const Scalar& beta2,
    const Scalar& epsilon,
    bool multi_precision,
    bool use_global_beta_pow,
    std::vector<MetaTensor*> param_out,
    std::vector<MetaTensor*> moment1_out,
    std::vector<MetaTensor*> moment2_out,
    std::vector<MetaTensor*> beta1_pow_out,
    std::vector<MetaTensor*> beta2_pow_out,
    std::vector<MetaTensor*> master_param_out);

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
void MergedMomentumInferMeta(
    const std::vector<const MetaTensor*>& param,
    const std::vector<const MetaTensor*>& grad,
    const std::vector<const MetaTensor*>& velocity,
    const std::vector<const MetaTensor*>& learning_rate,
    const paddle::optional<std::vector<const MetaTensor*>>& master_param,
    float mu,
    bool use_nesterov,
    const std::vector<std::string>& regularization_method,
    const std::vector<float>& regularization_coeff,
    bool multi_precision,
    float rescale_grad,
    std::vector<MetaTensor*> param_out,
    std::vector<MetaTensor*> velocity_out,
    std::vector<MetaTensor*> master_param_out);

Z
ZhangDY-6483 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
void MemoryEfficientAttentionInferMeta(const MetaTensor& query,
                                       const MetaTensor& key,
                                       const MetaTensor& value,
                                       const MetaTensor& bias,
                                       const MetaTensor& cu_seqlens_q,
                                       const MetaTensor& cu_seqlens_k,
                                       const MetaTensor& causal_diagonal,
                                       const MetaTensor& seqlen_k,
                                       const Scalar& max_seqlen_q,
                                       const Scalar& max_seqlen_k,
                                       const bool causal,
                                       const double dropout_p,
                                       const float scale,
                                       const bool is_test,
                                       MetaTensor* output,
                                       MetaTensor* logsumexp,
                                       MetaTensor* seed_and_offset);

465
void MeshgridInferMeta(const std::vector<const MetaTensor*>& inputs,
H
hong 已提交
466 467
                       std::vector<MetaTensor*> outputs);

468 469 470 471
void MomentumInferMeta(const MetaTensor& param,
                       const MetaTensor& grad,
                       const MetaTensor& velocity,
                       const MetaTensor& learning_rate,
472
                       const MetaTensor& master_param,
473 474 475 476 477 478 479 480 481 482
                       float mu,
                       bool use_nesterov,
                       const std::string& regularization_method,
                       float regularization_coeff,
                       bool multi_precision,
                       float rescale_grad,
                       MetaTensor* param_out,
                       MetaTensor* velocity_out,
                       MetaTensor* master_param_out);

483 484
void MultiDotInferMeta(const std::vector<const MetaTensor*>& x,
                       MetaTensor* out);
485

486
void MultiplexInferMeta(const std::vector<const MetaTensor*>& ins,
487 488 489
                        const MetaTensor& ids,
                        MetaTensor* out);

F
From00 已提交
490 491
void PsroiPoolInferMeta(const MetaTensor& x,
                        const MetaTensor& rois,
492
                        const MetaTensor& rois_num,
F
From00 已提交
493 494 495 496 497 498
                        int pooled_height,
                        int pooled_width,
                        int output_channels,
                        float spatial_scale,
                        MetaTensor* out);

H
hong 已提交
499 500 501 502 503
void RmspropInferMeta(const MetaTensor& param,
                      const MetaTensor& mean_square,
                      const MetaTensor& grad,
                      const MetaTensor& moment,
                      const MetaTensor& learning_rate,
504
                      const MetaTensor& mean_grad,
505
                      const MetaTensor& master_param,
H
hong 已提交
506 507 508 509
                      float epsilon,
                      float decay,
                      float momentum,
                      bool centered,
510
                      bool multi_precision,
H
hong 已提交
511 512 513
                      MetaTensor* param_out,
                      MetaTensor* moment_out,
                      MetaTensor* mean_square_out,
514 515
                      MetaTensor* mean_grad_out,
                      MetaTensor* master_param_outs);
H
hong 已提交
516

