optimizer.py 21.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from collections import defaultdict
Q
Qiao Longfei 已提交
16

17
import framework
Q
Qiao Longfei 已提交
18
import layers
F
fengjiayi 已提交
19
from backward import append_backward
Y
Yu Yang 已提交
20 21
from framework import program_guard
import unique_name
22 23 24
from initializer import Constant
from layer_helper import LayerHelper
from regularizer import append_regularization_ops
F
fengjiayi 已提交
25
from clip import append_gradient_clip_ops, error_clip_callback
26

27
__all__ = ['SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad']
Q
Qiao Longfei 已提交
28 29 30 31 32 33


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
34 35
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
36 37
    """

Y
Yu Yang 已提交
38
    def __init__(self, learning_rate, regularization=None):
39 40
        if not isinstance(learning_rate, float) and \
                not isinstance(learning_rate, framework.Variable):
Q
qiaolongfei 已提交
41
            raise TypeError("learning rate should be float or Variable")
D
dzhwinter 已提交
42
        self.regularization = regularization
43 44 45
        self._learning_rate = learning_rate
        # each program should have a independent learning rate
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
46
        self._learning_rate_map = dict()
47 48 49
        if isinstance(self._learning_rate, framework.Variable):
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
50 51 52 53 54
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
55
        self.helper = None
Q
Qiao Longfei 已提交
56

Q
Qiao Longfei 已提交
57
    def _create_global_learning_rate(self):
58
        lr = self.global_learning_rate()
Q
Qiao Longfei 已提交
59

60 61 62 63
        if isinstance(lr, framework.Variable):
            return
        else:
            if not isinstance(self._learning_rate, float):
Q
qiaolongfei 已提交
64
                raise TypeError(
65 66
                    "learning rate variable is create outside optimizer,"
                    "can not create new learning rate variable for new program")
Q
Qiao Longfei 已提交
67

68 69 70 71 72 73 74 75 76 77
        # create learning rate in the current main program
        self._learning_rate_map[framework.default_main_program(
        )] = layers.create_global_var(
            name=unique_name.generate("learning_rate"),
            shape=[1],
            value=float(self._learning_rate),
            dtype='float32',
            persistable=True)

    def global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
78 79 80 81
        """
        get global decayed learning rate
        :return:
        """
82 83
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
84
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
85

Q
Qiao Longfei 已提交
86 87 88 89 90
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

91 92 93 94
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
Q
qiaolongfei 已提交
95 96 97 98
        if param_lr == 1.0:
            return self.global_learning_rate()
        else:
            return self.global_learning_rate() * param_lr
99 100 101 102 103 104 105

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
106
        """
107 108
        pass

109 110 111 112 113 114 115 116 117 118 119 120 121
    def _finish_update(self, block):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
            list of finish ops or None
        """
        pass

Q
Qiao Longfei 已提交
122
    def _add_accumulator(self, name, param, dtype=None, fill_value=0.0):
123 124 125 126 127 128 129 130 131 132 133
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
134
            raise Exception("Accumulator {} already exists for parameter {}".
135
                            format(name, param.name))
Q
Qiao Longfei 已提交
136 137 138

        assert isinstance(self.helper, LayerHelper)
        var = self.helper.create_global_variable(
Y
Yu Yang 已提交
139
            name=unique_name.generate(name),
Q
Qiao Longfei 已提交
140
            persistable=True,
F
fengjiayi 已提交
141
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
142 143 144
            type=param.type,
            shape=param.shape)
        self.helper.set_variable_initializer(
145
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
146
        self._accumulators[name][param.name] = var
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

Q
Qiao Longfei 已提交
164 165 166
    def create_optimization_pass(self,
                                 parameters_and_grads,
                                 loss,
167
                                 startup_program=None):
Q
Qiao Longfei 已提交
168 169 170 171 172 173 174
        """Add optimization operators to update gradients to variables.

        Args:
          loss: the target that this optimization is for.
          parameters_and_grads: a list of (variable, gradient) pair to update.

