conv_op.cc 30.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16

17
#include <memory>
Y
Update  
Yi Wang 已提交
18 19 20
#include <string>
#include <vector>

21
#include "paddle/fluid/framework/op_version_registry.h"
22
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
23

24 25 26
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
H
hong 已提交
27
#include "paddle/fluid/framework/infershape_utils.h"
28
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
H
hong 已提交
29 30
#include "paddle/phi/infermeta/binary.h"

C
chengduoZH 已提交
31 32 33
namespace paddle {
namespace operators {

34 35
std::vector<int64_t> ConvOp::ComputeOutputShape(
    framework::InferShapeContext* ctx) const {
36 37
  OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "Conv");
  OP_INOUT_CHECK(ctx->HasInput("Filter"), "Input", "Filter", "Conv");
C
chengduoZH 已提交
38 39 40

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
41

C
chengduoZH 已提交
42 43
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
L
liym27 已提交
44 45
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
C
chengduoZH 已提交
46
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
47
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
48 49 50
  int dilation_size = dilations.size();
  for (int i = 0; i < dilation_size; ++i) {
    PADDLE_ENFORCE_GT(
51 52
        dilations[i],
        0,
53 54 55 56 57
        platform::errors::InvalidArgument(
            "The dilation of Op(Conv) should be larget than 0, but received "
            "dilation is %d.",
            dilations[i]));
  }
L
liym27 已提交
58
  const std::string data_format = ctx->Attrs().Get<std::string>("data_format");
59 60 61

  // MKL-DNN Kernels are using NCHW order of dims description
  // so we ignore data_format consideration for MKL-DNN kernel
62
  const bool channel_last = (ctx->IsRunMKLDNNKernel() == false) &&
63
                            (data_format == "NHWC" || data_format == "NDHWC");
C
chengduoZH 已提交
64

65
  PADDLE_ENFORCE_EQ(
66 67
      in_dims.size() == 4 || in_dims.size() == 5,
      true,
68
      platform::errors::InvalidArgument(
69 70
          "The input of Op(Conv) should be a 4-D or 5-D Tensor. But "
          "received: input's dimension is %u, input's shape is [%s].",
71 72
          in_dims.size(),
          in_dims));
73

C
chengduoZH 已提交
74
  PADDLE_ENFORCE_EQ(
75 76
      in_dims.size(),
      filter_dims.size(),
77
      platform::errors::InvalidArgument(
78 79 80 81
          "The input's dimension and filter's dimension of "
          "Op(Conv) should be equal. But received: the input's shape is [%s], "
          "the input's dimension is %d; the filter's shape is [%s],  "
          "the filter's dimension is %d.",
82 83 84 85
          in_dims,
          in_dims.size(),
          filter_dims,
          filter_dims.size()));
86

87 88 89
  int stride_size = strides.size();
  for (int i = 0; i < stride_size; ++i) {
    PADDLE_ENFORCE_GT(
90 91
        strides[i],
        0,
92 93 94 95 96 97 98
        platform::errors::InvalidArgument(
            "The stride of Op(Conv) should be larget than 0, but received "
            "stride is %d.",
            strides[i]));
  }

  int in_sub_stride_size = in_dims.size() - stride_size;
99
  PADDLE_ENFORCE_EQ(
100 101
      in_dims.size(),
      strides.size() + 2U,
102
      platform::errors::InvalidArgument(
103 104 105 106 107
          "The difference of input's dimension and Attr(strides)'s "
          "length must be euqal to 2 for Op(Conv). "
          "But received: input's dimension is %d, input's shape is [%s]; "
          "Attr(stride)'s length is %d, Attr(stride) is [%s]; "
          "difference of input's dimention and Attr(strides)'s length = %u.",
108 109 110 111
          in_dims.size(),
          in_dims,
          strides.size(),
          phi::make_ddim(strides),
112
          in_sub_stride_size));
L
liym27 已提交
113 114 115

  const auto input_channels =
      channel_last ? in_dims[in_dims.size() - 1] : in_dims[1];
F
fengjiayi 已提交
116