517
void RnnInferMeta(const MetaTensor& x,
518 519
                  const std::vector<const MetaTensor*>& pre_state,
                  const std::vector<const MetaTensor*>& weight_list,
520
                  const MetaTensor& sequence_length,
521 522 523 524 525 526 527 528 529 530 531 532 533
                  float dropout_prob,
                  bool is_bidirec,
                  int input_size,
                  int hidden_size,
                  int num_layers,
                  const std::string& mode,
                  int seed,
                  bool is_test,
                  MetaTensor* out,
                  MetaTensor* dropout_state,
                  std::vector<MetaTensor*> state,
                  MetaTensor* reserve);

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
void SendUERecvInferMeta(const MetaTensor& x,
                         const MetaTensor& y,
                         const MetaTensor& src_index,
                         const MetaTensor& dst_index,
                         const std::string& message_op,
                         const std::string& reduce_op,
                         const IntArray& out_size,
                         MetaTensor* out,
                         MetaTensor* dst_count);

void SendUVInferMeta(const MetaTensor& x,
                     const MetaTensor& y,
                     const MetaTensor& src_index,
                     const MetaTensor& dst_index,
                     const std::string& message_op,
                     MetaTensor* out);

Z
zyfncg 已提交
551
void SgdInferMeta(const MetaTensor& param,
H
hong 已提交
552 553
                  const MetaTensor& learning_rate,
                  const MetaTensor& grad,
554
                  const MetaTensor& master_param,
H
hong 已提交
555 556 557 558
                  bool multi_precision,
                  MetaTensor* param_out,
                  MetaTensor* master_param_out);

559 560 561 562 563 564 565 566
void SigmoidCrossEntropyWithLogitsInferMeta(const MetaTensor& x,
                                            const MetaTensor& label,
                                            const MetaTensor& pos_weight,
                                            bool normalize,
                                            int ignore_index,
                                            MetaTensor* out,
                                            MetaConfig config = MetaConfig());

567
void StackInferMeta(const std::vector<const MetaTensor*>& x,
C
csy0225 已提交
568
                    int axis,
569 570
                    MetaTensor* out,
                    MetaConfig config = MetaConfig());
C
csy0225 已提交
571

572
void UnchangedMultiInferMeta(const std::vector<const MetaTensor*>& x,
573 574
                             std::vector<MetaTensor*> out);

575 576 577 578 579
void ShareBufferInferMeta(const std::vector<const MetaTensor*>& x,
                          const std::vector<bool>& share_dims_and_dtype,
                          std::vector<MetaTensor*> out,
                          std::vector<MetaTensor*> xout);

580 581 582 583 584 585 586 587 588 589
void UpdateLossScalingInferMeta(const std::vector<const MetaTensor*>& xs,
                                const MetaTensor& found_infinite,
                                const MetaTensor& prev_loss_scaling,
                                const MetaTensor& in_good_steps,
                                const MetaTensor& in_bad_steps,
                                std::vector<MetaTensor*> outs,
                                MetaTensor* loss_scaling,
                                MetaTensor* out_good_steps,
                                MetaTensor* out_bad_steps);

0
0x45f 已提交
590 591
void WarpctcInferMeta(const MetaTensor& logits,
                      const MetaTensor& label,
592 593
                      const MetaTensor& logits_length,
                      const MetaTensor& labels_length,
0
0x45f 已提交
594 595
                      int blank,
                      bool norm_by_times,
596 597
                      MetaTensor* loss,
                      MetaTensor* warpctcgrad);
0
0x45f 已提交
598

H
Hui Zhang 已提交
599 600 601 602 603 604 605 606 607
void WarprnntInferMeta(const MetaTensor& input,
                       const MetaTensor& label,
                       const MetaTensor& input_lengths,
                       const MetaTensor& label_lengths,
                       int blank,
                       float fastemit_lambda,
                       MetaTensor* loss,
                       MetaTensor* warpctcgrad);

S
Siming Dai 已提交
608 609 610 611 612 613 614 615 616 617 618
void WeightedSampleNeighborsInferMeta(const MetaTensor& row,
                                      const MetaTensor& col_ptr,
                                      const MetaTensor& edge_weight,
                                      const MetaTensor& x,
                                      const MetaTensor& eids,
                                      int sample_size,
                                      bool return_eids,
                                      MetaTensor* out,
                                      MetaTensor* out_count,
                                      MetaTensor* out_eids);

619 620 621 622
void WhereInferMeta(const MetaTensor& condition,
                    const MetaTensor& x,
                    const MetaTensor& y,
                    MetaTensor* out);
623

624 625 626 627 628 629 630 631 632 633 634 635 636 637
void YoloLossInferMeta(const MetaTensor& x,
                       const MetaTensor& gt_box,
                       const MetaTensor& gt_label,
                       const MetaTensor& gt_score,
                       const std::vector<int>& anchors,
                       const std::vector<int>& anchor_mask,
                       int class_num,
                       float ignore_thresh,
                       int downsample_ratio,
                       bool use_label_smooth,
                       float scale_x_y,
                       MetaTensor* loss,
                       MetaTensor* objectness_mask,
                       MetaTensor* gt_match_mask);
638

639
void FusedAdamInferMeta(
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
    const std::vector<const MetaTensor*>& params,
    const std::vector<const MetaTensor*>& grads,
    const MetaTensor& learning_rate,
    const std::vector<const MetaTensor*>& moments1,
    const std::vector<const MetaTensor*>& moments2,
    const std::vector<const MetaTensor*>& beta1_pows,
    const std::vector<const MetaTensor*>& beta2_pows,
    const paddle::optional<std::vector<const MetaTensor*>>& master_params,
    const MetaTensor& skip_update,
    const Scalar& beta1,
    const Scalar& beta2,
    const Scalar& epsilon,
    int chunk_size,
    float weight_decay,
    bool use_adamw,
    bool multi_precision,
    bool use_global_beta_pow,
    std::vector<MetaTensor*> params_out,
    std::vector<MetaTensor*> moments1_out,
    std::vector<MetaTensor*> moments2_out,
    std::vector<MetaTensor*> beta1_pows_out,
    std::vector<MetaTensor*> beta2_pows_out,
    std::vector<MetaTensor*> master_params_out);

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
void FusedConvInferMeta(const MetaTensor& input,
                        const MetaTensor& filter,
                        const MetaTensor& bias,
                        const MetaTensor& residual_param,
                        const std::vector<int>& strides,
                        const std::vector<int>& paddings,
                        const std::string& padding_algorithm,
                        const std::vector<int>& dilations,
                        int groups,
                        const std::string& data_format,
                        const std::string& mkldnn_data_type,
                        const std::string& fuse_activation,
                        bool fuse_residual_conn,
                        bool force_fp32_output,
                        MetaTensor* out,
                        MetaConfig config);

681 682 683 684 685 686 687 688 689
void MoeInferMeta(const MetaTensor& x,
                  const MetaTensor& gate,
                  const MetaTensor& bmm0,
                  const MetaTensor& bias0,
                  const MetaTensor& bmm1,
                  const MetaTensor& bias1,
                  const std::string& act_type,
                  MetaTensor* out);

FormlessUnit's avatar
FormlessUnit 已提交
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
void FusedMultiHeadAttentionInferMeta(const MetaTensor& query,
                                      const MetaTensor& key,
                                      const MetaTensor& value,
                                      const MetaTensor& mask,
                                      float scale,
                                      bool causal,
                                      MetaTensor* out);

void FusedMultiHeadAttentionVariableInferMeta(const MetaTensor& query,
                                              const MetaTensor& key,
                                              const MetaTensor& value,
                                              const MetaTensor& seq_lens,
                                              const MetaTensor& mask,
                                              float scale,
                                              bool causal,
                                              MetaTensor* out);

FormlessUnit's avatar
FormlessUnit 已提交
707
void LLMInt8MatmulInferMeta(const MetaTensor& x,
FormlessUnit's avatar
FormlessUnit 已提交
708 709 710
                            const MetaTensor& weight,
                            MetaTensor* out);

FormlessUnit's avatar
FormlessUnit 已提交
711
void WeightOnlyMatmulInferMeta(const MetaTensor& x,
FormlessUnit's avatar
FormlessUnit 已提交
712
                               const MetaTensor& weight,
FormlessUnit's avatar
FormlessUnit 已提交
713
                               const MetaTensor& weight_scale,
FormlessUnit's avatar
FormlessUnit 已提交
714 715
                               MetaTensor* out);

716 717 718
void FusedRopeInferMeta(const MetaTensor& q,
                        const MetaTensor& k,
                        const MetaTensor& v,
719 720
                        const MetaTensor& sin,
                        const MetaTensor& cos,
721 722 723 724
                        MetaTensor* out_q,
                        MetaTensor* out_k,
                        MetaTensor* out_v);

725
}  // namespace phi