        Returns:
175 176 177 178
          return_op_list: a list of operators that will complete one step of
          optimization. This will include parameter update ops, global step
          update ops and any other custom ops required by subclasses to manage
          their internal state.
Q
Qiao Longfei 已提交
179
          :param startup_program:
Q
Qiao Longfei 已提交
180
        """
181 182 183 184 185
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
186
        # for parameters and extend _finish_update method to add custom ops.
187 188

        # Create any accumulators
Q
Qiao Longfei 已提交
189
        program = loss.block.program
190
        with program_guard(program, startup_program):
Y
Yancey1989 已提交
191 192
            global_block = framework.default_main_program().global_block()
            start = len(global_block.ops)
193 194 195
            self.helper = LayerHelper(self.__class__.__name__)
            self._create_accumulators(loss.block,
                                      [p[0] for p in parameters_and_grads])
Q
Qiao Longfei 已提交
196
            self._create_global_learning_rate()
197 198 199 200 201 202 203 204 205 206 207

            optimize_ops = []
            for param_and_grad in parameters_and_grads:
                if param_and_grad[0].trainable is True and param_and_grad[
                        1] is not None:
                    optimize_op = self._append_optimize_op(loss.block,
                                                           param_and_grad)
                    optimize_ops.append(optimize_op)

            # Get custom finish ops for subclasses
            # FIXME: Need to fix this once we figure out how to handle dependencies
Y
Yancey1989 已提交
208
            self._finish_update(loss.block)
209

Y
Yancey1989 已提交
210 211
            end = len(global_block.ops)
            return global_block.slice_ops(start, end)
Q
Qiao Longfei 已提交
212

Q
Qiao Longfei 已提交
213 214
    def minimize(self,
                 loss,
215
                 startup_program=None,
Q
Qiao Longfei 已提交
216 217
                 parameter_list=None,
                 no_grad_set=None):
Q
Qiao Longfei 已提交
218 219
        """Add operations to minimize `loss` by updating `parameter_list`.

F
fengjiayi 已提交
220
        This method combines interface `append_backward()` and
Q
Qiao Longfei 已提交
221 222
        `create_optimization_pass()` into one.
        """
F
fengjiayi 已提交
223
        params_grads = append_backward(loss, parameter_list, no_grad_set,
Y
Yang Yang 已提交
224
                                       [error_clip_callback])
Y
Yu Yang 已提交
225 226 227

        params_grads = append_gradient_clip_ops(params_grads)

F
fengjiayi 已提交
228
        # Add regularization if any
D
dzhwinter 已提交
229 230
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)
Y
Yu Yang 已提交
231

Q
Qiao Longfei 已提交
232
        optimize_ops = self.create_optimization_pass(params_grads, loss,
233
                                                     startup_program)
T
typhoonzero 已提交
234
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
235 236 237 238 239 240


class SGDOptimizer(Optimizer):
    """ Simple SGD optimizer without any state.
    """

D
dzhwinter 已提交
241
    def __init__(self, learning_rate, **kwargs):
Q
Qiao Longfei 已提交
242
        assert learning_rate is not None
Q
Qiao Longfei 已提交
243 244
        super(SGDOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
Q
Qiao Longfei 已提交
245 246
        self.type = "sgd"

247 248
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
249

Q
Qiao Longfei 已提交
250 251 252 253 254 255
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
256
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
257
            },
258
            outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
259 260

        return sgd_op
261 262 263 264 265 266 267


class MomentumOptimizer(Optimizer):
    """Simple Momentum optimizer with velocity state
    """
    _velocity_acc_str = "velocity"

D
dzhwinter 已提交
268
    def __init__(self, learning_rate, momentum, use_nesterov=False, **kwargs):
269 270
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
271 272
        super(MomentumOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
273 274
        self.type = "momentum"
        self._momentum = momentum
275
        self._use_nesterov = bool(use_nesterov)
276 277 278 279 280

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
281
            self._add_accumulator(self._velocity_acc_str, p)
282 283 284 285 286 287 288 289 290 291 292 293 294