117
  PADDLE_ENFORCE_EQ(
118 119
      input_channels,
      filter_dims[1] * groups,
120
      platform::errors::InvalidArgument(
121 122 123 124 125
          "The number of input's channels should be equal to filter's channels "
          "* groups for Op(Conv). But received: the input's channels is %d, "
          "the input's shape is [%s]; the filter's channels is %d, the "
          "filter's shape is [%s]; the groups is %d, the data_format is %s. "
          "The error may come from wrong data_format setting.",
126 127 128 129 130
          input_channels,
          in_dims,
          filter_dims[1],
          filter_dims,
          groups,
131
          data_format));
C
chengduoZH 已提交
132
  PADDLE_ENFORCE_EQ(
133 134
      filter_dims[0] % groups,
      0,
135
      platform::errors::InvalidArgument(
136 137 138 139
          "The number of output's channels (filter's first dimension) of "
          "Op(Conv) should be divided by groups. But received: "
          "the output channels is %d, the filter's shape is [%s], "
          "the groups is %d.",
140 141 142
          filter_dims[0],
          filter_dims,
          groups));
W
wangxinxin08 已提交
143 144 145

  if (ctx->IsRuntime()) {
    PADDLE_ENFORCE_GT(
146 147
        filter_dims[0],
        0,
W
wangxinxin08 已提交
148 149 150
        platform::errors::InvalidArgument(
            "the size of filter at axis 0 should be greater than 0"));
  }
C
chengduoZH 已提交
151

L
liym27 已提交
152 153
  framework::DDim in_data_dims;
  if (channel_last) {
154
    in_data_dims = phi::slice_ddim(in_dims, 1, in_dims.size() - 1);
L
liym27 已提交
155
  } else {
156
    in_data_dims = phi::slice_ddim(in_dims, 2, in_dims.size());
L
liym27 已提交
157
  }
158

159
  framework::DDim filter_data_dims =
160
      phi::slice_ddim(filter_dims, 2, filter_dims.size());
161

162
  std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
163 164
  UpdatePaddingAndDilation(
      &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);
L
liym27 已提交
165 166 167 168 169

  std::vector<int64_t> output_shape({in_dims[0]});
  if (!channel_last) {
    output_shape.push_back(filter_dims[0]);
  }
170
  for (int i = 0; i < in_data_dims.size(); ++i) {
T
tink2123 已提交
171
    if ((!ctx->IsRuntime()) &&
L
liym27 已提交
172
        (in_data_dims[i] <= 0 || filter_dims[i + 2] <= 0)) {
T
tink2123 已提交
173 174
      output_shape.push_back(-1);
    } else {
175 176 177 178 179 180
      output_shape.push_back(ConvOutputSize(in_data_dims[i],
                                            filter_data_dims[i],
                                            dilations[i],
                                            paddings[2 * i],
                                            paddings[2 * i + 1],
                                            strides[i]));
T
tink2123 已提交
181
    }
C
chengduoZH 已提交
182
  }
L
liym27 已提交
183 184 185 186
  if (channel_last) {
    output_shape.push_back(filter_dims[0]);
  }

187
  return output_shape;
C
chengduoZH 已提交
188 189
}

190 191
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
192 193
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
194
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
195
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
196
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Input");
L
liym27 已提交
197 198
  std::string data_format =
      "AnyLayout";  // todo enable data layout when it's ready
M
mozga-intel 已提交
199 200
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

201
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
202
  if (platform::CanCUDNNBeUsed(ctx)) {
203
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
204 205
  }
#endif
206
#ifdef PADDLE_WITH_MKLDNN
207 208
  if (library == framework::LibraryType::kPlain &&
      this->CanMKLDNNBeUsed(ctx, input_data_type)) {
209
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
210
    layout = framework::DataLayout::kMKLDNN;
211
    customized_type_value =
212 213
        (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
         input_data_type == framework::DataTypeTrait<uint8_t>::DataType())
214 215 216 217
            ? OperatorWithKernel::IndicateVarDataType(ctx, "Filter") ==
                      framework::DataTypeTrait<int8_t>::DataType()
                  ? kConvMKLDNNINT8WS8
                  : kConvMKLDNNINT8
218
            : kConvMKLDNNFP32;
219
  }
220
#endif
221

222
  if (input_data_type != framework::proto::VarType::INT8 &&
223 224
      input_data_type != framework::proto::VarType::UINT8 &&
      input_data_type != framework::proto::VarType::BF16) {
225 226
    auto filter_data_type =
        framework::TransToProtoVarType(ctx.Input<Tensor>("Filter")->dtype());
227
    PADDLE_ENFORCE_EQ(
228 229
        input_data_type,
        filter_data_type,
230 231 232 233 234 235
        platform::errors::InvalidArgument(
            "input and filter data type should be consistent, "
            "but received input data type is %s and filter type "
            "is %s",
            paddle::framework::DataTypeToString(input_data_type),
            paddle::framework::DataTypeToString(filter_data_type)));
236
  }
H
hong 已提交
237 238 239 240 241 242 243 244
// #ifndef PADDLE_WITH_ASCEND_CL
//   if (input_data_type == framework::proto::VarType::FP16) {
//     PADDLE_ENFORCE_EQ(
//         library, framework::LibraryType::kCUDNN,
//         platform::errors::InvalidArgument(
//             "float16 can only be used when CUDNN or NPU is used"));
//   }
// #endif
W
wuhuanzhou 已提交
245 246 247 248
#if PADDLE_WITH_CUDA
  if (input_data_type == framework::proto::VarType::BF16 &&
      library == framework::LibraryType::kCUDNN) {
    PADDLE_ENFORCE_GE(
249 250
        platform::DnnVersion(),
        8100,
W
wuhuanzhou 已提交
251 252 253 254
        platform::errors::InvalidArgument(
            "bfloat16 can only be used when CUDNN_VERSION >= 8100"));
  }
#endif  // PADDLE_WITH_CUDA
K
Kexin Zhao 已提交
255

256 257
  auto type = framework::OpKernelType(
      input_data_type, ctx.GetPlace(), layout, library, customized_type_value);
258
  return type;
259 260
}

261
framework::OpKernelType ConvOp::GetKernelTypeForVar(
262 263
    const std::string& var_name,
    const Tensor& tensor,
264 265 266 267 268 269 270 271 272 273 274
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if ((var_name == "Input") &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
275
    // Some models may have intentionally set "AnyLayout" for conv
276 277
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
278 279
      return framework::OpKernelType(
          expected_kernel_type.data_type_, tensor.place(), dl);
280 281 282
    }
  }
#endif
283 284
  return framework::OpKernelType(
      expected_kernel_type.data_type_, tensor.place(), tensor.layout());
285 286
}

Y
Yu Yang 已提交
287
void Conv2DOpMaker::Make() {
L
liym27 已提交
288 289 290 291 292 293
  AddInput("Input",
           "(Tensor) The input tensor of convolution operator. "
           "The format of input tensor is NCHW or NHWC, where N is batch size, "
           "C is the "
           "number of channels, H is the height of the feature, "
           "and W is the width of the feature.");
C
chengduoZH 已提交
294
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
295
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
296 297
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
298 299
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
300
           "input image channels divided by the groups.");
301 302 303 304
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
305 306
      .AsDispensable()
      .AsExtra();
307 308 309
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
310
           "Used with fuse_residual_connection fusion.")
311 312
      .AsDispensable()
      .AsExtra();
Y
Yihua Xu 已提交
313 314
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator. "
L
liym27 已提交
315
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
316 317 318 319
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
320
      .SetDefault({1, 1});
C
chengduoZH 已提交
321 322
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
L
liym27 已提交
323 324
                            "paddings(pad_height_top, pad_height_bottom, "
                            "pad_width_left, pad_wifth_right)  of "
C
chengduoZH 已提交
325
                            "convolution operator.")
C
chengduoZH 已提交
326
      .SetDefault({0, 0});
L
liym27 已提交
327 328 329 330 331 332
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
333 334
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
335
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
336 337 338 339
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
340
      .SetDefault(1);
C
chengduoZH 已提交
341
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
342 343
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
344
                            "convolution operator.")
C
chengduoZH 已提交
345
      .SetDefault({1, 1});
346 347 348 349 350 351
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
L
liym27 已提交
352
      .SetDefault("NCHW");
353
  // TODO(dzhwinter): need to registered layout transform function
C
chengduoZH 已提交
354
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
355 356
Convolution Operator.

C
chengduoZH 已提交
357
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
358
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
359
parameters is checked in the infer-shape.
L
liym27 已提交
360
Input(Input) and Output(Output) are in NCHW or NHWC format. Where N is batch
C
fix doc  
chengduoZH 已提交
361
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
362
the width of the feature.
363
Filters(Input) is MCHW format format. Where M is the number of output image channels, C is
C
chengduoZH 已提交
364 365 366 367
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
368 369 370 371
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
372 373
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
374
  Output:
C
chengduoZH 已提交
375 376 377
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
L
liym27 已提交
378 379
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
C
chengduoZH 已提交
380
$$
C
chengduoZH 已提交
381
)DOC");
Q
qingqing01 已提交
382
  Apply();
C
chengduoZH 已提交
383 384
}

385 386 387 388 389 390 391 392 393 394 395
class DepthwiseConv2DOpMaker : public Conv2DOpMaker {
 protected:
  void Apply() override {
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn")
        .SetDefault(false)
        .AsExtra();
  }
};

Y
Yu Yang 已提交
396
void Conv3DOpMaker::Make() {
C
chengduoZH 已提交
397 398
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
399
      "(Tensor) The input tensor of convolution operator. "
L
liym27 已提交
400 401
      "The format of input tensor is NCDHW or NDHWC. Where N is batch size, C "
      "is the "
C
fix doc  
chengduoZH 已提交
402 403 404
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
405
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
406
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
407 408
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
409 410 411
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
412
           "input image channels divided by the groups.");
413 414 415 416
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
           "Used with fuse_residual_connection fusion.")
417 418
      .AsDispensable()
      .AsExtra();
Y
Yihua Xu 已提交
419 420
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator."
L
liym27 已提交
421
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
422 423 424 425
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
426
      .SetDefault({1, 1, 1});
L
liym27 已提交
427 428 429 430 431 432
  AddAttr<std::vector<int>>(
      "paddings",
      "(vector<int>, default:{0, 0, 0}), the "
      "paddings(pad_depth_front, pad_depth_back, pad_height_top, "
      "pad_height_bottom, pad_width_left, pad_width_right) of convolution "
      "operator.")
C
chengduoZH 已提交
433
      .SetDefault({0, 0, 0});
L
liym27 已提交
434 435 436 437 438 439
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
440 441
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
442
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
443 444 445 446
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
447
      .SetDefault(1);
C
chengduoZH 已提交
448
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
449 450
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
451
                            "convolution operator.")
C
chengduoZH 已提交
452
      .SetDefault({1, 1, 1});
453 454
  AddAttr<std::string>(
      "data_format",
L
liym27 已提交
455 456 457
      "(string, default NCDHW) Only used in "
      "An optional string from: \"NDHWC\", \"NCDHW\". "
      "Defaults to \"NDHWC\". Specify the data format of the output data, "
458
      "the input will be transformed automatically. ")
L
liym27 已提交
459
      .SetDefault("NCDHW");
C
chengduoZH 已提交
460
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
461 462
Convolution3D Operator.

C
chengduoZH 已提交
463
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
464
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
465
parameters is checked in the infer-shape.
L
liym27 已提交
466
Input(Input) and output(Output) are in NCDHW or NDHWC format, where N is batch
C
fix doc  
chengduoZH 已提交
467
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
468 469 470 471 472 473
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
474 475 476 477
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
478 479
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
480
  Output:
C
chengduoZH 已提交
481 482 483
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
L
liym27 已提交
484 485 486
       D_{out}= \frac{(D_{in} + pad_depth_front + pad_depth_back - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
C
chengduoZH 已提交
487
  $$
C
chengduoZH 已提交
488
)DOC");
Q
qingqing01 已提交
489
  Apply();
C
chengduoZH 已提交
490 491
}

C
chengduoZH 已提交
492 493 494 495 496 497 498 499 500 501 502
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

503 504
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
505 506
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
507
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
508
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
L
liym27 已提交
509
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
510
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
511
  auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Input");
M
mozga-intel 已提交
512

513
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
514 515
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
516 517
  }
#endif
518 519
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
520
      this->CanMKLDNNBeUsed(ctx, data_type)) {
521
    const std::string data_format = ctx.Attr<std::string>("data_format");
522
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
523
    layout_ = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
524
    customized_type_value = kConvMKLDNNFP32;
525
  }
526
#endif
527

528 529
  auto type = framework::OpKernelType(
      data_type, ctx.GetPlace(), layout_, library_, customized_type_value);
530
  return type;
531 532
}

533
framework::OpKernelType ConvOpGrad::GetKernelTypeForVar(
534 535
    const std::string& var_name,
    const Tensor& tensor,
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if (((var_name == "Input") ||
       (var_name == framework::GradVarName("Output"))) &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
551 552
      return framework::OpKernelType(
          expected_kernel_type.data_type_, tensor.place(), dl);
553 554 555
    }
  }
#endif
556 557
  return framework::OpKernelType(
      expected_kernel_type.data_type_, tensor.place(), tensor.layout());
558 559
}

H
hong 已提交
560 561
template <typename T>
class Conv2DGradMaker : public framework::SingleGradOpMaker<T> {
562
 public:
H
hong 已提交
563
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
564

565
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
566
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
567 568 569
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
570

H
hong 已提交
571 572
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
573 574 575 576 577

    if (this->HasInput("Bias")) {
      op->SetInput("Bias", this->Input("Bias"));
      op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
    }
H
hong 已提交
578
    op->SetAttrMap(this->Attrs());
579
  }
S
sneaxiy 已提交
580 581
};

H
hong 已提交
582 583
template <typename T>
class Conv3DGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
584
 public:
H
hong 已提交
585
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
586

587
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
588
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
589 590 591
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
S
sneaxiy 已提交
592

H
hong 已提交
593 594
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
S
sneaxiy 已提交
595

H
hong 已提交
596 597
    if (this->HasInput("ResidualData")) {
      op->SetInput("ResidualData", this->Input("ResidualData"));
S
sneaxiy 已提交
598 599
    }

H
hong 已提交
600
    op->SetAttrMap(this->Attrs());
601 602 603
  }
};

Q
qingqing01 已提交
604 605 606 607
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
608 609
template <typename T>
class Conv2DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
Q
qingqing01 已提交
610
 public:
H
hong 已提交
611
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Q
qingqing01 已提交
612

613
  void Apply(GradOpPtr<T> op) const override {
Q
qingqing01 已提交
614 615
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
616 617 618 619 620 621
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
Q
qingqing01 已提交
622 623 624 625

    // ddO, dI, dW
    // Unlike grad op, double grad op does not use name@GRAD@GRAD
    // as key of ops' inputs and outputs.
H
hong 已提交
626 627
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
628

L
lvmengsi 已提交
629
    op->SetOutput("DDOutput",
H
hong 已提交
630
                  ddx.empty()
631
                      ? this->EmptyInputGrad()
H
hong 已提交
632
                      : this->InputGrad(framework::GradVarName("Output")));
633 634 635 636 637 638
    op->SetOutput(
        "DFilter",
        ddx.empty() ? this->EmptyInputGrad() : this->InputGrad("Filter"));
    op->SetOutput(
        "DInput",
        ddw.empty() ? this->EmptyInputGrad() : this->InputGrad("Input"));
639

H
hong 已提交
640
    op->SetAttrMap(this->Attrs());
Q
qingqing01 已提交
641 642 643
  }
};

L
lvmengsi 已提交
644 645 646 647
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
648 649
template <typename T>
class Conv3DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
650
 public:
H
hong 已提交
651
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
652

653
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
654 655
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
656 657 658 659 660 661
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
L
lvmengsi 已提交
662

H
hong 已提交
663 664
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
L
lvmengsi 已提交
665

L
lvmengsi 已提交
666
    op->SetOutput("DDOutput",
H
hong 已提交
667
                  ddx.empty()
668
                      ? this->EmptyInputGrad()
H
hong 已提交
669
                      : this->InputGrad(framework::GradVarName("Output")));
670 671 672 673 674 675
    op->SetOutput(
        "DFilter",
        ddx.empty() ? this->EmptyInputGrad() : this->InputGrad("Filter"));
    op->SetOutput(
        "DInput",
        ddw.empty() ? this->EmptyInputGrad() : this->InputGrad("Input"));
L
lvmengsi 已提交
676

H
hong 已提交
677
    op->SetAttrMap(this->Attrs());
L
lvmengsi 已提交
678 679 680
  }
};

Q
qingqing01 已提交
681 682 683 684 685
void ConvOpDoubleGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto x_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("Filter");
  auto do_dims = ctx->GetInputDim("DOutput");

L
lvmengsi 已提交
686 687
  if (ctx->HasOutput("DDOutput") &&
      (ctx->HasInput("DDInput") || (ctx->HasInput("DDFilter")))) {
Q
qingqing01 已提交
688 689
    ctx->SetOutputDim("DDOutput", do_dims);
  }
690
  if (ctx->HasOutput("DFilter") && ctx->HasInput("DDInput")) {
Q
qingqing01 已提交
691 692
    ctx->SetOutputDim("DFilter", w_dims);
  }
693
  if (ctx->HasOutput("DInput") && ctx->HasInput("DDFilter")) {
Q
qingqing01 已提交
694 695 696 697 698 699 700 701 702
    ctx->SetOutputDim("DInput", x_dims);
  }
}

framework::OpKernelType ConvOpDoubleGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
  framework::LibraryType library_{framework::LibraryType::kPlain};
L
liym27 已提交
703
  std::string data_format = "AnyLayout";
Q
qingqing01 已提交
704 705
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

706
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
qingqing01 已提交
707 708
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
L
lvmengsi 已提交
709
  }
Q
qingqing01 已提交
710
#endif
711
  auto type = framework::OpKernelType(
712 713 714 715 716
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
      ctx.GetPlace(),
      layout_,
      library_,
      customized_type_value);
Q
qingqing01 已提交
717 718 719
  return type;
}

C
chengduoZH 已提交
720 721 722 723
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
724 725 726
REGISTER_OPERATOR(conv2d,
                  ops::ConvOp,
                  ops::Conv2DOpMaker,
H
hong 已提交
727 728 729
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
730 731
REGISTER_OPERATOR(conv2d_grad,
                  ops::ConvOpGrad,
H
hong 已提交
732 733
                  ops::Conv2DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DDoubleGradMaker<paddle::imperative::OpBase>);
Q
qingqing01 已提交
734
REGISTER_OPERATOR(conv2d_grad_grad, ops::ConvOpDoubleGrad);
735 736

// depthwise convolution op
737 738
REGISTER_OPERATOR(depthwise_conv2d,
                  ops::ConvOp,
739
                  ops::DepthwiseConv2DOpMaker,
H
hong 已提交
740 741 742
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
743 744
REGISTER_OPERATOR(depthwise_conv2d_grad,
                  ops::ConvOpGrad,
745 746 747
                  ops::Conv2DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(depthwise_conv2d_grad_grad, ops::ConvOpDoubleGrad);
C
chengduo 已提交
748

749 750 751
REGISTER_OPERATOR(conv3d,
                  ops::ConvOp,
                  ops::Conv3DOpMaker,
H
hong 已提交
752 753 754
                  ops::ConvOpInferVarType,
                  ops::Conv3DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DGradMaker<paddle::imperative::OpBase>);
755 756
REGISTER_OPERATOR(conv3d_grad,
                  ops::ConvOpGrad,
H
hong 已提交
757 758
                  ops::Conv3DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
759
REGISTER_OPERATOR(conv3d_grad_grad, ops::ConvOpDoubleGrad);
C
chengduoZH 已提交
760

761 762
REGISTER_OP_VERSION(conv2d).AddCheckpoint(
    R"ROC(
763 764
      Upgrade conv2d, add a new attribute [use_addto].
    )ROC",
765 766 767 768 769
    paddle::framework::compatible::OpVersionDesc().NewAttr(
        "use_addto",
        "In order to support new feature (inplace addto strategy) for "
        "gradient accumulation.",
        false));
770 771 772 773 774 775 776 777 778 779 780 781

REGISTER_OP_VERSION(depthwise_conv2d)
    .AddCheckpoint(
        R"ROC(
      Upgrade depthwise_conv2d, add a new attribute [use_addto].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_addto",
            "In order to support new feature (inplace addto strategy) for "
            "gradient accumulation.",
            false));

782 783
REGISTER_OP_VERSION(conv3d).AddCheckpoint(
    R"ROC(
784 785
      Upgrade conv3d, add a new attribute [use_addto].
    )ROC",
786 787 788 789 790
    paddle::framework::compatible::OpVersionDesc().NewAttr(
        "use_addto",
        "In order to support new feature (inplace addto strategy) for "
        "gradient accumulation.",
        false));