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
295
                "LearningRate": self._create_param_lr(param_and_grad)
296 297 298 299 300
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
301
            attrs={"mu": self._momentum,
302
                   "use_nesterov": self._use_nesterov})
303 304

        return momentum_op
305 306 307 308 309 310 311


class AdagradOptimizer(Optimizer):
    """Simple Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
312
    def __init__(self, learning_rate, epsilon=1.0e-6, **kwargs):
313 314
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
315 316
        super(AdagradOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
317 318 319 320 321 322 323
        self.type = "adagrad"
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
324
            self._add_accumulator(self._moment_acc_str, p)
325 326 327 328 329 330 331

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

332
        # Create the adagrad optimizer op
333 334 335 336 337 338
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
339
                "LearningRate": self._create_param_lr(param_and_grad)
340 341 342 343 344 345
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return adagrad_op
346 347 348 349 350 351 352 353 354 355 356 357


class AdamOptimizer(Optimizer):
    """Implements the Adam Optimizer
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
358
                 epsilon=1e-8,
D
dzhwinter 已提交
359
                 **kwargs):
360 361 362 363
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
364 365
        super(AdamOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
366 367 368 369 370 371 372 373
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

Q
Qiao Longfei 已提交
374
        main_block = block.program.global_block()
375 376
        # Create beta1 and beta2 power tensors
        beta_shape = [1]
Q
Qiao Longfei 已提交
377
        self._beta1_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
378
            name=unique_name.generate('beta1_pow_acc'),
Q
Qiao Longfei 已提交
379 380 381 382 383
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
384
            self._beta1_pow_acc, initializer=Constant(self._beta1))
Q
Qiao Longfei 已提交
385 386

        self._beta2_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
387
            name=unique_name.generate('beta2_pow_acc'),
Q
Qiao Longfei 已提交
388 389 390 391 392 393
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)

        self.helper.set_variable_initializer(
394
            self._beta2_pow_acc, initializer=Constant(self._beta2))
395 396 397

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
398 399
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
400 401 402 403 404 405 406 407

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
408
        # create the adam optimize op
409 410 411 412 413
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
414
                "LearningRate": self._create_param_lr(param_and_grad),
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": self._beta1_pow_acc,
                "Beta2Pow": self._beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adam_op

    def _finish_update(self, block):
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
437 438
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
439 440 441 442 443
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

Q
Qiao Longfei 已提交
444
        scale_beta2 = main_block.append_op(
445 446 447 448 449 450
            type="scale",
            inputs={"X": self._beta2_pow_acc},
            outputs={"Out": self._beta2_pow_acc},
            attrs={"scale": self._beta2})

        return [scale_beta1, scale_beta2]
451 452 453 454 455 456 457 458 459 460 461 462


class AdamaxOptimizer(Optimizer):
    """Implements the Adamax Optimizer
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
463
                 epsilon=1e-8,
D
dzhwinter 已提交
464
                 **kwargs):
465 466 467 468
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
469 470
        super(AdamaxOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
471 472 473 474 475 476 477 478
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create beta1 power accumulator tensor
        beta_shape = [1]
Q
Qiao Longfei 已提交
479
        self._beta1_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
480
            name=unique_name.generate('beta1_pow_acc'),
Q
Qiao Longfei 已提交
481 482 483 484 485
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
486
            self._beta1_pow_acc, initializer=Constant(self._beta1))
487 488 489

        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
490 491
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
492 493 494 495 496 497 498 499 500 501 502 503 504

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
505
                "LearningRate": self._create_param_lr(param_and_grad),
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
                "Moment": moment,
                "InfNorm": inf_norm,
                "Beta1Pow": self._beta1_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adamax_op

    def _finish_update(self, block):
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
527 528
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
529 530 531 532 533 534
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

        return [scale_beta1]
535 536 537 538 539 540 541


class DecayedAdagradOptimizer(Optimizer):
    """Simple Decayed Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
542
    def __init__(self, learning_rate, decay=0.95, epsilon=1.0e-6, **kwargs):
543 544 545 546
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
547 548
        super(DecayedAdagradOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return decayed_adagrad_op
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594


# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer